
© MEDINA Consortium Contract No. GA 952633 Page 1 of 85

www.medina-project.eu

Deliverable D2.5

Specification of the Cloud Security Certification
Language – v3

Editor(s): Marinella Petrocchi, Michela Fazzolari

Responsible Partner: Consiglio Nazionale delle Ricerche (CNR)

Status-Version: Final – v1.0

Date: 30.04.2023

Distribution level (CO, PU): PU

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 2 of 85

www.medina-project.eu

Project Number: 952633

Project Title: MEDINA

Title of Deliverable:
Specification of the Cloud Security Certification Language
– v3

Due Date of Delivery to the EC 30.04.2023

Workpackage responsible for the
Deliverable:

WP2 - Certification Metrics and Specification Languages

Editor(s): Marinella Petrocchi (CNR)

Contributor(s):
Michela Fazzolari (CNR), Patrizia Ciampoli (HPE),
Immanuel Kunz (FhG)

Reviewer(s):
Juncal Alonso (TECNALIA)
Cristina Martínez (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP4, WP5, WP6

Abstract: This is the last of the three deliverables resulting from

Task 2.3, Task 2.4 and Task 2.5.
This set of deliverables presents the definition and
implementation of the Cloud Certification Language
which encompasses three major phases: 1) the encoding
of requirements of cloud certification schemas – written
in natural language -- in a Controlled Natural Language
(CNL), so called MEDINA CNL; 2) the editing of the
requirements in MEDINA CNL through an editor tool; and
3) the mapping of the CNL requirements to a domain
specific language (DSL).

Keyword List: MEDINA Cloud Certification Language, MEDINA CNL, CNL
Editor, Domain Specific Language, DSL Mapper, MEDINA
Ontology

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 3 of 85

www.medina-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 02.03.2023 Creation and ToC Michela Fazzolari

v0.2 15.03.2023 ToC approved by partners All

v0.3 23.03.2023 CNL Editor and Appendix D.2 updated Patrizia Ciampoli

v0.4 24.03.2023 Introduction updated
Section 2 moved to Appendix E
NL2CNL Translator updated

Michela Fazzolari,
Immanuel Kunz

v0.5 27.03.2023 DSL Mapper updated
Executive summary updated
Conclusions updated
Added component cards

Michela Fazzolari

v0.6 11.04.2023 First round of review Marinella Petrocchi

v0.7 12.04.2023 Component cards of NL2CNL Translator
and DSL Mapper updated

Michela Fazzolari

v0.8 14.04.2023 QA Internal Review Juncal Alonso

v0.9 17.03.2023 Changes applied as requested upon
internal review

All

v1.0 30.04.2023 Ready for submission Cristina Martínez

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 4 of 85

www.medina-project.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 9

1 Introduction ... 11

1.1 About this deliverable .. 11

1.2 Document Structure ... 11

1.3 Updates from D2.4 ... 12

2 NL2CNL Translator ... 13

2.1 Implementation .. 13

2.2 Delivery and Usage ... 22

2.3 Advancements within MEDINA .. 23

2.4 Limitations and Future Work .. 24

3 CNL Editor .. 25

3.1 Implementation .. 25

3.2 Delivery and Usage ... 35

3.3 Advancements within MEDINA .. 40

3.4 Limitations and Future Work .. 41

4 DSL Mapper .. 42

4.1 Implementation .. 42

4.2 Delivery and Usage ... 49

4.3 Advancements within MEDINA .. 50

4.4 Limitations and Future Work .. 50

5 Conclusions .. 52

6 References ... 53

7 APPENDIX A: The Cloud Certification Language, Architecture, Sequence Diagram and
Coverage of Requirements .. 57

7.1 Motivation .. 57

7.2 Methodology .. 57

7.3 Architecture .. 58

7.4 Sequence diagram .. 61

7.5 Coverage of requirements .. 63

8 APPENDIX B: Patterns and Controlled Natural Languages for Requirements specifications 64

8.1 Patterns .. 64

8.2 Controlled Natural Languages .. 65

8.3 CNLs for expressing policies for secure data management ... 66

8.4 MEDINA CNL ... 68

9 APPENDIX C: From NL to CNL TOMs .. 71

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 5 of 85

www.medina-project.eu

9.1 Metric association .. 71

9.2 CNL translations ... 77

10 APPENDIX D: MEDINA Vocabularies and Ontologies ... 79

10.1 Background: Taxonomies and Ontologies .. 79

10.2 Editor Ontology .. 79

10.3 Cloud Resource Security Ontology ... 81

 List of tables

TABLE 1. OVERVIEW OF DELIVERABLE UPDATES WITH RESPECT TO D2.4 .. 12
TABLE 2. LIST OF AVAILABLE ENDPOINTS FOR THE NL2CNL TRANSLATOR COMPONENT 20
TABLE 3. MOST IMPORTANT FILES AND FOLDERS IMPLEMENTING THE NL2CNL TRANSLATOR 22
TABLE 4. LIST OF AVAILABLE ENDPOINTS FOR THE CNL EDITOR COMPONENT ... 34
TABLE 5. LIST OF AVAILABLE ENDPOINTS FOR THE DSL MAPPER COMPONENT .. 47
TABLE 6. THE MOST IMPORTANT FILES AND FOLDERS IMPLEMENTING THE DSL MAPPER 49
TABLE 7. DESCRIPTION OF THE GENERAL WORKFLOW WF3, WHICH INVOLVES THE CLOUD SECURITY

CERTIFICATION LANGUAGE COMPONENTS .. 61
TABLE 8. EXPECTED COVERAGE OF FUNCTIONAL REQUIREMENTS FOR THE CLOUD SECURITY CERTIFICATION

LANGUAGE. .. 63

List of figures

FIGURE 1. POSITION OF THE NL2CNL TRANSLATOR WITHIN THE MEDINA ARCHITECTURE (SOURCE: D5.2 [7])
 ... 15

FIGURE 2. OVERVIEW OF THE NL2CNL TRANSLATOR ARCHITECTURE .. 19
FIGURE 3. POSITION OF THE CNL EDITOR WITHIN THE MEDINA ARCHITECTURE (SOURCE: D5.2 [7]) 27
FIGURE 4. OVERVIEW OF THE CNL EDITOR ARCHITECTURE .. 31
FIGURE 5. SCREENSHOT OF A REO OBJECT AS IT APPEARS IN THE CNL EDITOR GUI 33
FIGURE 6. CNL EDITOR FOLDERS’ STRUCTURE... 35
FIGURE 7. EXAMPLE OF CNL STORE API KUBERNETES MANIFESTS ... 36
FIGURE 8. LIST OF REOS AVAILABLE FOR THE USER HPE-USER2 IN THE CNL EDITOR 37
FIGURE 9. LIST OF AVAILABLE OPERATIONS FOR A SELECTED REO (CUSTOMISED STATE) IN THE CNL EDITOR ... 37
FIGURE 10. LIST OF AVAILABLE OPERATIONS FOR A SELECTED REO (COMPLETED STATE) IN THE CNL EDITOR .. 38
FIGURE 11. EDITING A REO OBJECT IN THE CNL EDITOR .. 39
FIGURE 12. CNL EDITOR APIS ... 39
FIGURE 13. FILTERING EXAMPLE: HPE-USER1 REOS LIST .. 40
FIGURE 14. FILTERING EXAMPLE: HPE-USER2 REOS LIST .. 41
FIGURE 15. POSITION OF THE DSL MAPPER WITHIN THE MEDINA ARCHITECTURE (SOURCE D5.2 [7]) 43
FIGURE 16. OVERVIEW OF THE DSL MAPPER ARCHITECTURE .. 46
FIGURE 17. BUILDING BLOCKS VIEW OF THE MEDINA FRAMEWORK (SOURCE: D5.2 [7]) 59
FIGURE 18. ARCHITECTURE OF THE COMPONENTS INVOLVED IN THE CLOUD SECURITY CERTIFICATION LANGUAGE

 ... 60
FIGURE 19. SEQUENCE DIAGRAM DESCRIBING THE INTERACTION AMONG THE CLOUD SECURITY CERTIFICATION

LANGUAGE COMPONENTS ... 62
FIGURE 20. OPERATIONAL SEMANTICS FOR THE COMPOSITE AUTHORIZATION FRAGMENT, WHERE THE SYMMETRIC

RULE FOR (;) IS OMITTED (SOURCE: UNPUBLISHED MANUSCRIPT, PETROCCHI M AND MATTEUCCI I.) 68
FIGURE 21. FROM NATURAL LANGUAGE TO CONTROLLED NATURAL LANGUAGE: SIMPLIFIED OVERVIEW METRIC

ASSOCIATION ... 71

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 6 of 85

www.medina-project.eu

FIGURE 22. FEATURE COMPUTATION WORKFLOW ... 73
FIGURE 23. RECOMMENDER SYSTEM WORKFLOW ... 73
FIGURE 24. PLOT OF REQUIREMENTS AND METRICS USING THE FIRST TWO COMPONENTS OF THE FEATURE

VECTORS, DOWN-PROJECTED USING TSNE, PCA AND TRUNCATED SVD RESPECTIVELY 75
FIGURE 25. PROTOTYPICAL RESULTS FOR EUCS REQUIREMENT AM-01.6, OPTIMAL RESULTS ON RANK 1 AND 2

 ... 76
FIGURE 26. PROTOTYPICAL RESULTS FOR EUCS REQUIREMENT AM-03.6, RESULTS ON RANK 7 AND 8 76
FIGURE 27. PROTOTYPICAL RESULTS FOR EUCS REQUIREMENT IM-03.4, NO RESULTS 77
FIGURE 28. CNL EDITOR VOCABULARY STRUCTURE EXAMPLE ... 80
FIGURE 29. CNL EDITOR VOCABULARY METRIC “BACKUPENCRIPTIONENABLED” 80
FIGURE 30. CNL EDITOR VOCABULARY TARGETVALUETYPE “BOOLEAN” .. 81
FIGURE 31. THE CLOUD RESOURCE TAXONOMY WHICH CLASSIFIES CLOUD RESOURCES ACCORDING TO THEIR

FUNCTIONAL PURPOSE, LIKE COMPUTE, STORAGE, AND NETWORKING ... 83
FIGURE 32. AN EXCERPT FROM THE CRSO ... 84
FIGURE 33. THE SECURITY PROPERTY TAXONOMY WHICH CLASSIFIES SECURITY PROPERTIES ACCORDING TO THEIR

TARGETED STRIDE-BASED GOAL .. 85

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 7 of 85

www.medina-project.eu

Terms and abbreviations

API Application Programming Interface

BNF Backus-Naur Form

CCL Cloud Certification Language

CNL Controlled Natural Language

CNL4DSA Controlled Natural Language for Data Sharing Agreement

CRSO Cloud Resource Security Ontology

CRUD Create, Read, Update, Delete

CSA or EU CSA Cybersecurity Act

CSP Cloud Service Provider

DB Data Base

DCG Discounted Cumulative Gain

DoA Description of Action

DSL Domain Specific Language

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

GUI Graphical User Interface

GWT Google Web Toolkit

IaaS Infrastructure as a Service

ICT Information Communications Technology

IDCG Ideal Discounted Cumulative Gain

JSON JavaScript Object Notation

KPI Key Performance Indicator

MTS Modal Transition System

nDCG Normalized Discounted Cumulative Gain

NL Natural Language

NLP Natural Language Processing

NL2CNL Natural Language To Controlled Natural Language

OPA Open Policy Engine

P@k Precision at k

PaaS Platform as a Service

PCA Principal Component Analysis

RDF Resource Description Framework

REO Requirement & Obligations

REST Representational State Transfer

RS Requirements Specifications

SaaS Software as a Service

SVD Singular Value Decomposition

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege

SW Software

ToC Target of Certification

TOM Technical and Organizational Measure

TRL Technology Readiness Level

TSNE T-distributed Stochastic Neighborhood Embedding

TSVD Truncated Singular Value Decomposition

UI User Interface

UML Unified Modelling Language

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 8 of 85

www.medina-project.eu

UUI Unified User Interface

WF Workflow

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 9 of 85

www.medina-project.eu

Executive Summary

The ultimate goal of the MEDINA project is to develop a framework for achieving continuous
audit-based certification for Cloud Service Providers based on cybersecurity certification
schemes. Within this framework, the purposes of Work Package 2 “Certification Metrics and
Languages” are:

• Elicitation of security controls and measures that are useful for automatic and

continuous monitoring (Task 2.1).

• Definition of Technical and Organizational Measures (TOMs) and Security Metrics

relevant for the continuous certification of Cloud Service Providers (CSP) (Task 2.2).

• Definition and implementation of a specification for Cloud Security Certification in a

Controlled Natural Language (CNL) (Task 2.3).

• Definition and implementation of a tool that allows users to modify part of the policies

elicited for security controls (Task 2.4).

• Definition and implementation of a tool that can translate the generated CNL to an

enforceable machine-oriented Domain Specification Language (DSL) (Task 2.5).

• Development of a framework for defining the risks of the controls identified in Task 2.1

(Task 2.6).

In deliverable D2.1 [1] a preliminary comparative analysis of four certification schemes was
carried out, along with a mapping of the controls of the schemes. The goal of this mapping is to
provide guidance in the transitioning toward the EUCS candidate scheme (European
Cybersecurity Certification Scheme for Cloud Services) [2]. For this reason, Work Package 2
“Certification Metrics and Languages” has focused on part of the security controls and
requirements included in the EUCS.

This deliverable (D2.5) is a public report that describes the progress made and the results
achieved in the last six months of WP2 (from November 2022 to April 2023, included) for Tasks
2.3, 2.4, and 2.5, so-called “Cloud Certification Language” tasks. This is the third deliverable of
the series, the first version being the deliverable D2.3 [3], namely “Specification of the Cloud
Security Certification Language – v1”, and the second version being D2.4 “Specification of the
Cloud Security Certification Language – v2” [4].

The main aim of this deliverable is to provide a toolset that renders the security requirements
of the chosen certification schema, which are expressed in Natural Language (NL), into a
language that can be automatically executed by a machine. To achieve this objective, two
sequential translations are made: the first from NL to Controlled Natural Language (CNL), the
second from CNL to Domain Specific Language (DSL).

The first translation from NL to CNL allows a security requirement to be represented with
security policies expressed in a formal intermediate language, still understandable for a human
user. The translation of a requirement is the aim of Task 2.3, and it is realized through a
component called NL2CNL Translator, described in section 2.

The output of the NL2CNL Translator can be checked and modified by an experienced user, and
this is performed in Task 2.4, where the output of Task 2.3 can be inspected through a dedicated
tool, named CNL Editor, described in section 3.

Once the user is satisfied with the CNL policies, the second translation can take place. This
translation is called `mapping’ and aims at transforming policies from CNL into DSL. The output
of the mapping is the main outcome of Task 2.5, and it is implemented by the DSL Mapper,
described in section 4.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 10 of 85

www.medina-project.eu

The structure of this document is quite straightforward, including three sections to detail the
NL2CNL Translator, the CNL Editor and the DSL Mapper, and a brief final section that reports on
the first stage of the final validation of the components.

For each component, the document describes its purpose and scope, the final coverage of
MEDINA requirements, the internal architecture of the component and its subcomponents, the
relation to other components, the implementation and technical details of the component,
including programming languages and libraries used, information on packaging and installation,
and licensing. Moreover, the advancements with respect to the previous release of the
components in month 24 are highlighted.

The components presented hereafter are in their final state of implementation and have been
fully integrated with other components of the MEDINA framework. All component requirements
are fully implemented.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 11 of 85

www.medina-project.eu

1 Introduction

1.1 About this deliverable

This document describes the result of Tasks 2.3, 2.4, and 2.5, obtained during the last six months
of WP2 (from November 2022 to April 2023, included). It reports on the internal design and on
the final implementation state of the tools involved in the “Cloud Security Certification
Language”. The main aim is to translate the EUCS draft candidate cloud certification scheme [2]
from Natural Language to a machine-readable language. The EUCS requirements, together with
the associated metrics, can be seen as policies, i.e., rules that a Cloud Service Provider may/must
fulfil in order to obtain the certification. The expression of these rules in the MEDINA DSL will
allow the MEDINA Evidence Management Tools (presented in deliverables D3.3 [5] and D3.6 [6])
to process them automatically. More detailed information on the “Cloud Security Certification
Language” can be found in APPENDIX A: The Cloud Certification Language, Architecture,
Sequence Diagram and Coverage of Requirements.

This is the third deliverable on this topic, being the previous one the deliverable D2.4 [4]. The
original structure of deliverable D2.4 has been slightly modified. Since the content of the current
deliverable is closely related to that described in the previous one, for the reader’s convenience,
we have included in the appendices those parts of deliverable D2.4 necessary for understanding
some of the concepts referred to here, in order to provide a self-contained deliverable that
facilitates the reader’s understanding.

1.2 Document Structure

This document is structured as follows:

• Section 1 is the current section.

• Section 2 describes the NL2CNL Translator component. It is the main output of Task 2.3
and implements the translation of policies from Natural Language (NL) to CNL, after
associating a set of policies to a requirement. The output generated by this component
is a set of policies (better-said obligations) expressed in CNL.

• Section 3 details the output of Task 2.4, i.e., the CNL Editor component. This tool allows
a user to inspect and partly modify the obligations generated within the previous step.

• Section 4 describes the DSL Mapper, which is the outcome of Task 2.5. This component
maps the obligations expressed in CNL into the MEDINA DSL, whose statements are
machine-readable.

• Section 5 draws some conclusions.

• APPENDIX A: The Cloud Certification Language, Architecture, Sequence Diagram and
Coverage of Requirements, describes the motivation and the methodology followed to
design and develop the Cloud Security Certification Language system. It also recalls the
architecture, sequence diagrams and coverage of requirements for the Cloud
Certification Language components.

• APPENDIX B: Patterns and Controlled Natural Languages for Requirements
specifications, describes the state-of the-art on Controlled Natural Languages and the
MEDINA Controlled Natural Language.

• APPENDIX C: From NL to CNL TOMs, describes the strategies explored to perform the
association between metrics and requirements.

• APPENDIX D: MEDINA Vocabularies and Ontologies, describes the MEDINA vocabularies
and ontologies.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 12 of 85

www.medina-project.eu

1.3 Updates from D2.4

This section summarises the main updates over the different sections of the document,
considering that it is an evolution of D2.4 [4].

Table 1. Overview of deliverable updates with respect to D2.4

Section Change

2 Old section 2 (Cloud Security Certification Language Tool High-Level
Architecture) has been moved to Appendix E. This section currently describes
the NL2CNL Translator component in its final version.

3 This section currently describes the CNL Editor component in its final version.

4 This section currently describes the DSL Mapper component in its final version.

5 Conclusions are aligned.

Appendix A Appendix including the same content of Appendix A of D2.4, in which the
motivation and methodology of the Cloud Certification Language are described
and the old section 2 of D2.4, with the description of the high-level architecture
and sequence diagram of the Cloud Certification Language components.

Appendix B Appendix already present in D2.4, describing the MEDINA Controlled Natural
Language defined for the specification of requirements.

Appendix C Appendix already present in D2.4, reporting a detailed study about possible
strategies to associate metrics to requirements.

Appendix D Appendix with some updates with respect to the same Appendix in D2.4
showing MEDINA vocabularies and ontologies.

We have also added a new subsection, called 'Component Card', in the 'Implementation' section
of each component’s description. It includes a schematic table with the main functionalities of
the component, subcomponents, sequence diagrams, interfaces, etc., providing the structural
and behavioural description of the component itself. The template and contents of this table
have been inherited from deliverable D5.2 [7].

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 13 of 85

www.medina-project.eu

2 NL2CNL Translator

The NL2CNL Translator is a component of the MEDINA framework that has two main purposes.
The first goal is to select a set of metrics that could be useful to evaluate a certain security
requirement, also called TOM (Technical and Organizational Measure). After associating a set of
metrics to a requirement, the second goal is to translate those metrics into policies. Specifically,
metrics are expressed in NL, while the translated policies are expressed in CNL. More
information regarding CNLs in general and the specific CNL chosen for the MEDINA project can
be found in the APPENDIX B: Patterns and Controlled Natural Languages for Requirements
specifications, while APPENDIX C: From NL to CNL TOMs describes the strategies explored to
perform the association between metrics and requirements.

2.1 Implementation

2.1.1 Functional description

The NL2CNL Translator relies on the Catalogue of Controls and Metrics component as a data
source, in fact both the security requirements (aka TOMs) and metrics are stored in it. A first
version of the Catalogue was described in D2.1 [1], while the last version has been described in
D2.2 [8]. Currently, the focus of the Catalogue is on the EUCS candidate scheme (European
Cybersecurity Certification Scheme for Cloud Services [2]), in its draft version of August 2022.

In order to be evaluated, the requirements available in the EUCS scheme must be associated
with metrics, and these metrics, in turn, can be expressed by means of obligation policies1. The
ultimate goal of the NL2CNL Translator is to translate a set of metrics associated to a
requirement into obligations, expressed in CNL.

Main innovation: The main innovation introduced by the NL2CNL Translator is the use of a
Metric Recommender based on NLP techniques to automatically associate a set of metrics to a
requirement.

2.1.1.1 Fitting into overall MEDINA Architecture

Figure 1 shows the integration of the NL2CNL Translator within the overall MEDINA architecture.
The components available are described in detail in section 2.1.2.1 and are mapped to the
MEDINA framework as follows:

• The API Server component coordinates all the other modules and implements the API
interface towards the outside.

• The Metric Recommender component implements the functionalities offered by the
Metric Recommender in the MEDINA framework, i.e., it associates a requirement with
a set of metrics.

• The Translation component implements the functionalities of translating the set of
metrics in obligations, from NL to CNL.

The NL2CNL Translator interacts with the Catalogue of controls and metrics, which is its main
source of data since it contains requirements, metrics descriptions and metadata. The results of
the translation are created according to the MEDINA Ontology and then stored in the CNL Store,
a database managed by the CNL Editor that is accessible though the CNL Editor APIs. Moreover,

1 As reported in APPENDIX B: Patterns and Controlled Natural Languages for Requirements specifications,
the MEDINA CNL language can express both authorizations and obligations. For the requirements
investigated within EUCS, we have so far only considered obligations.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 14 of 85

www.medina-project.eu

the NL2CNL Translator interacts also with the Orchestrator, which triggers the translation
through its User Interface.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 15 of 85

www.medina-project.eu

Figure 1. Position of the NL2CNL Translator within the MEDINA architecture (source: D5.2 [7])

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 16 of 85

www.medina-project.eu

2.1.1.2 Component card

Component
Name

NL2CNL Translator

Main
functionalities

The component translates the natural language text (English) of Security
Requirements (TOMs) to the CNL obligations by recommending/predicting a
set of metrics and integrating them into the CNL.

Sub-
components
Description

API Server: Implements the API interface towards other MEDINA components
and coordinates all the operations and the connections towards other internal
subcomponents.

Metric Recommender: Given a requirement, it performs the association
between the requirement and metrics.

Translation: Takes a requirement and the associated set of metrics and
translates everything into a REO object (Requirements&Obligations), which
includes the requirement’s metadata and the metrics translated into
obligations.

Obligation: RT must M type (op, tv)

RT: resource type, M: metric associated to the requirement, tv: target value,
op: comparison operator (indicates how to compare the target value with the
value measured on the resource), type: unit of measure of the target value and
the measured value.

Main logical
Interfaces

Interface name Description Interface technology

API Server API to access NL2CNL
functionalities

REST API

Requirements
Mapping

List of requirements covered by this component (see D5.2 [7]):
NL2CNL.01, NL2CNL.02, NL2CNL.03, NL2CNL.04

Interaction
with other

components

Interfacing Component Interface Description

Catalogue of controls
and metrics

NL2CNL Translator reads requirements and
metrics from it.

CNL Editor API NL2CNL Translator exploits CNL Editor API to
access the CNL Store functionalities, i.e., to store
the requirements and obligations information in
XML format.

Relevant
sequence
diagram/s

Current TRL2 TRL4

2 TRL value before validation

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 17 of 85

www.medina-project.eu

Target TRL3 TRL5

Programming
language

Python 3.8

License Apache License 2.0

WP and task WP2, Task 2.3

MEDINA
Workflow

WF3 – EUCS deployment on ToC (see D5.4 [9])

2.1.1.3 Requirements

A collection of functional requirements (from deliverable D5.2 [7]) related to the component is
presented below, along with a description of how and to what extent these requirements are
implemented at the time of writing.

Requirement id NL2CNL.01

Short title Translation from natural language to controlled natural language

Description The tool shall be able to translate in a semi-automatic way the
requirements selected from a security certification scheme – originally
expressed in natural language (English), into a set of obligations expressed
in a controlled natural language.
The output of the tool will be checked manually to verify if the obligations
generated by the tool are correctly linked to the selected requirement.

Implementation
state

Fully implemented

The NL2CNL Translator associates a set of metrics to each selected requirement, by using the
Metric Recommender, and then translates all the associated metrics into obligations. Due to
some limits in the accuracy results of the Metric Recommender, it is possible that some of the
associated obligations are not suitable for the selected requirement, thus it is necessary to
manually verify the output. In the final implementation, the NL2CNL Translator has been tested
to correctly generate CNL obligations for all the requirements included in the Catalogue of
controls and metrics.

Requirement id NL2CNL.02

Short title Based on NLP and ontologies

Description Given natural language sentences taken from the cloud certification
schema, the tool will rely on NLP techniques to link these sentences to a
list of recommended metrics.

Implementation
state

Fully implemented

The NL2CNL Translator relies on the Metric Recommender to choose which are the metrics to
be associated to a requirement. This association is done by considering the text similarity among
the requirement description and the metrics descriptions, both expressed in NL.

Requirement id NL2CNL.03

Short title Translation of organizational measures and technical measures

Description The NL2CNL Translator will be able to translate some of the organizational
measures specified in the chosen EU cloud certification schemas, and
some of the technical measures.

3 TRL value after validation

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 18 of 85

www.medina-project.eu

Implementation
state

Fully implemented

The NL2CNL Translator is currently able to process all the EUCS requirements identified in D2.2
[8], which are the ones available in the Catalogue of controls and metrics.

Requirement id NL2CNL.04

Short title Compliant with the CNL editor format

Description The controlled natural language output of the NL2CNL Translator will be
compliant with the format used by the CNL Editor to represent the
obligations.

Implementation
state

Fully implemented

The NL2CNL Translator produces an object containing the requirement’s metadata, metrics
metadata and CNL obligations. All this information is stored in an XML file, compliant with the
format used by the CNL Editor. The XML format has been updated to consider the
Authorization&Filtering concept, i.e., to store the ID of the Cloud Service for which the
translations are requested.

Requirement id NL2CNL.05

Short title XML Compliant

Description The controlled natural language output of NL2CNL translator will be
compliant with the XML based format supported by the CNL Editor.

Implementation
state

Discarded

This requirement has been cancelled since it duplicates requirement NL2CNL.04.

2.1.2 Technical description

In the following, we provide the technical description of the NL2CNL Translator subcomponents.
First, we present the architectural design, consisting of the architectural view and the
connection between the respective subcomponents. This is followed by information on the
individual subcomponents and finally by a summary of the technical specifications for the
implementation of the NL2CNL Translator.

2.1.2.1 Component architecture

The NL2CNL translator is written in Python 3 and is organized in modules. Its functionalities are
available through a REST API; thus, a Python API framework has been chosen for implementing
it, i.e., FastAPI4. This is a very fast and high-performance Python framework, which supports a
compact coding structure, resulting in fast development.

FastAPI is based on the asyncio capabilities of Python5, which has been standardized as ASGI
(Asynchronous Server Gateway Interface) specification6 for building asynchronous web
applications. In terms of features, FastAPI is similar to Flask7, another widespread Python
framework for writing APIs.

Figure 2 shows the architecture of the NL2CNL Translator.

4 https://fastapi.tiangolo.com/
5 https://docs.python.org/3/library/asyncio.html
6 https://asgi.readthedocs.io/en/latest/specs/main.html
7 https://flask.palletsprojects.com/en/2.2.x/

http://www.medina-project.eu/
https://fastapi.tiangolo.com/
https://docs.python.org/3/library/asyncio.html
https://asgi.readthedocs.io/en/latest/specs/main.html
https://flask.palletsprojects.com/en/2.2.x/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 19 of 85

www.medina-project.eu

Figure 2. Overview of the NL2CNL Translator architecture

The NL2CNL Translator modules are organized into three subcomponents, according to the
functionalities they offer:

• API Server: Implements the API interface towards other MEDINA components.
Moreover, it coordinates all the operations and the connections towards other internal
subcomponents.

• Metric Recommender: Given a requirement, it performs the association between the
requirement and metrics, thus it provides a set of metrics.

• Translation: Takes a requirement and the associated set of metrics and translates
everything into a REO object (Requirements&Obligations), which includes the
requirement’s metadata and the metrics translated into obligations. This object is then
returned to the server.

The endpoints available to interact with the other MEDINA components are reported in Table 2.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 20 of 85

www.medina-project.eu

Table 2. List of available endpoints for the NL2CNL Translator component

Function name Parameters Return
Type

Description

create_reo_from
_requirement

username,
cloud_servi
ce_id,
tom_code

HTTP
Response

This function is designed to be called by the
Orchestrator, which must transmit three
parameters: the username of the user currently
connected to MEDINA, the identifier of the
Cloud Service, and the identifier of the
requirement with which the metrics and related
obligations are to be associated.

This is a POST function, thus if the execution is
successful the final effect will be the creation of
a REO object within the CNL Store of the CNL
Editor. If successful, the status code returned
will be of type 201, otherwise an error code will
be returned depending on the problem
occurred (e.g., status code 401 is returned if the
specified user does not have sufficient
permissions).

livez None HTTP
Response

This function is used by the Kubernetes primary
node agent to know when to restart a
container. In fact, many applications running for
long periods of time eventually transition to
broken states and cannot recover except by
being restarted.

readyz None HTTP
Response

This function is used by the Kubernetes primary
node agent to know when a container is ready
to start accepting traffic.

2.1.2.2 Description of components

This section presents the subcomponents available in the NL2CNL Translator and describes how
they have been updated to meet the MEDINA requirements.

API Server

The API Server is the core of the NL2CNL Translator. It connects and coordinates with all the
other services/components and implements the API interfaces provided to the outside. Its logic
can be divided into 5 steps:

1. Upon launching the app, the API server loads the textual descriptions of requirements
and metrics from the Catalogue of controls and metrics. In addition, the pre-computed
numerical features for these texts are loaded from local files. Using pre-computed
features has pros and cons. The main advantage lies in the fact that features
computation is time consuming, and thus by computing features offline the app starting
is faster. The disadvantage is that when a new requirement or metric is added to the
Catalogue of controls and metrics, the corresponding feature vector for that element
must be computed and the app restarted to load the changes. The set of requirements
to work on has been set by the consortium, and we do not expect an extended set to be

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 21 of 85

www.medina-project.eu

considered from month 30 until the end of the project. However, we feel it is important
to have provided a proof of concept based on numerical features of the texts.

2. The Metric Recommender is then initialized with the K-d tree algorithm8, computed on
the feature vectors of the metrics.

3. After the preliminary steps, the API server waits for requests from the Orchestrator
component. The Orchestrator starts a translation by calling the API server and passing
the identifier of a requirement, a username and a Cloud Service identifier. The API server
then calls the Metric Recommender to get the association between a requirement and
a set of metrics.

4. These metrics are then translated into obligations, i.e., for each metric associated to a
requirement, an obligation is constructed in XML language, using the metrics metadata
previously loaded from the Catalogue of controls and metrics. The obligations expressed
in XML are then embedded into a larger object called REO, which includes requirement’s
metadata, metrics metadata and the obligations themselves.

5. Finally, the object thus created is saved into the CNL Store, using the APIs provided by
the CNL Editor.

Metric Recommender

The Metric Recommender is initialized with a K-dimensional tree (K-d tree) algorithm. The
Metric Recommender takes the identifier of a requirement so that it can access the
correspondent textual description. Next, the correspondent feature vector is retrieved and used
as input for the K-d tree algorithm to select the k closest neighbours of the query vector based
on the shortest Euclidean distance. Finally, the Metric Recommender returns a set of metrics
whose features are the most similar to those of the specified requirement.

Translation

The Translation takes care of translating the metrics into obligations, moreover it generates an
object compliant with the input required by the CNL Editor. This object is called REO
(Requirements&Obligations), since it contains all the information needed to express a
requirement and the associated obligations. The REO structure is depicted in Figure 5.

Once the object is created, the control returns to the API Server subcomponent.

2.1.2.3 Technical specifications

The NL2CNL Translator is written in Python, version 3.8. A selection of the key libraries is shown
in the following and a full list including all the used libraries can be found in the GitLab
repository9.

• fastapi

• uvicorn

• scipy

• scikit_learn

• fasttext

• numpy

• pandas

• spacy

• nltk

8 Bentley, J. L. (1975). "Multidimensional binary search trees used for associative
searching". Communications of the ACM. 18 (9): 509–517.
9 https://git.code.tecnalia.com/medina/public/nl2cnl-translator

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/nl2cnl-translator

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 22 of 85

www.medina-project.eu

• python-keycloak

2.2 Delivery and Usage

The following subsections give a short overview of the delivery and usage of the NL2CNL
Translator prototype.

2.2.1 Package information

The package is delivered in a repository, containing all the needed deployment and
configuration scripts for installing the NL2CNL Translator. Even if the component is not intended
to be used as a standalone tool, it is possible to use it for testing purposes, mainly accessing the
APIs through a web browser. The component is available as a Docker image. Table 3 shows the
structure of the most important folders and a brief description of them.

Table 3. Most important files and folders implementing the NL2CNL Translator

Folder/file Description

api_server.py This file contains the code needed for implementing the APIs and
for managing the communication between components.

Dockerfile This file contains the list of commands that the Docker client calls
while creating an image.

config.py This file includes all the configurations (variables, paths, etc.) used
by the prototype.

clean_sentence.py This file belongs to the Metric Recommender. It is used to pre-
process the textual description of requirements and metrics.

fasttext_features.py This file belongs to the Metric Recommender. It is used to pre-
compute the numerical features for the textual descriptions using
the fasttext library.

utils.py This file belongs to the Metric Recommender and implements its
logic.

app_utils/ This folder includes a set of utility functions.

cnl_editor_client/ This folder contains the client to interact with the CNL Editor
component.

coc_backend_api_client/ This folder contains the client to interact with the Catalogue of
Controls and Metrics component.

data/ This folder contains local data used by the NL2CNL Translator,
such as the pre-computed features for requirements and metrics
and the XML templates to build the REO objects.

openapis/ This folder contains the auto-generated OpenAPI files.

2.2.2 Installation instructions

The full up-to-date installation instructions of the NL2CNL Translator can be found in the
README in the MEDINA GitLab repository at this link:

https://git.code.tecnalia.com/medina/public/nl2cnl-translator/-/blob/main/README.md

To setup the prototype in a local machine, it is possible to build the Docker image as follows:

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/nl2cnl-translator/-/blob/main/README.md

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 23 of 85

www.medina-project.eu

$ docker build –t nl2cnl_translator_image .

2.2.3 User Manual

After building the Docker image of the prototype, it can be run as follows:

$ docker run -p 8000:8000 -it --name nl2cnl_translator

nl2cnl_translator_image

The container can be started and stopped as follows:

$ docker start nl2cnl_translator

$ docker stop nl2cnl_translator

It is possible to test the API through the command line with the CURL command, or through a
browser with the interactive APIs. For example, by typing in the command line:

$ curl -X 'POST' 'http://127.0.0.1:8000/

create_reo_for_requirement/{username}?tom_code={requirement_name}

with nl2cnl_test as username and OPS-05.3 as requirement_name, a new REO object will
be created for the user in the CNL Store and the id of the created object will be returned.

Alternatively, it is possible to open a browser and visit the following page:
http://127.0.0.1:8000/docs#

The interactive APIs will be opened, and it will be possible to test them directly in the browser.

Alternatively, it is possible to test the interactive APIs by using the component installed in the
MEDINA framework, which can be reached following this link:

https://nl2cnl-translator-test.k8s.medina.esilab.org/docs#/

2.2.4 Licensing information

The NL2CNL Translator component is open source, under the Apache License 2.0.

2.2.5 Download

The code is currently available on MEDINA’s git repository, in the GitLab hosted by TECNALIA:

https://git.code.tecnalia.com/medina/public/nl2cnl-translator

2.3 Advancements within MEDINA

This section reports on the progress implemented in the NL2CNL Translator component from
November 2022 to April 2023 (formal end of WP2). In particular:

• The Translation component has been updated to take into account the changes of the
REO structure.

• The Authorization&Filtering concept has been implemented in the NL2CNL Translator.
Currently the Cloud Service ID is passed to the component as a parameter, and the
NL2CNL Translator takes care of inserting this information in the REO structure, thus
allowing that the CNL Editor can implement the Authorization&Filtering function.

• The NL2CNL Translator has been extensively tested with different users/Cloud
Services/requirements to find as many bugs as possible and correct them.

http://www.medina-project.eu/
https://nl2cnl-translator-test.k8s.medina.esilab.org/docs#/
https://git.code.tecnalia.com/medina/public/nl2cnl-translator

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 24 of 85

www.medina-project.eu

2.4 Limitations and Future Work

The main limitation in the current development of the NL2CNL Translator prototype regards the
results obtained by the associations provided by the Metric Recommender. We are aware that
the obtained results may sometimes be inaccurate. This is due to a partial lack of data to work
with. In fact, the focus of the MEDINA project is on those requirements which are of assurance
level high related to continuous monitoring, a small number of EUCS requirements.

In any case, the NL2CNL Translator is currently updated to deal with the August 2022 draft
candidate version of the EUCS scheme [10].

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 25 of 85

www.medina-project.eu

3 CNL Editor

The CNL Editor is a tool that has two main functionalities for an authorized account: showing the
REO (Requirement&Obligation) objects that are created by NL2CNL Translator and allowing
some changes to these objects before passing to the next step of DSL Mapping. The tool has a
Web interface and a REST API to carry out its functionalities.

This section describes implementation and use of CNL Editor tool in the context of the MEDINA
framework.

3.1 Implementation

3.1.1 Functional description

The CNL Editor is a component of the MEDINA framework that allows a user, with a web
interface, to refine the obligations (policies) associated with a specific requirement by the
NL2CNL Translator (see section 2.1.1). The associations are contained into an object called REO
(Requirement&Obligation) which is an XML file whose structure is explained in section 3.1.2.2.
The obligations are showed as CNL statements and the CNL Editor gives the user the possibility
to change the operator and/or the target value of a specific obligation or to delete obligations
not valid or appropriate.

The CNL Editor uses a vocabulary that contains terms coming from the Catalogue of Controls
and Metrics to guide the user with operator and target value selection. The CNL Editor works on
REO objects stored in an internal database accessible from the CNL Editor itself with an internal
API. Some basic operations on REOs can be invoked from other components using the CNL Editor
API.

A user can connect to the CNL Editor, from the MEDINA UI and through the Editor Web Interface
in order to:

• Visualize the list of associated REOs.

• Select a specific REO to:
o show the REO
o update the REO by deleting obligations or by modifying the operator and/or the

target Value
o delete the REO

When a REO is considered completed, the user can invoke the map function in the CNL Editor.
This function calls the DSL Mapper component to translate CNL obligations into Rego code (see
section 4.1).

Main innovation: an added value in adopting the CNL Editor is the possibility to change part of
the obligations associated with a requirement. Specifically, the user can change the operator
and the target values for an obligation, or she/he can delete obligations within a REO. The fact
that it is possible to change some parameters related to the requirement, before the latter is
actually referenced for assessment, gives an opportunity to the user responsible for the cloud
service, i.e., to be able to change default values for the target value, or to decide not to proceed
with the assessment of all the requirements in the Catalogue of controls and metrics.

3.1.1.1 Fitting into overall MEDINA Architecture

Figure 3 highlights the CNL Editor within the MEDINA architecture and shows its relations with
the other components.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 26 of 85

www.medina-project.eu

The CNL Editor takes as input the files stored by the NL2CNL Translator within the CNL Store and
updates these files, that in turn will be used as input by the DSL Mapper. The two components
mentioned, i.e., the NL2CNL Translator and the DSL Mapper, interact directly with the CNL Editor
through its API. The CNL Editor uses its own vocabulary that is built on MEDINA ontology and is
described in APPENDIX D: MEDINA Vocabularies and Ontologies.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 27 of 85

www.medina-project.eu

Figure 3. Position of the CNL Editor within the MEDINA architecture (source: D5.2 [7])

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 28 of 85

www.medina-project.eu

3.1.1.2 Component card

Component
Name

CNL Editor

Main
functionalities

The component provides the following functionalities:

• CNL Editor allows to work on CNL document named REO
(Requirement&Obligation), i.e., a requirement description (metadata) plus
a list of metrics in the form of a list of Obligations.

• CNL Editor allows to update obligations parameters (operator, target
value) based on the Editor ontology.

• CNL allows to delete metrics from an already filled CNL document.

Sub-
components
Description

CNL Editor UI: Web GUI Interface for users, with authentication

OWL vocabulary: Stores Ontology used by Editor

Editor API: Allows to access CNL documents from external clients/components

Back Store Interface: Allows internal access to the CNL Store

CNL Store: Document-oriented storage

Main logical
Interfaces

Interface name Description Interface technology

CNL Editor UI CNL Editor Web GUI HTTP (browser)

Editor API API to access CNL documents REST API

Requirements
Mapping

List of requirements covered by this component (see D5.2 [7]):
CNLE.01, CNLE.03, CNLE.04, CNLE.05, CNLE.06

Interaction
with other

components

Interfacing Component Interface Description

CNL Translator CNL Editor reads CNL documents in XML format
as prepared by CNL Translator

DSL Mapper CNL Editor provides to DSL Mapper the
finalised CNL documents to be mapped

Catalogue of controls and
metrics

CNL Editor uses a vocabulary whose entities are
derived from the Catalogue and serves to bind
the user’s choices.

Relevant
sequence
diagram/s

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 29 of 85

www.medina-project.eu

Current TRL10 () TRL4

Target TRL11 () TRL5

Programming
language

Java, Springboot, GWT, Vaadin

License Apache Licence 2.0

WP and task WP2, Task 2.4

MEDINA
Workflow

WF3 – EUCS deployment on ToC (see D5.4 [9])

3.1.1.3 Requirements

A collection of functional requirements (from deliverable D5.2 [7]) related to the component is
presented below, along with a description of how and to what extent these requirements are
implemented at the time of writing.

Requirement id CNLE.01

Short title CNL Editor GUI

Description The controlled natural language Editor will have an interface accessible by
web browser.

Implementation
state

Fully implemented

The CNL Editor is available through a Web GUI, access to which is managed by Keycloak12. The
web GUI shows the REOs associated to the Cloud Services to which the users are authorized and
allows them to perform the operations show, edit, delete, map on them.

Requirement id CNLE.02

Short title CNL Editor policies authoring

Description The CNL Editor will allow creating statements for security controls.

10 TRL value before validation
11 TRL value after validation
12 https://www.keycloak.org

http://www.medina-project.eu/
https://www.keycloak.org/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 30 of 85

www.medina-project.eu

Implementation
state

Discarded

During the lifetime of the project, it was decided to stick to the requirements in the Catalogue
of controls and metrics. Thus, CNLE.02, stating the capability to edit new requirements via the
CNL editor, has been discarded. Users can visualize obligations, change the
targetValue/operator, and select obligations that must remain associated with the REO for the
next mapping phase, but they cannot create new obligations.

Requirement id CNLE.03

Short title CNL Editor input format

Description The CNL Editor will accept as input NL2CNL Translator format (XML based).

Implementation
state

Fully implemented

The CNL Editor takes as input a CNL file containing a REO object in XML format, as generated by
the NL2CNL Translator and stored in an internal CNL Editor database. When the CNL Editor
shows the list of REOs to the user, it reads them from this database. Updates can be made to
these files through the internal API of the CNL Editor.

Requirement id CNLE.04

Short title CNL Editor policies changing

Description The CNL Editor will allow changing input (policies) from NL2CNL Translator.

Implementation
state

Fully implemented

When a user visualizes, through the CNL Editor GUI, the policies inside the REO, she/he can
change some values for the operator and the target values, or she/he can delete policies. The
REO is generated by the NL2CNL Translator, and the user can, in this way, refine the policies,
according to the CSP specific requirements. After the edit phase, the CNL Editor writes the
updated REO file on the internal store.

Changes can also be made in the CNL Editor by using the Editor API (see section 3.1.2.2).

Requirement id CNLE.05

Short title CNL Editor vocabulary

Description The CNL Editor will use an ontology-based vocabulary to model security
controls. Ontology will be the same used by NL2CNL Translator and based
on W3C Web Ontology Language (OWL) standard format.

Implementation
state

Fully implemented

The CNL Editor is strictly related to a vocabulary, which is an internal file containing the ontology
that the CNL Editor uses for CNL purposes. The Ontology comes from The Catalogue of controls
and metrics, and contains terms related to MetricName, Operator, TargetValue, and
ResourceTypes, which are the terms used inside the policy statements. This vocabulary must
always be aligned with the Catalogue of controls and metrics.

Requirement id CNLE.06

Short title CNL Editor output format

Description The CNL Editor will generate security controls with an XML format suitable
for the DSL Mapper.

Implementation
state

Fully implemented

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 31 of 85

www.medina-project.eu

The CNL Editor writes the updated REOs in XML format and this is the input for the DSL Mapper.
The mapping function, which converts CNL policies into Rego code, is invoked by the CNL Editor
through the Map button on the GUI.

3.1.2 Technical description

In the following, we present the architecture of the CNL Editor and the description of its sub-
components, together with the list of APIs available for the other tools.

3.1.2.1 Component architecture

The CNL Editor architecture is depicted in Figure 4.

Figure 4. Overview of the CNL Editor architecture

The component is written in Java with the use of Spring Boot13, GWT (Google Web Toolkit14) and
Vaadin15 frameworks. Spring Boot is used for all the API and the CNL Editor Web Application
logic, while GWT and Vaadin are used for the UI. The Web GUI is used for the complete
functionalities of the CNL Editor. CRUD (Create, Read, Update, Delete) operations on REO are
available through REST APIs.

The component is organized in the following modules which are detailed in section 3.1.2.2:

• CNL Editor

• CNL Editor API

• CNL Store

• CNL Store API

• Vocabulary

• User Store

The CNL Editor has interfaces with:

• The user, that can use the Web GUI

13 https://spring.io/projects/spring-boot
14 https://www.gwtproject.org/
15 https://vaadin.com/

http://www.medina-project.eu/
https://spring.io/projects/spring-boot
https://www.gwtproject.org/
https://vaadin.com/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 32 of 85

www.medina-project.eu

• The NL2CNL Translator, that builds the input for the CNL Editor (user’s REOs file)

• The DSL Mapper, that takes as input the REOs located in the CNL Store to map them into
Rego code

In addition, the CNL Editor exposes the endpoints (REST API) listed in section 3.1.2.2, which can
be invoked without the use of the Editor GUI.

3.1.2.2 Description of components

This section presents the components available in the CNL Editor and describes how they have
been developed to meet the MEDINA requirements.

CNL Editor

The CNL Editor (frontend and core application) manages the user interaction and allows
operations on REOs and the DSL Mapper requests. It has a web interface where a user can show
a REO and select operations on it.

The REO structure is composed of two parts:

• Metadata, containing the identification of the REO and the data of the specific
requirement:

o REO name, status, creation date and relevant Cloud Service
o Vocabulary version
o TOM Code, TOM Name, Security Control, Framework and Assurance Level

• Policies, containing the list of all the obligations associated to the selected requirement.

These two parts also reflect the two sections that the user can see on the web page when
showing a REO: Metadata on the upper part, and Policies (Obligations) at the bottom (see Figure
5).

One of the enhancements that have been made in the CNL Editor component is to visualize, in
the metadata section, the Cloud Service Id to which the REO is associated.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 33 of 85

www.medina-project.eu

Figure 5. Screenshot of a REO object as it appears in the CNL Editor GUI

Metadata

Obligations

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 34 of 85

www.medina-project.eu

CNL Editor API

The CNL Editor exposes REST APIs for CRUD operations on REOs. They are listed in Table 4.

Table 4. List of available endpoints for the CNL Editor component

Function name Parameters Return Type Description

/reo/create/{userna
me}

username

HTTP
Response

Store a new REO in the CNL Store and return a
unique REO identifier. This function is designed
to be called by the NL2CNL Translator which
must transmit as a parameter the identifier of
the user that owns the REO.

This is a POST function, since it generates a file
.xml containing the REO data. If successful, the
status code returned will be of type 200,
otherwise an error code will be returned
depending on the problem occurred.

/reo/delete/{reoid} reoid HTTP
Response

Delete from the CNL Store the REO specified by
the REO identifier. If successful, the status code
returned will be of type 200, otherwise an error
code will be returned depending on the
problem occurred.

/reo/filterby/clouds
ervice

List of
Cloud
Service
Ids

HTTP
Response

Provide a list of REOs, associated to the Cloud
Service Ids in input, with details. If successful,
the status code returned will be of type 200,
otherwise an error code will be returned
depending on the problem occurred.

/reo/get/{reoid} reoid HTTP
Response

Retrieve the REO XML file by its identifier. If
successful, the status code returned will be of
type 200, otherwise an error code will be
returned depending on the problem occurred.

/reo/update/{reoid} reoid HTTP
Response

Rewrite the XML file of the REO specified by the
identifier. It is used by the CNL Editor to update
a REO when the user changes the operator
and/or the target value. If successful, the status
code returned will be of type 200, otherwise an
error code will be returned depending on the
problem occurred.

CNL Store and API

The CNL Store is the database containing all the REO files. There is an internal API (usable only
by the CNL Editor internal code) to access the CNL Store that directly acts on the database.

Vocabulary

The Vocabulary stores the ontology that the CNL Editor uses to constrain the user in selecting
policy parameters like the operator and the target values.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 35 of 85

www.medina-project.eu

User Store

The User Store is the internal database that contains usernames and REO associations for each
username. Users are created in alignment with Keycloak16.

3.1.2.3 Technical specifications

The CNL Editor component is written in Java with the use of Spring Boot, GWT and Vaadin
frameworks. Both the API and the Web GUI are served through Tomcat application server.

The vocabulary ontology-based store is a file in RDF/XML format, with .owl extension, that
supports OWL Web Ontology Language and is W3C Standard Compliant. Details about the Editor
ontology are in APPENDIX D: MEDINA Vocabularies and Ontologies.

The User Store is a MySQL database (mariadb software) that manages Editor users and the
association between users and REOs.

The CNL Store (mongodb software) is a document oriented (no relational) database that
contains all the REO files.

3.2 Delivery and Usage

3.2.1 Package information

The CNL Editor code is stored in a private GitLab group named “CNL Editor Tools” (see section
3.2.5). Inside this folder there are five different projects related the tool: the “CNL Store API”,
which implements the functionalities of the CNL Store and the mongodb database for the data
persistence; the “CNL Editor API”, which implements the CNL Editor API module; the “CNL
Editor” and the “CNL Editor Frontend”, which implement the CNL Editor core application and its
web interface; and the “CNL Vocabulary” for the storage of the ontology (see Figure 6).

Figure 6. CNL Editor folders’ structure

3.2.2 Installation instructions

The CNL Editor is developed using the microservice architecture and is composed of 5
microservices containerized in Docker. To run the components in a local machine, you can access

16 https://www.keycloak.org

http://www.medina-project.eu/
https://www.keycloak.org/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 36 of 85

www.medina-project.eu

with your credentials to the GitLab repository and pull the code, then from the root folder it is
possible to build the Docker image of each microservice as follows:

1. CNL Store API:
$ docker build -t cnl-store-api ./CNL Store API

2. CNL Editor API
$ docker build -t cnl-editor-api ./CNL Editor API

3. CNL Editor
$ docker build -t cnl-editor ./CNL Editor

4. CNL Vocabulary
$ docker build -t cnl-vocabulary ./CNL Vocabulary

5. CNL Editor Frontend
$ docker build -t cnl-editor-frontend ./CNL Editor Frontend

After that, it is possible to run the entire application using Kubernetes. Indeed, each component
has the manifest files declared in a dedicated “Kubernetes” folder, as depicted in Figure 7.

Figure 7. Example of CNL Store API Kubernetes manifests

To start the entire tool, execute the following commands:

$ kubectl apply -k ./CNL Store API/kubernetes

$ kubectl apply -k ./CNL Editor API/kubernetes

$ kubectl apply -k ./CNL Editor/kubernetes

$ kubectl apply -k ./CNL Vocabulary/kubernetes

$ kubectl apply -k ./CNL Editor Frontend/kubernetes

3.2.3 User Manual

This section shows the use of the CNL Editor and its functionalities.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 37 of 85

www.medina-project.eu

The user can access the CNL Editor through the MEDINA Integrated UI (see Figure 8):
https://integrated-ui-test.k8s.medina.esilab.org/ [internal use only - authentication required],
by selecting on the left menu “Requirements and Obligations”.

The CNL Editor presents all REO objects created and associated with Cloud Service Ids for which
the user is authorised (as defined in her/his profile in Keycloak).

Figure 8. List of REOs available for the user hpe-user2 in the CNL Editor

REO selection

The user can select a REO from the list and choose an operation on it: Show, Edit , Copy, Raw or
Delete (see Figure 9), and Map if the REO is completed (see Figure 10).

Figure 9. List of available operations for a selected REO (Customised State) in the CNL Editor

http://www.medina-project.eu/
https://integrated-ui-test.k8s.medina.esilab.org/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 38 of 85

www.medina-project.eu

Figure 10. List of available operations for a selected REO (Completed state) in the CNL Editor

A REO can have different states during its lifetime. The “Customised” state means that the REO
can be changed (by selecting “Update” when in Edit mode). By selecting “Complete” during
Editing (see Figure 11), the REO is saved and passed to the “Completed” state. It is now ready to
be mapped.

Show a specific REO

When a user selects “Show”, a page is displayed with the REO data. This feature allows the user
to visualize the Requirement specification for that REO, the list of Obligations (Policies section)
with details and their source (Catalogue of Controls and Metrics or NL2CNL Translator). Figure 5
shows an example of REO in the CNL Editor GUI.

Edit a specific REO

When a user selects “Edit”, the page shown in Figure 11 is displayed, showing the Requirement
and Obligation list, where the user can make changes. With this functionality the REO can be
adapted to a specific Cloud Service Provider, by setting a Target Value different from the default
value (as defined in Catalogue of controls and metrics) and by deleting obligations that are not
necessary for one specific scenario.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 39 of 85

www.medina-project.eu

Figure 11. Editing a REO object in the CNL Editor

Map a specific REO

This option allows to map a REO, i.e., the CNL Editor calls the DSL Mapper that will generate the
correspondent Rego code for this REO (see section 4).

CNL Editor APIs

The CNL Editor APIs (see Figure 12) are accessible through the following link: https://cnl-editor-
api-test.k8s.medina.esilab.org/swagger-ui.html#/reo-operations-controller

Figure 12. CNL Editor APIs

3.2.4 Licensing information

The CNL Editor is close source/proprietary code (Copyright by HPE).

3.2.5 Download

The CNL Editor is stored in a private GitLab repository and not in a public repository since it is
not Open Source.

http://www.medina-project.eu/
https://cnl-editor-api-test.k8s.medina.esilab.org/swagger-ui.html#/reo-operations-controller
https://cnl-editor-api-test.k8s.medina.esilab.org/swagger-ui.html#/reo-operations-controller

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 40 of 85

www.medina-project.eu

The URL of the private GitLab repository URL is as follows:

https://git.code.tecnalia.com/medina/wp2/task_2.4/cnl-editor-tools [internal use only -
authentication required]

3.3 Advancements within MEDINA

From November 2022 to April 2023, we worked on improving the tool. We implemented the
filtering of the REOs based on Cloud Service IDs (CS_Id) associated with the users in their
Keycloak profile. While the initial prototype only showed the REOs that users created in the
previous NL2CNL Translator step, now, REOs are created with the relevant Cloud Service IDs
stored in the .xml file and accounts can view and operate on all REOs that are associated to the
Cloud Services on which the user is authorized to view and operate on, i.e., those CS_Ids defined
in the account profile in Keycloak. So, just to make an example:

• hpe-user1 is authorized to access Cloud Service Id 0000001-b2ad-4db5-9d33-
cd10b7d5d840

• hpe-user2 is authorized to access Cloud Service Ids 0000001-b2ad-4db5-9d33-
cd10b7d5d840 and 00000002-b2ad-4db5-9d33-cd10b7d5d840

• REO Id DSA-20423af1-87c4-4262-8d65-6b0f1f34ef20 is associated to CS-Id
0000001-b2ad-4db5-9d33-cd10b7d5d840

• REO Ids DSA-24bb979a-5f95-4e75-bc66-1aeeff776c37 and DSA-9011787a-eec0-4e30-
b7ab-f2ebbf83d62b are associated to CS_Id 00000002-b2ad-4db5-9d33-cd10b7d5d840

As a result:

• hpe-user1 can view and operate only on REO Id DSA-20423af1-87c4-4262-8d65-
6b0f1f34ef20 (see Figure 13)

• hpe-user2 can display and operate on all three REOs of the example (see Figure 14).

Figure 13. Filtering example: hpe-user1 REOs list

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/wp2/task_2.4/cnl-editor-tools

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 41 of 85

www.medina-project.eu

Figure 14. Filtering example: hpe-user2 REOs list

Furthermore, we have updated the vocabulary according to the last release of the Catalogue of
controls and metrics, and we have removed the possibility, for an account, to create new REOs
and to add new Obligations to a REO, as requested by the MEDINA updated workflows (see D5.4
[9]).

Validation findings and possible improvements

At the time of finalizing this deliverable, we received some feedback regarding the CNL Editor
from the first phase of the validation, that was conducted by WP6 in month M28. Below we
describe this feedback and propose how to address the issues that have arisen so far.

The Validation work package, WP6, reported two issues regarding the CNL Editor:

1. General feedback: “Authorization and Filtering concept is not yet implemented by the
Component”, nor the Unified UI

2. Workflow 317: Error message while accessing CNL Editor with test UC1 users (“White
label error page”)

For Authorization and Filtering, we finalized the implementation of filtering for Cloud Service ID,
as explained above. The user can now see and manage all REOs associated to Cloud Service IDs
for which the user is granted in Keycloak. For this purpose, we have created a new API
(/reo/filterby/cloudservice).

Regarding the error message occurred during the Use Case 1 validation tests for Workflow 3
(Bosch Use Case), this was related to an incomplete configuration of Bosch Use Case users in
Keycloak. An error appeared when user tried to connect to the CNL Editor from the MEDINA
Integrated UI. We solved it by reviewing the users’ configuration and now Bosch users can
connect to the CNL Editor.

3.4 Limitations and Future Work

There is no evidence of limitations in the implementation of the CNL editor, compared to what
was agreed upon by the consortium. No major future work is planned.

17 The interested reader may refer to D5.4 [8] for Use Cases and Workflows

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 42 of 85

www.medina-project.eu

4 DSL Mapper

The DSL Mapper is a component of the MEDINA framework that has the aim of mapping the
obligations expressed in CNL into executable policies expressed in DSL. In particular, the
obligations resulting from the previous steps are embedded in an XML object, called REO, while
the output generated by the DSL Mapper is expected to be compliant with the DSL chosen in
MEDINA, i.e., the Rego language18.

The Rego language allows the creation of policies that can be used to automatically assess
evidence, collected by the other tools (the MEDINA Evidence Management Tools are described
in detail in deliverable D3.6 [6]).

When evaluating Rego policies, three elements are considered:

• An input, i.e., the request

• A policy, also called rule

• (Optional) external data

The input is checked against the policy to evaluate if it complies, possibly considering external
data.

In MEDINA, Rego policies are used according to the following: the evidence collectors create
evidence that need to be assessed using the MEDINA metrics. For example, evidence that
describes an object storage may need to be assessed using a metric which defines that this
storage needs to have a backup. This is a typical policy evaluation task: a request (the evidence
describing the storage) is provided and needs to be checked for compliance with a pre-defined
policy (the metric), sometimes using also external data (the target value and the operator of the
metric). The role of the DSL Mapper is to generate the description of the policies and the
description of the external data, while the inputs are provided by the evidence collectors.

4.1 Implementation

4.1.1 Functional description

The DSL Mapper interacts with the CNL Editor, from which it receives the trigger to start the
mapping. It also needs to access the CNL Store through the CNL Editor APIs to retrieve the REO
objects containing the information to be mapped, which has been created by the NL2CNL
Translator according to the MEDINA Ontology. Finally, it interacts with the Orchestrator to send
the results of the mapping, i.e., the Rego rules generated for each obligation.

Main innovation: The main innovation of the DSL Mapper consists in providing a translation
from a non-executable language (CNL) to an executable one (DSL). In fact, the output policies of
the DSL Mapper, expressed in Rego code, are used as input for the MEDINA Evidence
Management Tools, which can automatically evaluate these policies to verify the compliance of
a CSP to a certification schema.

4.1.1.1 Fitting into overall MEDINA Architecture

Figure 15 highlights the DSL Mapper within the MEDINA architecture.

18 https://www.openpolicyagent.org/

http://www.medina-project.eu/
https://www.openpolicyagent.org/

D2.5 – Specification of the Cloud Security Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 43 of 85

www.medina-project.eu

Figure 15. Position of the DSL Mapper within the MEDINA architecture (source D5.2 [7])

http://www.medina-project.eu/

© MEDINA Consortium Contract No. GA 952633 Page 44 of 85

www.medina-project.eu

4.1.1.2 Component card

Component
Name

DSL Mapper

Main
functionalities

The component provides the following functionalities:

• Mapping of the CNL obligations + metadata output to a DSL (e.g., Rego)

Sub-
components
Description

API Server: Implements the API interface towards other MEDINA
components and connects and coordinates with the other components.

Mapping: Generates the Rego rules for the obligations associated to a
certain requirement.

Main logical
Interfaces

Interface name Description Interface technology

API Server API to access DSL Mapper
functionalities

REST API

Requirements
Mapping

List of requirements covered by this component (see D5.2 [7]):
DSLM.01, DSLM.03

Interaction
with other

components

Interfacing Component Interface Description

CNL Editor The DSL Mapper is called from the CNL Editor,
which passes, as a parameter, an object in XML
format, including all the necessary requirement
metadata, metrics information, CNL obligations

Orchestrator The DSL Mapper maps the selected obligations +
metadata into a DSL (Rego) and pushes the
output to the Orchestrator by exploiting its API

Relevant
sequence
diagram/s

Current TRL19 TRL4

Target TRL20 TRL5

Programming
language

Python 3.8

License Apache Licence 2.0

WP and task WP2, Task 2.5

MEDINA
Workflow

WF3 – EUCS deployment on ToC (see D5.4 [9])

19 TRL value before validation
20 TRL value after validation

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 45 of 85

www.medina-project.eu

4.1.1.3 Requirements

A collection of functional requirements (from deliverable D5.2 [7]) related to the component is
presented below, along with a description of how and to what extent these requirements are
implemented at the time of writing.

Requirement id DSLM.01

Short title Translation to selected DSLs

Description The controlled natural language output of NL2CNL translator and further
edited - when needed - with the CNL editor, will be semi-automatically
mapped (meaning, with little human intervention) to the enforceable
languages (aka, Domain Specific Languages, DSLs) inputs to tools such as
Clouditor, or whatever will be the chosen DSL in MEDINA.

Implementation
state

Fully implemented

The DSL Mapper aims to automatically map a set of obligations into executable policies,
expressed in a DSL. These policies are then used by the Orchestrator to evaluate a certain
requirement. The DSL chosen for representing policies in MEDINA is the Rego language. The
current implementation of the DSL Mapper component is able to map the obligations into Rego
rules.

Requirement id DSLM.02

Short title Mapping elements

Description The mapping process will take into account relevant elements of the target
certification framework, including (some) technical and organizational
measures, quantitative/qualitative security metrics, complex compliance
conditions, and cloud supply chain elements. The mapping process will
prioritize the translation of those requirements in CNL that can
automatically be enforced by WP4 and that are considered highly relevant
by the EU authorities at stage.

Implementation
state

Discarded

This requirement is an aggregate of requirements that have already been considered in other
components. Specifically, it is represented by requirements ECO.02 - Conformity to selected
assurance level, CCCE.01 - Continuous Evaluation of Assessment Results, UC00.06 - Security
Controls Translator, UC00.07 - Define Measurement Targets, and UC00.17 - MEDINA complies
to EUCS. Therefore, this requirement is no longer requested.

Requirement id DSLM.03

Short title DSL output compliancy

Description The tool will output REGO rules, compliant with the input required by the
Orchestrator.

Implementation
state

Fully implemented

As already introduced, the output expected by the DSL Mapper must be compliant with the Rego
language and with the input required by the Orchestrator. Currently, the Orchestrator needs
two files to describe a Rego rule, namely the metric.rego (containing the policy) and the
data.json (containing the external data). The current implementation of the DSL Mapper is able
to generate both the data.json file and the metric.rego files.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 46 of 85

www.medina-project.eu

4.1.2 Technical description

This section describes the technical details of the implemented DSL Mapper component. First,
the architectural design is presented, consisting of the architectural view and the connection
between the respective subcomponents. This is followed by information on the individual
subcomponents and finally by a summary of the technical specifications for the implementation
of the DSL Mapper.

4.1.2.1 Component architecture

The DSL Mapper is written in Python 3.8 and is organized into modules. Its functionalities are
available through a REST API, thus similarly to the NL2CNL Translator, the FastAPI framework21
has been used for implementing it. Figure 16 shows the architecture of the DSL Mapper.

Figure 16. Overview of the DSL Mapper architecture

The available modules are organized in two subcomponents: the first one is called API Server
and is responsible for the API interface to other MEDINA components. Moreover, it coordinates
all the DSL Mapper operations. The second is the Mapping subcomponent, which implements
the generation of the Rego rules.

Table 5 shows the endpoints available to interact with the DSL Mapper.

21 https://fastapi.tiangolo.com

http://www.medina-project.eu/
https://fastapi.tiangolo.com/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 47 of 85

www.medina-project.eu

Table 5. List of available endpoints for the DSL Mapper component

Function name Parameters Return Type Description

map_obligations
_to_rego

reo_id

HTTP
Response

This function is designed to be called by the
CNL Editor, which must transmit as a
parameter the identifier of the REO to be
assessed.

This is a POST function, since it generates a
Rego rule for each obligation included in the
specified REO. If successful, the status code
returned will be of type 200, otherwise an
error code will be returned depending on the
problem occurred.

livez None HTTP
Response

This function is used by the Kubernetes
primary node agent to know when to restart
a container. In fact, many applications
running for long periods of time eventually
transition to broken states, and cannot
recover except by being restarted.

readyz None HTTP
Response

This function is used by the Kubernetes
primary node agent to know when a
container is ready to start accepting traffic.

4.1.2.2 Description of components

This section presents the components available in the DSL Mapper and describes how they have
been developed.

API Server

The API Server is the main subcomponent of the DSL Mapper, since it connects and coordinates
with the other components. Its activity is performed in the following steps:

1. The server waits for requests from the CNL Editor. When a CNL Editor user is satisfied
with the obligations associated to a REO, he/she invokes the DSL Mapper through the
Map button. The identifier of the current REO object is passed as a parameter to the
DSL Mapper.

2. The DSL Mapper loads the REO object from the CNL Store using the CNL Editor APIs, by
using the REO identifier received from the CNL Editor.

3. The DSL Mapper calls the Mapping component to obtain the Rego rules corresponding
to the obligations.

4. Finally, the Rego rules are sent to the Orchestrator to be further processed.

Mapping

The Mapping subcomponent aims at generating the Rego rules for the obligations associated to
a certain requirement. As previously explained, for each obligation, the Orchestrator requires
two input files, metric.rego, which includes a policy description, and data.json, which reports
the operator and the target value associated to an obligation and specified by the user through
the CNL Editor interface.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 48 of 85

www.medina-project.eu

Let the reader consider, for example, the following obligation, associated to the requirement
OPS-05.3: The CSP shall automatically monitor the systems covered by the malware protection
and the configuration of the corresponding mechanisms to guarantee fulfilment of OPS-05.1.

Evidence Action Metric
Target
Value Type

(Operator,
Target Value)

Compute.VirtualMachine MUST MalwareProtectionEnabled Boolean (=,true)

This obligation expresses that the evidence describing a Virtual Machine object needs to be
assessed using a metric which defines that this virtual machine needs to have a malware
protection mechanism enabled.

Thus, the Mapping component is expected to generate a data.json file containing the following
information:

The metric.rego file, which contains the policy to be assessed, will be similar to the following:

The two files described above are generated by the Mapping subcomponent for each obligation
it founds in the REO object under consideration.

4.1.2.3 Technical specifications

The DSL Mapper prototype is written in Python, version 3.8. A selection of the most important
libraries is shown in the following and a full list including all the used libraries can be found in
the GitLab repository22.

• fastapi

• uvicorn

• pandas

• python-keycloak

22 https://git.code.tecnalia.com/medina/public/dsl-mapper

{

 "operator" : "==",

 "target_value" : true

}

package clouditor.metrics.malware_protection_enabled

import data.clouditor.compare

default applicable = false

default compliant = false

enabled := input.malwareProtection.enabled

applicable {

 enabled != null

}

compliant {

 compare(data.operator, data.target_value, enabled)

}

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/dsl-mapper

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 49 of 85

www.medina-project.eu

• xmlschema

• xmltodict

4.2 Delivery and Usage

The following subsections give a short overview of the delivery and usage of the prototype.

4.2.1 Package information

The package is delivered in a repository hosted on GitLab. Even if it is not intended to be used
as a standalone tool, it is possible to use it for testing purposes by accessing its APIs through a
web browser. The component is available as a Docker image. Table 6 shows the main folders
and files.

Table 6. The most important files and folders implementing the DSL Mapper

Folder/file Description

api_server.py This file contains the code needed for implementing
the APIs and for managing the communication
between components.

Dockerfile This file contains the list of commands that the
Docker client calls while creating an image.

config.py This file includes all the configurations (variables,
paths, etc.) used by the prototype.

app_utils/ This folder includes a set of utility functions.

clouditor_orchestrator_client_legacy/ This folder contains the client to interact with the
Orchestrator component.

cnl_editor_client/ This folder contains the client to interact with the
CNL Editor component.

openapis/ This folder contains the auto-generated OpenAPI
files.

4.2.2 Installation instructions

The full up-to-date installation instructions can be found in the README at the DSL Mapper
repository in GitLab at this link: https://git.code.tecnalia.com/medina/public/dsl-mapper/-
/blob/main/README.md

To setup the component locally, it is possible to build the Docker image with the following
command:

$ docker build –t dsl_mapper_image .

4.2.3 User Manual

As stated before, the DSL Mapper is not intended to be used as a standalone tool, since it needs
to strictly interact with the CNL Editor to function properly. In particular, the main endpoint
available in the DSL Mapper takes as parameter the identifier of a REO object saved into the CNL
Store.

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/dsl-mapper/-/blob/main/README.md
https://git.code.tecnalia.com/medina/public/dsl-mapper/-/blob/main/README.md

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 50 of 85

www.medina-project.eu

The DSL Mapper cannot be easily configured to work as a standalone tool, since it depends on
the output of the CNL Editor. In any case, it is possible to run the Docker image with the following
command:

$ docker run -p 8000:8000 -it –name dsl_mapper dsl_mapper_image

The generated container can be started and stopped with the following commands:

$ docker start dsl_mapper

$ docker stop dsl_mapper

The DSL Mapper provisional APIs can be tested through the command line by exploiting the
CURL command, or through a browser by using the interactive APIs. Nevertheless, the user will
receive an error message when trying to map a REO object, due to the missing input file that is
taken from the CNL Store of the CNL Editor.

4.2.4 Licensing information

The DSL Mapper prototype is open source, under the Apache License 2.0.

4.2.5 Download

The code is currently available on MEDINA’s git repository, on the GitLab hosted by TECNALIA:

https://git.code.tecnalia.com/medina/public/dsl-mapper

4.3 Advancements within MEDINA

This section reports the advancements implemented in the DSL Mapper component within the
last period of WP2 (it formally ends at month 30). In particular, the following list includes the
improvements introduced between month 24 and month 30:

• The component development has been finalized and the code has been pushed to the
Kubernetes cluster both in the DEV and the TEST environments.

• The generation of the Rego rules is currently available for all obligations generated by
the NL2CNL Translator.

• The generation of the metric.rego file is currently working for all available
metrics/operators/target values.

• The connection with the Orchestrator has been finalized and tested and it works
seamlessly, i.e., the information stored in the REO is correctly extracted, processed, and
passed to the Orchestrator.

• The Authorization&Filtering functionalities are fulfilled, since the Cloud Service ID is
stored in the REO structure and validated by the CNL Editor before the mapping function
is activated. This guarantees that a user can visualize and then map REOs belonging to a
certain Cloud Service only if this Cloud Service is associated with the user itself in her/his
Keycloak profile.

The DSL Mapper has been updated to deal with the August 2022 draft candidate version of the
EUCS scheme [10].

4.4 Limitations and Future Work

The DSL Mapper is a novel component, and its use is strongly linked to the development of the
MEDINA project, in particular the CNL Editor. This limits its reusability as a stand-alone
component.

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/dsl-mapper

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 51 of 85

www.medina-project.eu

A further limitation is that the output of the DSL Mapper, although using a generic policy
specification language, has been adapted to work in synergy with the Orchestrator.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 52 of 85

www.medina-project.eu

5 Conclusions

This document describes the main results achieved during the MEDINA project regarding the
definition of the Cloud Security Certification Language, a machine-readable language in which
the policies derived from the EUCS Cloud Certification Requirements are expressed and fed into
the MEDINA Evidence Management Tools. The main achievements are as follows:

• Final implementation and testing of the NL2CNL Translator component, for the

representation of Cloud Security requirements into the MEDINA CNL.

• Final implementation and testing of the CNL Editor component, a tool that allows users

to visualize -and modify part of- the policies elicited for security controls.

• Final implementation and testing of the DSL Mapper component, a tool that can

translate the generated CNL to an enforceable machine-oriented Domain Specification

Language.

• Integration of the components within WP2 and with respect to the other components

of the MEDINA framework. The validation phase is in progress and, if necessary, the

integration between the components described in this document and with others of the

MEDINA framework may be modified to meet new possible requirements of WP5

Integration and WP6 Validation.

For each tool, this document describes its purpose and scope, the final coverage of the MEDINA
requirements, the component’s internal architecture and its subcomponents, the relation to
other components, the final implementation state, and technical details of the component,
including the programming languages and used libraries, information about the packaging and
installation of the component, and licensing. Moreover, the advancements within the MEDINA
framework have been highlighted.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 53 of 85

www.medina-project.eu

6 References

[1] MEDINA Consortium, “D2.1 - Continuously certifiable technical and organizational
measures and catalogue of cloud security metrics-v1,” 2021.

[2] ENISA, “EUCS – Cloud Services Scheme,” [Online]. Available:
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme. [Accessed April
2023].

[3] MEDINA Consortium, “D2.3 - Specification of the Cloud Security Certification Language
v1,” 2021.

[4] MEDINA Consortium, “D2.4 - Specification of the Cloud Security Certification Language
v2,” 2022.

[5] MEDINA Consortium, “D3.3 - Tools and techniques for the management of trustworthy
evidence v3,” 2023.

[6] MEDINA Consortium, “D3.6 - Tools and techniques for collecting evidence of technical and
organisational measures – v3,” 2023.

[7] MEDINA Consortium, “D5.2 - MEDINA Requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy-V2,” 2022.

[8] MEDINA Consortium, “D2.2 - Continuously certifiable technical and organizational
measures and catalogue of cloud security metrics-v2,” 2023.

[9] MEDINA Consortium, “D5.4 - MEDINA integrated solution-v2,” 2023.

[10] ENISA, “EUCS – Cloud Services Scheme (2022),” Draft version provided by ENISA (August
2022) - not intended for being used outside the context of MEDINA.

[11] MEDINA Consortium, “D5.1 - MEDINA Requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy-v1,” 2021.

[12] A. Veizaga, M. Alferez, D. Torre, M. Sabetzadeh and L. Briand, “On systematically building
a controlled natural language for functional requirements,” Empirical Software
Engineering, vol. 26, no. 79, 2021.

[13] D. Méndez Fernández and others, “Naming the Pain in Requirements Engineering:
Contemporary Problems, Causes, and Effects in Practice,” Empirical Software Engineering,
vol. 22, pp. 2298-2338, 2017.

[14] K. Pohl, Requirements engineering - fundamentals, principles, and techniques, 2010.

[15] C. Arora, M. Sabetzadeh, L. Briand and F. Zimmer, “Automated extraction and clustering
of requirements glossary,” IEEE Trans Software Eng, vol. 43, no. 10, pp. 918-945, 2017.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 54 of 85

www.medina-project.eu

[16] T. Khun, “A Survey and Classification of Controlled Natural Languages,” Computational
Linguistics, vol. 40, no. 1, pp. 121-170, 2014.

[17] R. Schwitter, “Controlled Natural Language for Knowledge Representation,” in COLING ,
2010.

[18] A. Wyner, “On controlled natural languages: Properties and prospects,” in Controlled
natural language, 2009.

[19] K. Pohl and C. Rupp, Requirements engineering fundamentals - a study guide for the
certified professional for requirements engineering exam: Foundation Level - IREB
compliant, 2011.

[20] A. Mavin, P. Wilkinson, S. Gregory and E. Uusitalo, “Listens learned (8 lessons learned
applying EARS).,” in In: 24th IEEE international requirements engineering conference, 2016.

[21] S. Withall, Software requirement patterns, Pearson Education, London, 2007.

[22] M. Riaz, J. King, J. Slankas and L. Williams, “Hidden in plain sight: automatically identifying
security requirements from natural language artifacts,” in IEEE 22nd international
requirements engineering conference, 2014.

[23] C. Denger, B. DM and E. Kamsties, “Higher quality requirements specifications through
natural language patterns.,” in 2003 IEEE International conference on software - science,
technology and engineering (SwSTE 2003), 2003.

[24] J. Eckhardt, A. Vogelsang, H. Femmer and P. Mager, “Challenging incompleteness of
performance requirements by sentence patterns,” in 24th IEEE international requirements
engineering conference, 2016.

[25] I. Matteucci, M. Petrocchi and M. Sbodio, “CNL4DSA: a controlled natural language for
data sharing agreements,” in Symposium of Applied Computing, 2010.

[26] N. Fuchs, K. Kaljur and T. Kuhn, “Attempto Controlled English for knowledge
representation,” in Reasoning Web — 4th International Summer School 2008, number
5224 in Lecture Notes in Computer Science, 2008.

[27] G. Hart, M. Johnson and C. Dolbear, “Rabbit: Developing a Control Natural Language for
Authoring Ontologies,” in European Semantic Web Conference, 2008.

[28] A. Cregan, R. Schwitter and T. Meyer, “Sydney OWL syntax - Towards a controlled natural
language syntax for OWL 1.1,” in CEUR Workshop Proceedings 258, 2007.

[29] S. Konrad and B. Cheng, “Real-time specification patterns,” in 27th International
conference on software engineering (ICSE 2005), 2005.

[30] A. Post, I. Menzel and A. Podelski, “Applying restricted english grammar on automotive
requirements - does it work? A case study.,” in Requirements engineering: foundation for
software quality, 2011.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 55 of 85

www.medina-project.eu

[31] M. Abadi, “Logic in access control,” in LICS, 2003.

[32] A. Arenas, B. Aziz, J. Bicarregui and M. Wilson, “An Event-B approach to data sharing
agreements,” in IFM, LNCS 6396, 2010.

[33] Q. Ni and e. al, “Privacy-aware Role-based Access Control,” ACM Transactions on
Information and System Security, 2010.

[34] R. De Nicola, G. Ferrari and R. Pugliese, “Programming Access Control: The KLAIM
Experience,” in CONCUR 2000. LNCS, vol. 1877, 2020.

[35] R. Hansen, F. Nielson, H. Nielson and C. Probst, “Static validation of licence conformance
policies,” in ARES, 2008.

[36] K. Larsen and B. Thomsen, “A modal process logic,” in Third Annual Symposium on Logic in
Computer Science, 1988.

[37] J. Bergstra, A. Ponse and S. Smolka, Handbook of Process Algebra, Elsevier, 2011.

[38] Amass Consortium D3.6, “Prototype for Architecture-Driven Assurance (c),” 2018.

[39] “Wikipedia - BERT (language model),” October 2021. [Online]. Available:
https://en.wikipedia.org/wiki/BERT_(language_model). [Accessed April 2023].

[40] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, 2018.

[41] “Wikipedia - Word2vec,” April 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Word2vec.

[42] “FastText,” April 2023. [Online]. Available: https://fasttext.cc/.

[43] “Wikipedia - Stop word,” [Online]. Available: https://en.wikipedia.org/wiki/Stop_word.
[Accessed April 2023].

[44] “Common crawl,” [Online]. Available: https://commoncrawl.org/. [Accessed April 2023].

[45] “Wikipedia - PCA,” [Online]. Available:
https://en.wikipedia.org/wiki/Principal_component_analysis. [Accessed April 2023].

[46] “Wikipedia - TSNE,” [Online]. Available: https://en.wikipedia.org/wiki/T-
distributed_stochastic_neighbor_embedding. [Accessed April 2023].

[47] “scikit learn Truncated SVD,” [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html.
[Accessed April 2023].

[48] “Wikipedia - Evaluation meaures (information retrieval),” [Online]. Available:
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval). [Accessed
April 2023].

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 56 of 85

www.medina-project.eu

[49] “Wikipedia - DCG,” [Online]. Available:
https://en.wikipedia.org/wiki/Discounted_cumulative_gain. [Accessed April 2023].

[50] C. Banse, I. Kunz, A. Schneider and K. Weiss, “Cloud Property Graph: Connecting Cloud
Security Assessments with Static Code Analysis,” in IEEE 14th International Conference on
Cloud Computing (CLOUD), 2021.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 57 of 85

www.medina-project.eu

7 APPENDIX A: The Cloud Certification Language, Architecture,
Sequence Diagram and Coverage of Requirements

7.1 Motivation

Cloud certification schemes consist of a set of rules, technical requirements, standards and
procedures to strengthen the cybersecurity of ICT services and products offered to citizens, and
their terms and conditions are usually published in natural language. This is the case, e.g., of the
EUCS draft candidate Cloud Certification Scheme [10]. Thus, a rigorous translation procedure is
required to produce a machine-readable format out of textual NL requirements. This translation
should minimise as much as possible human intervention - which is prone to errors and time
consuming.

The Cloud Certification language is the language that the MEDINA consortium is developing in
the course of the project, a language which will permit to express rules for cloud certification, in
a uniform way and without the ambiguity of natural language (the latter being natively more
complex). In addition, this language will be machine readable and will be the input of the
MEDINA Assessment Tools. The methodology followed by the consortium to achieve the
ultimate Cloud Certification Language is defined in next section.

7.2 Methodology

For a lean and seamless trait d'union between what is dictated by official documents of the
European Commission in terms of certification and the definition of the MEDINA DSL, we intend
to proceed as follows:

1) Semi-automatically translate Natural Language (NL) certifications terms and conditions,
as they appear on official documents like the EUCS scheme, into policies expressed in a
Controlled Natural Language (CNL).

2) Visualize and possibly revise the generated CNL via a CNL editor tool, to verify the
generated policy statements before proceeding with the mapping to the MEDINA DSL.

3) Map the CNL to a runtime-enforceable DSL language that can be used by the MEDINA
assessment tools to check the compliance status of the certification terms and
conditions.

We highlight the components of the MEDINA architecture that constitute the building blocks to
achieve the Cloud Certification Language:

• The NL2CNL Translator translates EUCS NL requirements into their MEDINA CNL
representation. Part of the translation from NL to CNL will be done via NLP techniques.
The NL2CNL Translator is the main output of MEDINA Task 2.3.

• The CNL Editor is the user interface that allows users to visualize and possibly revise the
translation of the requirements into the MEDINA CNL. The CNL editor is the main output
of Task 2.4.

• The DSL Mapper is the MEDINA component that maps the yet not executable MEDINA
CNL into the MEDINA Domain Specific Language (DSL), whose statements are instead
machine-readable. The DSL is the Cloud Certification Language. The DSL mapper is the
main output of Task 2.5.

All the components interface with the Catalogue of controls and metrics, are described in
deliverable D2.2 [8]. For the representation of the requirements, all the components rely on the
MEDINA Ontology, see APPENDIX D: MEDINA Vocabularies and Ontologies.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 58 of 85

www.medina-project.eu

7.3 Architecture

The architecture of the MEDINA framework has been first proposed in the deliverable D5.1 [11]
and updated in the deliverable D5.2 [7]. It is composed by eight building blocks, as shown in
Figure 17 each of them corresponding to a well differentiated functionality. The Cloud Security
Certification Language corresponds to block n. 2.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 59 of 85

www.medina-project.eu

Figure 17. Building blocks view of the MEDINA framework (source: D5.2 [7])

1

2

3 4

6

5

7

8

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 60 of 85

www.medina-project.eu

For the sake of clarity, Figure 18 shows a more detailed schema of the components and
architecture of block n.2, that will be briefly introduced afterwards.

Figure 18. Architecture of the components involved in the Cloud Security Certification Language

The following are the components of the MEDINA architecture involved in block n.2 that achieve
the Cloud Security Certification Language:

• The Metric Recommender associates a set of metrics to a requirement, by exploiting
Natural Language Processing techniques. It is a sub-component of the NL2CNL
Translator and is part of Task 2.4.

• The NL2CNL Translator translates EUCS NL requirements and metrics into their MEDINA
CNL representation. The NL2CNL Translator is the main output of MEDINA Task 2.3.

• The CNL Editor is the user interface that allows users to visualize and possibly revise the
translation of the requirements and metrics into the MEDINA CNL. The CNL Editor is the
main output of Task 2.4.

• The CNL Store is a database that serves as output for the NL2CNL Translator and as input
for the CNL Editor. It is controlled by the CNL Editor and can be accessed through its API
to read and write objects in it. The objects stored in this DB are written by the NL2CNL
Translator and are read by the CNL Editor and the DSL Mapper.

• The DSL Mapper is the MEDINA component that maps the yet not executable MEDINA
CNL into the MEDINA Domain Specific Language DSL, whose statements are instead
machine-readable. Therefore, the DSL is the Cloud Certification Language. The DSL
Mapper is the main output of Task 2.5.

• The MEDINA Ontology was introduced in D2.3 [3] and recalled in this document in
APPENDIX D: MEDINA Vocabularies and Ontologies. It is used by all the Cloud Security
Certification Language components for the representation of the requirements and
metrics.

The components presented so far interact with the following components in the other blocks of
the MEDINA framework to perform their operations:

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 61 of 85

www.medina-project.eu

• The Catalogue of Controls and Metrics (a.k.a. Catalogue) belongs to block n.1 and has
been described D2.2 [8]. The interaction with this component is necessary since the
NL2CNL Translator needs to retrieve the requirements and metrics descriptions from it.
The two components connect to each other via their respective APIs.

• The Orchestrator has been described in D3.3 [5] and D3.6 [6]. The entire translation
process begins and ends in the Orchestrator. In fact, the Orchestrator UI allows the user
to select the requirements to be translated and to send them to the NL2CNL Translator.
Finally, the result of the translation is sent to the Orchestrator itself through the DSL
Mapper. Both the Orchestrator and the DSL Mapper expose an API to perform all
necessary operations.

7.4 Sequence diagram

The interaction among the various components of the MEDINA framework follows predefined
flows, which are detailed in D5.4 [9]. Among these workflows, the one that involves the
components of the Cloud Security Certification Language is the general workflow WF3 [9]. In
particular, the step involved is step n.3.

Table 7. Description of the general workflow WF3, which involves the Cloud Security Certification
Language components

Workflow Step Description Role Comments

WF3

1 The Company Compliance Dashboard /
Integrated UI is used to perform the
following actions:
Each Resource comprising the Cloud
Service is registered in MEDINA as part of
the ToC.

CSP Required information from
the Resource include the
impact level mentioned in
WF1. Additional attributes
of the Resource are
populated as needed and
based on the MEDINA data
model.

2 The Catalogue of Controls and Metrics (UI)
is used to:
Select EUCS Assurance level for the ToC to
certify

CSP The default value being
“High” (which is the one
requiring continuous
monitoring in EUCS), but
also “Basic” and
“Substantial” can be
selected.

3 The UI from the CNL Editor is used to:
a. Select suitable built-in Metrics as

provided by the Metrics
Recommender (or accept the ones
pre-selected by default)

Customize Target Values23 on the selected
built-in Metrics.

CSP Once the corresponding
Obligations have been
selected and configured
with a Target Value
(including the
corresponding Metric),
then they are ready to be
stored along with the ToC
information in MEDINA’s
Orchestrator.

4 The Organizational Evidence Gathering
and Processing is used to upload the
collected documentation (see WF1)

CSP These documents are
stored directly on the
database of the
component, and not on the
Orchestrator’s.

23 In the form of Obligations

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 62 of 85

www.medina-project.eu

Workflow Step Description Role Comments

5 The Orchestrator stores the configured
ToC information (see steps 1-3) in its
corresponding database.

MEDIN
A

n/a

This step n.3 is made explicit in the sequence diagram depicted in Figure 19.

Figure 19. Sequence diagram describing the interaction among the Cloud Security Certification Language
components

The sequence diagram includes the following steps:

1. The Cloud Security Certification Language functionality is activated from the Unified
User Interface (UUI) of the MEDINA framework, which allows the user to access the
Orchestrator User Interface (UI) and to select a (set of) requirements to be assessed.

2. The chosen requirement is sent from the Orchestrator to the NL2CNL Translator, thus
triggering the translation/recommendation.

3. The NL2CNL Translator connects to the Catalogue to retrieve information related to
requirements and metrics, in particular, it retrieves, for a certain requirement, all the
metrics already associated to it in the Catalogue.

4. The Catalogue responds with the information required, if available.
5. The NL2CNL Translator queries the Metric Recommender with the requirement(s)

specified by the user through the Orchestrator UI.
6. The Metric Recommender returns a set of metrics associated to a requirement. In the

Catalogue, each metric is already linked to a requirement or to a set of requirements
and this association has been made by an expert when constructing the Catalogue. The
metrics returned by the Metric Recommender are different from the ones already linked
to it in the Catalogue and they are useful for having a larger list of metrics to choose
from.

7. The NL2CNL Translator translates all the metrics/requirements pairs into obligations,
then it builds an object containing all the information needed to describe a requirement
and its associated metrics/obligations. This object is called REO
(Requirement&Obligation) and it is represented in XML. The REO object is sent from the
NL2CNL Translator to the CNL Editor, which takes care of storing it into the CNL Store.

8. The control returns to the UUI, giving the user the possibility to open the CNL Editor and
view/revise the obligations.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 63 of 85

www.medina-project.eu

9. Once satisfied with the obligations, the user can directly trigger the mapping from the
CNL Editor UI, by sending the REO object to be mapped to the DSL Mapper.

10. The DSL Mapper extracts from the REO object the information needed to generate the
Rego rules, which are finally sent back to the Orchestrator.

7.5 Coverage of requirements

This section provides an overview of the status of the functional requirements updated until
M30, focusing on those requirements related to the Cloud Security Certification Language.
indicates, for each functional requirement, its priority, and its current and expected
implementation status.

Requirements have been classified as Not Implemented (-), Partially implemented (P) or Fully
implemented (F). The columns M15, M24, and M30 refer to the month where the status has
been measured. M15 correspond to the first version of the requirements, M24 refers to status
in month 24, M30 refers to the actual status, previous to the final MEDINA integration in M33.

Each requirement will be described in detail in the following sections.

Table 8. Expected coverage of functional requirements for the Cloud Security Certification Language.

KR
Sub-
component

Req. ID Short title Priority M15 M24 M30

KR3
Certification

Language

NL2CNL
Translator

NL2CNL.01 Translation from NL to
Controlled NL

MUST
P P F

NL2CNL.02 Based on NLP and
ontologies

MUST
- P F

NL2CNL.03 Translation of org. and
technical measures

Should
P P F

NL2CNL.04 Compliant with the CNL
Editor language

MUST
P P F

CNL Editor

CNLE.01 CNL Editor GUI MUST - F F

CNLE.03 CNL Editor input format Should - F F

CNLE.04 CNL Editor policies
changing

MUST
P F F

CNLE.05 CNL Editor vocabulary MUST - P F

CNLE.06 CNL Editor output
format

MUST
P F F

DSL
Mapper

DSLM.01 Translation to selected
DSL

MUST
- P F

DSLM.03 Mapping elements MUST - P F

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 64 of 85

www.medina-project.eu

8 APPENDIX B: Patterns and Controlled Natural Languages for
Requirements specifications

This section introduces Controlled Natural Languages (CNLs) and their benefits in various fields
of applications, including the MEDINA scenario.

Quoting from [12], `natural language (NL) is pervasive in [...] requirements specifications (RSs).
However, despite its popularity and widespread use, NL is highly prone to quality issues such as
vagueness, ambiguity, and incompleteness.’ Work in [13] identifies common issues affecting
usability of NL requirements, like, e.g., the adoption of an unclear – or a too complex, or too
poor – terminology, the missing of a requirements specification template, the duplication of
requirements that simply use a diverse wordiness, the omission of significant descriptions, the
vagueness and the ambiguity of terms and meaning.

With the aim of improving the quality of NL requirements, by, e.g., reducing its ambiguity and
making them more precise and complete, Pohl proposes the following three approaches [14]:

• Glossaries. Requirements glossaries are lists of specific words that make explicit and
provide definitions for the salient terms in a Requirement Specification. Glossaries may
also provide information about the synonyms, related terms, and example usages of the
salient terms [15].

• Patterns. Patterns are pre-defined sentence structures with optional and mandatory
components. Patterns guide stakeholders in writing more standardized NL requirements
by restricting their syntax, and thus possibly avoiding omissions and/or over-
specifications.

• Controlled natural languages. Controlled natural languages (CNLs) are a subset of
natural languages, specifically conceived to make language processing simpler. A CNL is,
in essence, a developed language that is based on natural language, but is more
restrictive in terms of lexicon, syntax, semantics, while at the same time retaining most
of its natural properties. CNLs prevent quality problems in requirements documents,
while maintaining the flexibility to write and communicate requirements in an intuitive
and universally understood manner [16]. CNLs are considered an extension of the
pattern category which, in addition to restricting the syntax (the grammatical
structures), also provide language constructs with which it is possible to precisely define
the semantics of NL requirements. By adopting a contrived representation, in terms of
grammar and vocabulary, CNLs may reduce the ambiguity and complexity of a complete
language [17], e.g., English, Spanish, French, Swedish, Mandarin, etc. [18].

In the following, we will concentrate on the last two approaches (patterns and CNLs), being
language representations the target of this section.

8.1 Patterns

Many patterns have been proposed in the literature. In [19], Pohl and Rupp present a single
pattern to specify functional software requirements, while Mavin et al., in [20], consider the
aviation domain and propose a set of fine patterns to describe functionalities of the domain.
Requirements writing according to these patterns has been proved to be easier to understand
and less ambiguous.

Both functional and not functional requirements have been presented in [21] by Withall, all
related to the business domain, while Riaz et al. in [22] define a set of patterns expressing
security requirements. The latter comes with an assistant tool that helps the user in selecting
the appropriate pattern according to the security aspects relevant in the NL requirement.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 65 of 85

www.medina-project.eu

Among others, we cite here two other works specifying patterns for the description of
embedded systems (Denger et al. [23]) and performance requirements (Eckhardt et al. [24]).

From this non-exhaustive review of existing patterns for drafting NL requirements, we can see
that many of them are domain-dependent, that is, laced with terms specific to a certain domain.

8.2 Controlled Natural Languages

CNLs have been proved to be effective in mitigating linguistic ambiguity challenges, as they can
easily be translated into a formal language such as first-order logic or different version of
description logic, automatically and mostly deterministically (Schwitter, [17]). CNLs are formal
per se, being born with an associated formal semantics. In section 8.3, we will give an example
of the semantics for a language ideated by some members of the MEDINA consortium and
conceived for expressing privacy regulations (Matteucci et al, [25]). In general, CNLs can
conveniently express the kind of information that occurs in, e.g., software specifications, formal
ontologies, business rules, legal and medical regulations.

One interesting feature of CNLs is that they usually maintain a readability that is not so different
from that of pure natural languages. This makes them easier to write and understand by people
than pure formal languages. Furthermore, they precisely define subsets of natural languages,
have a formal foundation and can therefore be adopted for automated reasoning (Schwitter,
[17]).

CNLs have been proposed and used in many application domains and for different purposes. For
example, the Attempto Controlled English (ACE)24 [26] is a CNL that defines a subset of the
English language intended to be used in different domains, such as software specification and
the Semantic Web. Attempto can be automatically translated into first-order logic and is
supported by a number of tools, like a Parsing Engine to translate ACE texts into a variant of first-
order logic, or a plug-in for the Protége ontology editor25.

In [27], Hart et al. propose Rabbit as a way to overcome the impediment to the creation and
adoption of ontologies. Rabbit is a CNL that can be translated into the Ontology Web Language26
(OWL) in a way that achieves both comprehension by domain experts and computational
preciseness. In a sense, Rabbit can be defined as complementary to OWL, supporting the need
to author and understand domain ontologies but overcoming the difficult comprehension of
descriptions logics.

Similarly, the idea behind the Sidney OWL Syntax (SOS) [28] is to propose a new syntax that can
be used to write and read OWL ontologies in CNLs. SOS enables the generation of grammatically
correct full English sentences to and from OWL syntax. This enables users to write an OWL
ontology in a defined subset of English, also improving readability and understanding of OWL
statements.

Regarding CNLs developed for specific domains, as an example Konrad and Cheng in [29]
consider the automotive domain and propose a language to express real-time properties of
systems under specification. As a follow-up of the same language, Post et al in [30] enlarge its
expressivity to express other requirements in the same domain.

Just like other types of requirements, EUCS controls and requirements are expressed in natural
language. Although the use of natural language enables users (e.g., CSPs) to read and

24 http://attempto.ifi.uzh.ch/site/
25 https://protege.stanford.edu/
26 https://www.w3.org/OWL/

http://www.medina-project.eu/
http://attempto.ifi.uzh.ch/site/
https://protege.stanford.edu/
https://www.w3.org/OWL/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 66 of 85

www.medina-project.eu

understand the requirements specific for Cloud Security Certification, a key issue relies in the
fact that NLs are not machine readable, and automatic measurements on whether controls and
requirements are actually going to be processed and fulfilled are not feasible. In particular, NL
cannot be used as the input language for a rule-assessment software infrastructure to be used
for automated, continuous evaluation of requirements’ fulfilment. In fact, such an evaluation
requires inputs in a machine-readable form, like, e.g., the de facto standard XACML moving to
the field of access control rules.

Like other (cloud) certification schemes, the EUCS scheme controls are groups of statements –
the requirements indeed - that can be likened to policies. There are several examples of CNLs
coined by Academia and Industry to express such policies. In the following, we introduce the
reader to languages expressing policies for data management, including the one that has
inspired our MEDINA CNL.

8.3 CNLs for expressing policies for secure data management

In the last two decades, data protection has been discussed in many scenarios, from critical
infrastructures to social networks, just to cite two fields of interest. Informally, regulations for
data protection, data storage and data sharing are written in Natural Language27,28. A proper
CNL is a flexible mean to fill the gap between a traditional legal contract regulating the sharing
of data among different domains, and the software architecture supporting it.

Some examples of languages and associated tools for secure data management are as follows:

• Binder [31] is an open logic-based security language that encodes security
authorizations among components of communicating distributed systems.

• The Rodin platform provides an animation and model-checking toolset, for analysing
properties of specifications based on the Event-B language29, able to express security
data policies. In [32], the developers of Rodin and Event-B presented a formalization of
data management clauses in Event-B, and a model checker is exploited to verify that a
system behaves according to its associated clauses.

• Also, work in [33] proposes a comprehensive framework for expressing highly complex
privacy-related policies, featuring purposes and obligations. The Klaim family of process
calculi [34] provides a high-level model for distributed systems, for programming and
controlling access and usage of resources. Also, work in [35] considers policies that
moderate the use and replication of information, e.g., imposing that a certain
information may only be used or copied a certain number of times. The analysis tool is
a static analyser for a variant of Klaim.

We will now describe a language defined by some members of the MEDINA consortium in a
previous work. The Controlled Natural Language for Data Sharing Agreement (CNL4DSA) was
introduced with the purpose to reduce the barrier of adoption of data policies in terms of
security and privacy as well as to ensure policies mapping to formal languages that allow the
automatic verification of the policies [25]. A data sharing agreement is essentially a contract
between two or more parties to agree on some terms and conditions with respect to data
sharing, storage, and usage. This language, called for the sake of brevity CNL4DSA, permits
simple, yet formal, specifications of different classes of privacy policies, as listed below:

27 Justice Information Sharing, U.S. Dept. of Justice. Online: https://bja.ojp.gov/program/it
28 North American Electronic Reliability Corporation. Electricity Information Sharing and Analysis Center.
Online: https://www.nerc.com/pa/CI/ESISAC/Pages/default.aspx
29 http://www.event-b.org/platform.html

http://www.medina-project.eu/
https://bja.ojp.gov/program/it
https://www.nerc.com/pa/CI/ESISAC/Pages/default.aspx
http://www.event-b.org/platform.html

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 67 of 85

www.medina-project.eu

• authorizations, expressing the permission for subjects to perform actions on objects
(e.g., data), under specific contextual conditions

• obligations, defining that subjects are obliged to perform actions on objects, under
specific contextual conditions.

Central to CNL4DSA is the notion of fragment, i.e., a tuple f =<s, a, o> where s is the subject, a
is the action, o is the object. A fragment simply says that `subject s performs action a on object
o'.

By adding the can/must constructs to the basic fragment, a fragment becomes an authorization
or an obligation.

Fragments are evaluated within a specific context c, i.e., a predicate that characterizes factors
such as user’s roles, data categories, time, geographical locations, etc. Contexts are evaluated
either as true or false. Simple examples of contexts are `subject hasRole CSP’, or `object
hasCategory CloudResource’. In order to describe complex policies, contexts are composable. A
composite context C is defined inductively as follows

C = c | C and C | C or C | not C

Where and, or, and not are Boolean connectors.

The syntax of a composite fragment FM is described by the following Backus-Naur Form BNF-like
syntax:

FM = nil | mod f | FM; FM | if C then FM

where the modality mod ranges over {can, must} and the subscript M ranges over {A, O} where
A stands for Authorization and O stands for Obligation. By changing the modality and the
subscript, we get two different types of policies, namely we have authorizations and obligations.
FA is a composite authorization fragment and FO is a composite obligation fragment.

Let us now comment on the individual policy constructors:

• nil does nothing.

• mod f is the atomic authorization/obligation fragment that expresses that f = <s,a,o> is
allowed/obliged. Its informal meaning is that “subject s can/must perform action a on
object o”.

• FM ; FM is a list of composite fragments. (Subscript M takes either only O or only A).

• If C then FM expresses the logical implication between a composite context C and a
composite fragment FM: if C holds, then FM is permitted/obliged (according to the value
of M).

CNL4DSA has an operational semantics based on a Modal Transition System (MTS), able to
express admissible and necessary requirements to the behaviour of the CNL4DSA specification.
To model the behaviour of the specifications, modal transition systems are used. In its original
version [36], MTS is a structure

(𝒜, 𝒮, →◊, →⊡)

where 𝒮 is a set of specifications, like for example processes in the context of Process Algebras,

𝒜 is the set of actions which specifications may perform, and →◊, →⊡ ⊆ 𝒮 × 𝒜 × 𝒮 are the
two modal transition relations expressing admissible and necessary requirements to the
behaviour of the specifications.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 68 of 85

www.medina-project.eu

In particular, S
𝒶
→ ◊ S’ with S, S’ ∈ 𝒮 and 𝒶 ∈ 𝒜 means that it is admissible that the

implementation of S performs 𝒶 and then behaves like S’. Dually, S
𝒶
→ ⊡ S’ represents a

transition in which the implementation of S is required to perform 𝒶 and then behaves like S’.

This works under the assumption that all the required transitions are admissible transitions.

Figure 20 shows the operational semantics of FA in terms of a modified label transition system
MTSAuth = (𝒜𝒰𝒯, ℱ , →◊, 𝒞). As usual, rules are expressed in terms of a set of premises, possibly
empty (above the line) and a conclusion (below the line).

Figure 20. Operational Semantics for the composite authorization fragment, where the
symmetric rule for (;) is omitted (source: unpublished manuscript, Petrocchi M and Matteucci I.)

MTSAuth deals with authorized transitions only and it also considers the set of contexts because
the transitions may depend also on the value of such contexts, see rule (if) in Figure 20.

The introduction of 𝒞 (= a set of predicates) in a labelled transition system is a standard practice
[37]. We observe that the if operator implies the binding of variable appearing in the context C.

The operational semantics of FO is expressed in terms of the modal transition system MTSObl =
(𝑂𝐵𝐿, ℱ , →⊡, 𝒞). The axioms and rules are similar to the ones presented for FA apart from
changing the transition relation, that becomes →⊡.

8.4 MEDINA CNL

In this section, we introduce the definition of the MEDINA CNL, along with the motivations
leading to this format.

We remind the reader that the scope of the certification requirements for MEDINA was first
defined in D2.1 (section 3.1) [1] and then confirmed in D2.2 [8]. We focus on a subset of EUCS
requirements that were identified from the draft version of the EUCS scheme [10]. These
requirements were selected based on two requisites: i) their ‘assurance level’ is ‘high’; and ii)
they include the wording “automatically monitor” or variations thereof.

Inspired by the presence of the authorization and obligation modalities in CNL4DSA, presented
in the previous section, we further analysed the EUCS draft candidate certification scheme and
were able to summarize the requirements, being either technical or organizational [5], in the
following general textual formula:

The value assumed by the metric x on the resource of type y can/must be equal/major to/minor
to the target value z/must fall in the range of values {z, ...w}.

Paraphrasing part of CNL4DSA, we define a MEDINA fragment as a tuple

f = <rt, m, type(op,tv)>

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 69 of 85

www.medina-project.eu

where rt is a resource type, m is a metric, type(op,tv) specifies the type of the metric, the
designed target value tv for that metric, and the operator op which relates the value of the
metric to tv (e.g., =, >, <, etc.).

A MEDINA fragment says that “the metric m, measured on the resource type rt, has a specific
relation with the value tv of type type, based on the operator op”.

This leads to the following syntax for the MEDINA CNL:

FM = nil | mod f | FM; FM

where M ranges over {A, O} (Authorization/Obligation) and

• nil does nothing.

• mod f is the atomic authorization/obligation MEDINA fragment that expresses that f =
<rt, m, type(op,tv)> is allowed/obliged. Its informal meaning is that “the metric m,
measured on the resource type rt, can/must have a specific relation with the value tv of
type type, based on the operator op”.

• FM ; FM is a list of composite MEDINA fragments.

The analysis of the EUCS certification scheme and connected metrics, set forth in D2.1 [1] and
confirmed in D2.2 [8], have highlighted how the requirements identified can be viewed as
obligations. In particular, the CSP must fulfil specific obligations regarding, e.g., the security
configurations of cloud resources.

For this reason, the format for expressing in a more formal, but always readable way, the NL
requirement, is represented as follows:

must <rt, m, type(op,tv)>

With a little abuse of notation, we will express the MEDINA obligation in this format too:

RT must M type(op,tv)

where, as introduced above, RT is the resource type, M is a metric associated to the
requirement, tv is a target value, op is the comparison operator, which indicates how to
compare the target value with the value measured on the resource, with respect to metric M;
finally, type indicates the unit of measure of the target value and the measured value.

It is worth noting that, having included both the must and the can modalities in the MEDINA
CNL, it will be possible – when and if necessary – to express not only obligation requirements
but also authorization requirements. Also, it will be possible to express a list of composite
MEDINA fragments.

APPENDIX C: From NL to CNL TOMs will show some concrete examples of requirements rendered
into the MEDINA obligations.

As a final note, it is fair to point out that other projects have developed more complex languages,
and also equipped them with tools devoted to analysing properties of the system that such
languages describe. This is the case, for example, of the AMASS (Architecture-driven, Multi-
concern and Seamless Assurance and Certification of Cyber-Physical Systems)30 European
project. The target of AMASS is the specification of safety and security requirements for Cyber-

30 https://www.amass-ecsel.eu/

http://www.medina-project.eu/
https://www.amass-ecsel.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 70 of 85

www.medina-project.eu

Physical Systems, which probably feature many variabilities in their specification than
requirements for cloud security certification.

AMASS includes multiple modelling languages according to the level of user expertise. They can
be based on UML, associated with editor tools with many plug-ins or have formal foundation
and as such can be given as specification to property verification tools (see AMASS Deliverable
3.6 “Prototype for architecture-driven assurance” [38]).

The language chosen to represent MEDINA’s requirements is a much simpler language, with no
correlated analysis tools. However, we argue that the language is suitable for MEDINA's
purpose, which is to create a close-to-standard language for the representation of cloud
certification requirements, and which is then made machine readable and input to the
assessment tools specified in D3.3 [5].

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 71 of 85

www.medina-project.eu

9 APPENDIX C: From NL to CNL TOMs

The main goal of passing from a NL representation to a CNL representation of the security
requirements and associated metrics is to help achieving the automatic and continuous
monitoring of the EUCS scheme.

This process is carried out through two consecutive steps. The first step consists in associating
each requirement with one or more predefined metrics. In fact, to get a compliance status, each
requirement needs to be objectively evaluated and thus it should be associated with metrics
that reflect the technical details of the requirement itself. The second step is represented by the
translation of each requirement / associated metric into a policy, expressed in CNL. The two
steps will be detailed in the following sections. In particular, the first section describes the
proposal of a system to automatically associate metrics to requirements, whereas the second
one reports the actual translation of requirements/metrics into policies.

Figure 21 depicts the simplified workflow of Task 2.3: first, for every requirement, a set of
metrics is recommended/predicted, then the set is translated into the defined CNL. The output
is stored in a dedicated database managed by the CNL Editor, since it will be used by the Editor
itself to visualize/refine the result of the recommendation.

Figure 21. From Natural Language to Controlled Natural Language: Simplified overview Metric
association

This section explains the process carried out to automatically associate metrics to requirements.
The idea behind this proposal comes from the fact that the metrics should be reusable when
adding new requirements and the manual association between metrics and requirements is a
time-consuming process. For these reasons, a tool for automatic association is proposed, namely
a “metric recommender” system.

Input data (requirements and metrics, both expressed in NL) are selected from the MEDINA
catalogue database and fed into the recommender system. The idea is to associate metrics to a
requirement according to the similarity of their descriptions. To do so, both requirements and
metrics descriptions are represented into vectors of numerical features by relying on NLP
techniques, with the hypothesis that similar requirements and features descriptions will reside
in the same local area in the feature space. The quality of the process is actively supervised in
visual analysis and experiment results are computed using state of the art metrics. The following
subsections will give more details about this process.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 72 of 85

www.medina-project.eu

9.1.1 Data and features

The input of the metric recommender system is taken from the Catalogue of controls and
metrics, which currently includes the requirements available in the EUCS scheme [10]. In
particular, the first input is represented by the natural language description of the requirements.
The natural language description of the metrics is also used as a second input for the metric
recommender system.

Requirement input data example

The following is an example for a high-level security requirement description in natural language
(ReqID=OIS-02.3H, category=Organisation of Information Security):

The CSP introduces and maintains a manually managed

inventory of conflicting roles and enforces the

segregation of duties during the assignment or

modification of roles as part of the role management

process. OIS-02.3H

Metric input data example

The following is an example for a metric description in natural language:

“This metric is used to assess if access monitoring is

enabled” M237 – MEDINA metric proposal

9.1.2 Experimental setup

First, the input texts are processed using a pre-trained network to produce a high dimensional
feature vector. This feature vector represents the requirement or metric in a mathematically
comparable way, instead of their original textual description. The basis for the recommender
system is the hypothesis that requirements having similar descriptions are expected to be closer
in the feature space. Since the same features are also computed for the metrics, this should also
hold for the metrics. Which means, that, if the features are selected/fine-tuned to this purpose,
the metrics, that should be associated with a requirement, are in the same local area in this high
dimensional feature space.

9.1.2.1 Features

As described above, the input for the metric recommender system, i.e., the model that
associates metrics with a requirement, is the computed feature vectors. The features can be
computed using knowledge of the domain (e.g., for audio, spectrograms can be used).
Alternatively, the features can be learned using machine learning. To train such a model, usually
a lot of data is needed (in our case text), which is not available. Therefore, we use the output of
pre-trained models that have worked well on state-of-the-art Natural Language Processing
tasks.

For our use case, two types of features are considered applicable – the ones related to context-
aware models (e.g. BERT [39] and derivatives [40]) and context-free word embeddings (e.g.
word2vec [41] or fastText [42]). In the first experiments, fastText features (on
metric/requirement description text) have shown the most promising results.

The quality of the selected features directly influences the final result; therefore, some data
cleaning is needed. In our case, this is mostly based on removing stop words [43]. This means
that we remove words that appear often, but do not add useful information to the text.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 73 of 85

www.medina-project.eu

Figure 22. Feature computation workflow

9.1.2.2 Current approach

Features are computed using the fastText model cc.en.300 which returns a 300-dimensional
vector per requirement/metric (see Figure 22.). The fastText model is pre-trained on English
texts from Wikipedia and Common Crawl [44]. For visual analysis, this high dimensional vector
is reduced to two dimensions using the principal component analysis (PCA) [45] or the T-
distributed Stochastic Neighbour Embedding (TSNE) [46] or the Truncated SVD [47].

A K-d tree is computed on the feature vectors of the metrics, which can be used to select the k
closest neighbours of a query vector, based on the shortest Euclidean distance. As a query, we
use the feature vector of a requirement. The workflow is depicted in Figure 23, and result
examples are provided in the following sections.

Figure 23. Recommender system workflow

9.1.2.3 Performance indicators

To analyse the performance of our system, basic indicators can be used. These indicators allow
us to compare different approaches and help choosing the most promising one. Precision@K is
typically the metric of choice for evaluating the performance of a recommender systems.
However, additional diagnostic metrics and visualizations can be used, since they can offer
deeper insights into a model's performance. First experiments results are based on the following
indicators.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 74 of 85

www.medina-project.eu

Precision@k

A quality metric to evaluate model’s performance could be precision@k [48], e.g., precision@5
reflects how well the system performs in the top 5 recommendation results. However, this score
does not consider the rank of the relevant metrics only whether the relevant metrics are in the
set of retrieved metrics. Equation 1 shows the adjusted formula to calculate the precision@k
score for this task. The numerator in Equation 1 is the amount of metrics in the intersection of
relevant metrics (=metrics associated with a requirement) and k is the number of retrieved
metrics (=recommended metrics for a requirement), the denominator is the amount of relevant
metrics.

Normalised Discounted Cumulative Gain nDCG

An alternative quality metric to precision@k is the Discounted Cumulative Gain [49] (DCG),
which is an indicator that can be used to measure the quality of our recommender system
results, including the rank of relevant documents. The resulting metric list is ranked, and the
metrics associated with the query requirement (=relevant documents) receive a relevance score
reli=1, while metrics not relevant are set to reli=0. The position of the document/metric is
denoted by i. The DCG is calculated as defined in Equation 2. To make the DCG metric
comparable to other results it needs to be normalized – therefore an ideal DCG (Equation 3) is
calculated, reflecting the ideal result – all associated metrics are in the top results of the
recommender. The DCG is normalized to a score between 0 and 1 using the ratio of DCG to IDCG
(Equation 4).

9.1.3 First results

For the purpose of testing the performances of the metric recommender we considered 34
requirements, which have been manually associated with 123 metrics in total (see D2.2 [8]). This
means that these can be actively used for testing this recommender system prototype. So far,
the quality of the approach was visually analysed using interactive plots and filtering of the
results and measured using the above defined nDCG.

9.1.3.1 Visual analysis

Figure 24 depicts three plots using the first two components of the down-projected features.
The reduction has been done using TSNE, PCA and Truncated SVD, from left to right. Each
coloured dot represents either a requirement or a metric. Visual analysis indicates that the

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑚𝑒𝑡𝑟𝑖𝑐𝑠} ∩ {𝑘 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑚𝑒𝑡𝑟𝑖𝑐𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑚𝑒𝑡𝑟𝑖c𝑠}|
 Equation 1

𝐷𝐶𝐺𝑝 = ∑

2𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖 + 1)

𝑝

𝑖=1

 Equation 2

𝐼𝐷𝐶𝐺𝑝 = ∑
2𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖 + 1)

|𝑅𝐸𝐿𝑝|

𝑖=1

Equation 3

𝑛𝐷𝐶𝐺𝑝 =

𝐷𝐶𝐺𝑝

𝐼𝐷𝐶𝐺𝑝
 Equation 4

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 75 of 85

www.medina-project.eu

features are mostly good, as the distribution of different schemes and metrics are clustered on
top of each other. This empirically supports the hypothesis the recommender system is built on.

Especially in the PCA plot, it is noticeable that some metrics are skewed. Using the interactive
analysis tool built for examining the data, anomalies such as this one can be directly investigated.

Figure 24. Plot of requirements and metrics using the first two components of the feature vectors, down-
projected using TSNE, PCA and Truncated SVD respectively

9.1.3.2 Results

For 27 out of 34 requirements at least a subset of the linked metrics could be retrieved within
the top 10 results (see Figure 25 and Figure 26). For the rest 7 requirements, no metrics could
be retrieved (for an example see Figure 27). In total the mean of the nDCG is 0.41.

Disregarding the 7 requirements, for which no metrics could be retrieved yet, the “corrected”
mean nDCG is 0.66. For 12 requirements 100% of the associated metrics were retrieved in the
top results. An example of the latter can be seen in Figure 25.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 76 of 85

www.medina-project.eu

Figure 25. Prototypical results for EUCS requirement AM-01.6, optimal results on rank 1 and 2

Figure 26. Prototypical results for EUCS requirement AM-03.6, results on rank 7 and 8

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 77 of 85

www.medina-project.eu

Figure 27. Prototypical results for EUCS requirement IM-03.4, no results

9.2 CNL translations

Once the list of metrics associated to a requirement is obtained, it is possible to translate each
pair requirement/metric in CNL. Here, we give some examples of translation from NL to CNL.

Let the reader consider the following requirement:

If we consider EUCS requirement ReqID = OPS-21.3, category Operational Security [10]

The CSP shall automatically monitor the service components

under its responsibility for compliance with hardening

specifications.

The metric recommender associates this requirement with the metric metricID=JavaVersion,
whose description is: “This metric is used to assess the Java Runtime version used by the cloud
service/asset”. The metric data type is Integer in the range of [< 11; 11]. The target value is 11,
and the operator that compares the target value with the measured value is “=”. This metric can
thus be expressed as the following obligation:

“Application” MUST “JavaVersion”, Integer(=,11)

For the sake of clarity, we give another translation example:

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 78 of 85

www.medina-project.eu

If we consider EUCS requirement ReqID = PM-04.8, category Procurement Management [10]:

The CSP shall automatically monitor Identified violations

and discrepancies, and these shall be automatically

reported to the responsible personnel or system components

of the Cloud Service Provider for prompt assessment and

action.

The metric recommender associates this requirement with the metric
metricID=AutomaticallyDetectedViolationsDiscrepancies, whose description is: “The
percentage of violations and discrepancies which can be automatically detected”. The metric
data type is Integer, ranged over [0;100]. The target value is 100, and the operator that
compares the target value with the measured value is “=”. Then, this metric can be expressed
as the following obligation:

“ComplianceMonitoringSoftware” MUST

“AutomaticallyDetectedViolationsDiscrepancies“, Integer(=,100)

Finally, we report the example of a requirement associated with two different metrics, i.e., the
requirement ReqID = OPS-5.3, category Operational Security:

The CSP shall automatically monitor the systems covered

by the malware protection and the configuration of the

corresponding mechanisms to guarantee fulfilment of OPS-

05.1.

The metric recommender associates this requirement with metrics
MetricID=MalwareProtectionEnabled and MetricID=MalwareProtectionOutput, respectively.
The description of the metric MalwareProtectionEnabled is “This metric is used to assess if the
antimalware solution is enabled on the respective resource”, its data type is Boolean and the
values it can assume are [true, false]. The default target value is “true” and the operator that
compares the target value with the measured value is “=”. Then, this metric is translated into
the following obligation:

“Compute.VirtualMachine” MUST “MalwareProtectionEnabled”,

Boolean(=,true)

Similarly, the description of the metric MalwareProtectionOutput is “These metric states
whether automatic notifications are enabled (e.g. e-mail) about malware threats. This relates to
EUCS definition of continuous monitoring”. The metric data type is Boolean and the values it can
assume are [true, false]. The default target value is “true” and the operator that compares the
target value with the measured value is “=”. Then, this metric is translated into the following
obligation:

“Compute.VirtualMachine” MUST “MalwareProtectionOutput”,

Boolean(=,true)

It is worth highlighting that the example obligations shown so far are reported in the CNL format,
whereas in the actual implementation they will be rendered in XML, according to the language
expected by the CNL Editor.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 79 of 85

www.medina-project.eu

10 APPENDIX D: MEDINA Vocabularies and Ontologies

This section presents the MEDINA Ontologies that are at the base of the formation of CNL
obligations in the CNL Editor Tool, and of the rules in Rego Code, the format chosen as the
MEDINA Certification Language. Before introducing the ontologies, we will give a brief
background on the concept of taxonomy and ontology.

10.1 Background: Taxonomies and Ontologies

Taxonomies are classifications of arbitrary objects, usually in a hierarchical order. Their purpose
is to create abstract classes to which any concrete instance can be assigned. This way, general
methods and tools can be developed that apply to all instances of a certain class. Taxonomies
exist in many different domains, for example in biology to classify animals and plants or in
computer science to classify security flaws or cloud resources (as proposed in MEDINA).

Sometimes, taxonomies are not sufficient to describe classes and their relationships. Ontologies
can integrate several taxonomies and describe their relations in arbitrary ways. In MEDINA, for
instance, we use an ontology to subsume two taxonomies which describe cloud resources and
security features, and add relationships between the two taxonomies to describe which cloud
resource generally has which security feature.

10.2 Editor Ontology

The CNL Editor functionality of managing requirements is based on a specific vocabulary, saved
in a .owl file (RDF format). CNL Editor allows users, for a selected requirement, to change the
Target Value choosing from a predefined list saved in the vocabulary. The use of free text is also
allowed in special situations (e.g., where there is a need of a value that cannot be enumerated
in the ontology, like an integer number). This way, the user is interactively bound to make
changes as defined in the vocabulary.

The CNL Editor vocabulary consists of entities (items) that are defined under Action and Term
classes. Additional actions and terms must be defined as subclasses of these existing classes in
any vocabulary that will be created.

In the CNL Editor, the Term (and its subclasses) is used to instantiate resource types and target
values, while the Action (and its subclasses) is used to instantiate metrics. Figure 28 shows an
example of the vocabulary, with Action and Term examples highlighted.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 80 of 85

www.medina-project.eu

Figure 28. CNL Editor Vocabulary Structure Example

In the CNL Editor Vocabulary for the MEDINA project, items come from the Catalogue of controls
and metrics. As anticipated, Actions are the Metrics Names and under the Term class we can
find: i) Resource that contains ResourceTypes, and ii) TargetValue with the TargetValueTypes
and values admitted.

For each Metric in the vocabulary, the type of resource and the type of target value associated
are specified. The association can be retrieved from the Catalogue of controls and metrics.

When editing an obligation, the user is allowed to choose only values defined in the vocabulary.
As an example, Figure 29 shows the association of ResourceType and TargetValueType to the
Metric named BackupEncriptionEnabled.

Figure 29. CNL Editor Vocabulary Metric “BackupEncriptionEnabled”

Figure 30 shows that the TargetValueType is “Boolean”.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 81 of 85

www.medina-project.eu

Figure 30. CNL Editor Vocabulary TargetValueType “Boolean”

For TargetValueType “Boolean”, the vocabulary defines possible values (true or false) and
possible operators that in this case is only “==”.

The vocabulary must be defined considering as input what is specified in the Catalogue of
Controls and Metrics and must be aligned to it.

The MEDINA vocabulary is created and modified via the Protégé31 tool, a free, open-source
ontology editor, with an easy-to-use GUI.

10.3 Cloud Resource Security Ontology

The Cloud Resource Security Ontology (CRSO) is not directly related to the CNL Editor ontology
described above, since these two ontologies serve two different purposes. They do, however,
both include a classification of cloud resources.

The Cloud Resource Security Ontology has been developed to harmonise evidence gathering
and assessment across certifications, cloud vendors, and resource types. It includes several
taxonomies, including a taxonomy of cloud resources and a taxonomy of security properties. As
an example, the cloud resource taxonomy includes computing resources which in turn can be
virtual machines, containers or functions.

Figure 31 shows the current status of the cloud resource taxonomy. This taxonomy classifies
cloud resources across all major cloud providers and architectures, like Microsoft Azure, Amazon
Web Services, Google Cloud Platform, and OpenStack. It is ordered by cloud service categories
which is the typical classification the major cloud providers also use. For instance, resources that
can be used to execute code (virtual machines, serverless functions, etc.) are grouped in a
Compute category, while resources that provide networking capabilities (virtual networks and
subnetworks, IP addresses, routing rules, etc.) pertain to a Networking group. The higher-order
classes in this taxonomy are the following:

• Compute

• Identity Management

• Container Orchestration

31 https://protege.stanford.edu/

http://www.medina-project.eu/
https://protege.stanford.edu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 82 of 85

www.medina-project.eu

• Container Registry

• Continuous Integration/Continuous Delivery Service

• Logging

• Networking

• IoT

• Storage

• Account

• Image

The security properties taxonomy classifies security properties that can configured in a cloud
service. We have ordered it by STRIDE categories. STRIDE is an acronym for the security threats
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of
Privilege. The security properties taxonomy includes their respective counterparts, i.e., the
following protection goals:

• Authentication

• Integrity

• Non-repudiation

• Confidentiality

• Availability

• Authorization

The Confidentiality category, for example, includes encryption as a security property, while the
Integrity category includes the immutability property which may be implemented by some
storage resources. A further example is presented in Figure 32 and the complete security
properties taxonomy is shown in Figure 33.

In particular, Figure 32 shows an excerpt from the CRSO: A BlockStorage is a sub-type of Storage
which in turn is a Service. Security properties that are offered on one level of this hierarchy are
inherited by child nodes. For instance, Storage offers AtRestEncryption which is inherited by the
BlockStorage. Furthermore, BlockStorage offers two specific types of AtRestEncryption, i.e.,
CustomerManagedKeyEncryption and CPManagedKeyEncryption

Without harmonizing evidence gathering across cloud vendors with the help of Cloud Resource
Security Ontology and related taxonomies, processing evidence would be much more tedious,
since, e.g., two resources hosted by different cloud providers but with similar security properties
have to be parsed by dedicated pieces of code, and measured by dedicated metrics.

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 83 of 85

www.medina-project.eu

Figure 31. The cloud resource taxonomy which classifies cloud resources according to their functional
purpose, like compute, storage, and networking

http://www.medina-project.eu/

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 84 of 85

www.medina-project.eu

Figure 32. An excerpt from the CRSO

A further advantage of this harmonization is that requirements defined in different certifications
or catalogues can be assigned to the ontological concepts they refer to. This assignment to a
common ontological classification allows to assess evidence collectively and improves the
assessment’s reusability and modifiability. The ontological types can therefore be used in metric
definitions related to the certifications and catalogues. This way, metrics are defined for abstract
resource types, e.g., object storages, and their security properties, e.g., at-rest-encryption,
rather than for cloud-provider-specific properties; e.g., an encryption property that is specifically
defined for an AWS S3 bucket.

The ontology has been created using Protegé and is published in the online Protegé platform
webprotege32. Please note that it has been described and used in the publication Cloud Property
Graph: Connecting Cloud Security Assessments with Static Code Analysis (IEEE CLOUD 2021) as
well, which has been funded by MEDINA [50]. In this publication, the ontology is used as a basis
for a combined security analysis of cloud infrastructures and deployed software. Such an analysis
similarly requires a harmonisation of security concepts, e.g., encryption or logging functionalities
need to be recognised on the infrastructure level as well as on the source code level to allow for
a comprehensive assessment of security requirements.

The ontology has been extended multiple times over the course of the project and may be
further exploited, for instance it can be used to cover the resource and security properties
specified in different certifications and control catalogues.

32 https://webprotege.stanford.edu/#projects/8e5d391e-6436-41c0-b9a9-9226e90a38a9/edit/Classes

http://www.medina-project.eu/
https://webprotege.stanford.edu/#projects/8e5d391e-6436-41c0-b9a9-9226e90a38a9/edit/Classes

D2.5 – Specification of the Cloud Security
Certification Language – v3 Version 1.0 – Final. Date: 30.04.2023

© MEDINA Consortium Contract No. GA 952633 Page 85 of 85

www.medina-project.eu

Figure 33. The security property taxonomy which classifies security properties according to their targeted
STRIDE-based goal

http://www.medina-project.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document Structure
	1.3 Updates from D2.4

	2 NL2CNL Translator
	2.1 Implementation
	2.1.1 Functional description
	2.1.1.1 Fitting into overall MEDINA Architecture
	2.1.1.2 Component card
	2.1.1.3 Requirements

	2.1.2 Technical description
	2.1.2.1 Component architecture
	2.1.2.2 Description of components
	2.1.2.3 Technical specifications

	2.2 Delivery and Usage
	2.2.1 Package information
	2.2.2 Installation instructions
	2.2.3 User Manual
	2.2.4 Licensing information
	2.2.5 Download

	2.3 Advancements within MEDINA
	2.4 Limitations and Future Work

	3 CNL Editor
	3.1 Implementation
	3.1.1 Functional description
	3.1.1.1 Fitting into overall MEDINA Architecture
	3.1.1.2 Component card
	3.1.1.3 Requirements

	3.1.2 Technical description
	3.1.2.1 Component architecture
	3.1.2.2 Description of components
	3.1.2.3 Technical specifications

	3.2 Delivery and Usage
	3.2.1 Package information
	3.2.2 Installation instructions
	3.2.3 User Manual
	3.2.4 Licensing information
	3.2.5 Download

	3.3 Advancements within MEDINA
	3.4 Limitations and Future Work

	4 DSL Mapper
	4.1 Implementation
	4.1.1 Functional description
	4.1.1.1 Fitting into overall MEDINA Architecture
	4.1.1.2 Component card
	4.1.1.3 Requirements

	4.1.2 Technical description
	4.1.2.1 Component architecture
	4.1.2.2 Description of components
	4.1.2.3 Technical specifications

	4.2 Delivery and Usage
	4.2.1 Package information
	4.2.2 Installation instructions
	4.2.3 User Manual
	4.2.4 Licensing information
	4.2.5 Download

	4.3 Advancements within MEDINA
	4.4 Limitations and Future Work

	5 Conclusions
	6 References
	7 APPENDIX A: The Cloud Certification Language, Architecture, Sequence Diagram and Coverage of Requirements
	7.1 Motivation
	7.2 Methodology
	7.3 Architecture
	7.4 Sequence diagram
	7.5 Coverage of requirements

	8 APPENDIX B: Patterns and Controlled Natural Languages for Requirements specifications
	8.1 Patterns
	8.2 Controlled Natural Languages
	8.3 CNLs for expressing policies for secure data management
	8.4 MEDINA CNL

	9 APPENDIX C: From NL to CNL TOMs
	9.1.1 Data and features
	9.1.2 Experimental setup
	9.1.2.1 Features
	9.1.2.2 Current approach
	9.1.2.3 Performance indicators

	9.1.3 First results
	9.1.3.1 Visual analysis
	9.1.3.2 Results

	9.2 CNL translations

	10 APPENDIX D: MEDINA Vocabularies and Ontologies
	10.1 Background: Taxonomies and Ontologies
	10.2 Editor Ontology
	10.3 Cloud Resource Security Ontology

