

Deliverable D3.4

Tools and techniques for collecting evidence of technical
and organisational measures – v1

Editor(s): Anže Žitnik

Responsible Partner: XLAB

Status-Version: Final – v1.1

Date: 30.09.2022

Distribution level (CO, PU): PU

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 2 of 61

www.medina-project.eu

Project Number: 952633

Project Title: MEDINA

Title of Deliverable:
D3.4 – Tools and techniques for collecting evidence of
technical and organisational measures – v1

Due Date of Delivery to the EC 31.10.2021

Workpackage responsible for the
Deliverable:

WP3 – Tools to gather evidences for high-assurance
cybersecurity certification

Editor(s): Anže Žitnik (XLAB)

Contributor(s):
Angelika Schneider, Immanuel Kunz, Florian Wendland
(FhG), Franz Berger (Fabasoft), Aleš Černivec (XLAB)

Reviewer(s): Artsiom Yautsiukhin (CNR), Cristina Martinez (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5, and WP6

Abstract: This deliverable presents tools and techniques for the

evidence collection of technical measures, such as
security assessment of virtual machines, containers and
server less functions or based on the analysis of
information and data flows as well as organisational
measures through the use of machine-learning and NLP.
There will be three iterations of the tool integration, an
initial prototype, reflecting an early stage of integration
in the technical framework (D3.4), the second release will
be based on a refinement of the technical architecture
(D3.5), finally the third iteration will reflect the
implementation of the use cases (D3.6). This deliverable
is the result of Task 3.2, Task 3.3 and Task 3.4.

Keyword List: Evidence gathering, Security assessment, Technical
measures, Organisational measures, Components
implementation, Clouditor, Codyze, Wazuh, Vulnerability
Assessment Tools

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 3 of 61

www.medina-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 18.01.2021 First draft version of the ToC Anže Žitnik (XLAB)

 24.08.2021 ToC updated Anže Žitnik (XLAB)

 20.09.2021 Clouditor description added Angelika Schneider
(FhG)

 22.09.2021 Updates in Section 3 Immanuel Kunz,
Angelika Schneider
(FhG)

 22.09.2021 Updates in Section 3 Aleš Černivec, Anže
Žitnik (XLAB)

 30.09.2021 Updates in Section 3 Angelika Schneider
(FhG)

 05.10.2021 Updates in Section 3 Anže Žitnik (XLAB)

 07.10.2021 Added content in Section 5 Franz Berger (Fabasoft)

 07.10.2021 Added content in Section 4 Florian Wendland
(FhG)

v0.2 08.10.2021 Minor content and comments added Anže Žitnik (XLAB)

 11.10.2021 Updated Section 5 Franz Berger (Fabasoft)

 16.10.2021 Updates in Section 3 Anže Žitnik (XLAB)

v0.3 20.10.2021 Added contents to Sections 1 and 2.
Formatting and other refinements
throughout the document.

Anže Žitnik (XLAB)

v0.4 21.10.2021 Added Executive Summary and
Conclusions.

Anže Žitnik (XLAB)

v0.5 2.11.2021 Addressing comments from the internal
review

Immanuel Kunz (FhG),
Franz Berger
(Fabasoft), Anže Žitnik
(XLAB)

v0.6 4.11.2021 Minor changes after 2nd internal review Anže Žitnik (XLAB),
Florian Wendland,
Immanuel Kunz (FhG)

v1.0 8.11.2021 Ready for submission Leire Orue-Echevarria
(TECNALIA)

v1.01 17.8.2022 Comments from EU review
implemented. Ready for internal review

Anže Žitnik (XLAB),
Immanuel Kunz (FhG)

v1.02 16.9.2022 Addressed all comments received in the
internal QA review

Anže Žitnik (XLAB),
Immanuel Kunz (FhG)

v1.1 30.09.2022 Ready for submission Cristina Martínez
(TECNALIA)

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 4 of 61

www.medina-project.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable .. 8

1.2 Document structure ... 8

2 Evidence Management Tools High-level Architecture .. 9

3 Security Assessment of Cloud Infrastructure .. 11

3.1 Clouditor .. 11

3.1.1 Implementation ... 11

3.1.2 Delivery and usage .. 21

3.1.3 Advancements within MEDINA ... 23

3.1.4 Limitations and future work .. 24

3.2 Wazuh .. 25

3.2.1 Implementation ... 25

3.2.2 Delivery and usage .. 29

3.2.3 Advancements within MEDINA ... 30

3.2.4 Limitations and future work .. 30

3.3 Vulnerability Assessment Tools ... 31

3.3.1 Implementation ... 31

3.3.2 Delivery and usage .. 34

3.3.3 Advancements within MEDINA ... 35

3.3.4 Limitations and future work .. 36

4 Security Assessment of Cloud Applications ... 37

4.1 Cloud Property Graph .. 37

4.1.1 Implementation ... 37

4.1.2 Delivery and usage .. 39

4.1.3 Advancements within MEDINA ... 40

4.1.4 Limitations and future work .. 40

4.2 Codyze .. 40

4.2.1 Implementation ... 40

4.2.2 Technical description ... 43

4.2.3 Delivery and usage .. 44

4.2.4 Advancements within MEDINA ... 47

4.2.5 Limitations and future work .. 47

5 Assessment of Organisational Measures .. 48

5.1 Functional description ... 48

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 5 of 61

www.medina-project.eu

5.1.1 Fitting into overall MEDINA Architecture .. 48

5.2 Technical description ... 48

5.2.1 Prototype architecture .. 48

5.2.2 Description of components ... 50

5.2.3 Technical specifications ... 50

6 Conclusions .. 51

7 References ... 52

Appendix A. MEDINA requirements implementation overview.. 54

Appendix B. Clouditor README file ... 56

 List of tables

TABLE 1. OVERVIEW OF THE PACKAGE STRUCTURE... 21
TABLE 2. OVERVIEW AND DESCRIPTION OF PACKAGE STRUCTURE FOR CODYZE ... 44
TABLE 3. OVERVIEW AND DESCRIPTION OF PACKAGE STRUCTURE FOR CODYZE'S SUBCOMPONENT MARK 45
TABLE 4. OVERVIEW OF REQUIREMENTS SATISFACTION ACCORDING TO CURRENT IMPLEMENTATION OF PRESENTED

TOOLS .. 54
TABLE 5. REQUIREMENTS SATISFIED BY TOOL .. 55

List of figures

FIGURE 1. ARCHITECTURE OF WP3 AND DIRECTLY RELATED COMPONENTS (SOURCE: [2]) 10
FIGURE 2. OVERVIEW OF THE CLOUDITOR ARCHITECTURE: IT IS DIVIDED INTO THREE MAIN COMPONENTS WHICH

CONNECT TO VARIOUS CLOUD APIS TO DISCOVER RESOURCE PROPERTIES, TO A CENTRAL CATALOGUE OF

CONTROLS AND METRICS TO ASSESS THE PROPERTIES AGAINST, AND TO THE EVALUATION COMPONENT OF

WP4 (NOT PRESENTED IN THIS FIGURE). .. 12
FIGURE 3. AN EXAMPLE EXCERPT OF THE ASSESSMENTRESULT MESSAGE. NOTE THAT IT IS A PROTOBUF DEFINITION

WHERE THE ASSIGNED NUMBERS DO NOT REPRESENT ACTUAL VALUES, BUT FIELD NUMBERS 18
FIGURE 4. SAMPLE POLICIES WRITTEN IN REGO: THEY COMPARE A GIVEN ENCRYPTION ALGORITHM TO A GIVEN

TARGET VALUE (SEE NEXT FIGURES), DEPENDING ON A GIVEN OPERATOR. .. 20
FIGURE 5. SAMPLE DATA THAT WILL BE PROVIDED IN THE FUTURE BY THE CENTRAL CATALOGUE OF METRICS AND

TARGET VALUES. .. 20
FIGURE 6. A SAMPLE EXCERPT OF AN EVIDENCE ... 20
FIGURE 7. HIGH-LEVEL WAZUH'S ARCHITECTURE. ... 28
FIGURE 8. HIGH-LEVEL SCHEMA OF WAZUH, VAT, AND RELATED COMPONENTS. 28
FIGURE 9. INTERNAL ARCHITECTURE SCHEMA OF VULNERABILITY ASSESSMENT TOOLS. 33
FIGURE 10. AN EXCERPT FROM THE GRAPH GENERATED BY THE CLOUD PROPERTY GRAPH 38
FIGURE 11. CODYZE ARCHITECTURE .. 43
FIGURE 12. ABSTRACT SCHEMA OF THE ORGANIZATIONAL EVIDENCE GATHERING AND PROCESSING COMPONENT

 ... 49
FIGURE 13. PROTOTYPE ARCHITECTURE ... 49

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 6 of 61

www.medina-project.eu

Terms and abbreviations

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AWS Amazon Web Services

BSI Bundesamt für Sicherheit in der Informationstechnik

CI/CD Continuous Integration / Continuous Deployment

CLI Command Line Interface

CPG Code Property Graph

CSA or EU CSA EU Cybersecurity Act

CSP Cloud Service Provider

CVE Common Vulnerabilities and Exposures

DB Data Base

DSL Domain Specific Language

DLT Distributed Ledger Technologies

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

GDPR General Data Protection Regulation

gRPC Google Remote Procedure Call

HIPAA Health Insurance Portability and Accountability Act

HTTP HyperText Markup Language

IaaS Infrastructure as a Service

IDE Integrated Development Environment

JSON JavaScript Object Notation

K8S Kubernetes

KPI Key Performance Indicator

LSP Language Server Protocol

Nmap Network Mapper

OPA Open Policy Agent

OS Operating System

OWASP Open Web Application Security Project

PaaS Platform as a Service

PCI DSS Payment Card Industry Data Security Standard

REST Representational State Transfer

RPC Remote Procedure Calls

TLS Transport Layer Security

UI User Interface

YAML Yet Another Markup Language

XML Extensible Markup Language

VAT Vulnerability Assessment Tools

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 7 of 61

www.medina-project.eu

Executive Summary

This deliverable presents the initial design, architecture, and implementation state of the
evidence gathering components, being developed in the scope of Task 3.2, Task 3.3, and Task
3.4. It describes the components that produce evidence based on the assessment of cloud
infrastructure (Clouditor, Wazuh, VAT), assessment of cloud applications source code (Cloud
Property Graph and Codyze), and assessment of organisational measures with document
analysis. It gives an overview of how these components relate and interact between themselves
and the rest of the MEDINA framework.

For each component, this document describes its purpose and scope, the (current and planned)
coverage of the MEDINA requirements, the component’s internal architecture and its
subcomponents, the external architecture and relation to other components, the
implementation state at the point of producing this deliverable, and technical details of the
component including the programming languages and frameworks used, information about the
packaging and installation of the component, and licensing. It is also mentioned which EUCS [1]
requirements the respective evidence gathering tool should cover.

Other deliverables, closely related and worth reading for better understanding of the work
presented herein, are D3.1 [2] and D5.1 [3]. D3.1 is the result of Task 3.1 and Task 3.5, which
deal with evidence gathering methodology, the integration of evidence gathering tools into
MEDINA (T3.1) and maintaining the trustworthiness of evidence (T3.5). While this document
contains the technical details about the implementation of evidence gathering tools, deliverable
D3.1 explains the methodology behind the choice and design of evidence gathering components
and some related state of the art. A further analysis of the EUCS requirements’ coverage with
all MEDINA tools is also presented in D3.1 (Section 4.6). The external architecture of components
and the relationship with all other MEDINA tools is further described in the scope of the overall
MEDINA architecture in D5.1, which also lists all MEDINA functional and technical requirements,
elicited in WP5.

The presented components currently have the initial prototypes implemented and ready to be
(to some degree) integrated with other components of the MEDINA framework. Some
requirements of the components are already fully or partially satisfied by the presented
prototypes. An overview of requirement satisfaction is presented in Appendix A. There is
currently no implementation of the component for assessment of organisational measures, but
the methodology for its implementation and the initial architecture are presented.

Based on the work, described in this deliverable, the components will be integrated into the
MEDINA framework in the scope of Work Package 5. This is the first iteration of the deliverable
coming from Tasks 3.2, 3.3, and 3.4. The second version of this report with the updated
components will be delivered with D3.5 [4] in project month 24 (October 2022), and the final
version with D3.6 [5] in month 30 (April 2023).

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 8 of 61

www.medina-project.eu

1 Introduction

This deliverable is the initial result of Task 3.2, Task 3.3, and Task 3.4. It reports on the internal
design and architecture, as well as the current implementation state of the tools and
components, being developed in the scope of these tasks. Closely related to this document is
the deliverable D3.1 [2], which is the result of Task 3.1 and Task 3.5 and contains additional
details about the methodology used for the development of components described herein and
their interactions. D3.1 also provides an analysis of the EUCS requirements’ coverage with the
MEDINA evidence gathering tools. The overall MEDINA architecture providing further details
about the interaction between components is the result of WP5 and is presented in deliverable
D5.1 [3], which also lists the requirements defined for all the technical components of MEDINA.
Both mentioned related deliverables, D5.1 and D3.1, present the basis for the technical work
reported in this document.

1.1 About this deliverable

The goal of this deliverable is to present the design and implementation of MEDINA evidence
gathering components. This is a report on the initial prototype reflecting an early stage of
implementation and integration of these components and is the first of three iterations of
deliverables, resulting from:

• Task 3.2, implementing the tools for assessing the security performance of cloud
workloads and providing evidence about fulfilment of technical measures related to the
operational cloud infrastructure,

• Task 3.3, implementing tools for assessing and collecting evidence about the security
implications of cloud applications used and their data flows through analysis of the
application source code,

• Task 3.4, implementing a component for the assessment of organisational measures
based on the analysis of CSP’s policies and processes documentation.

1.2 Document structure

This document is organised in the following sections:

1. Introduction gives the context for the results, reported in this document, its scope,
structure, and mentions the relationship to other work in the MEDINA project.

2. Evidence Management Tools High-level Architecture gives an overview of the
components, described in this document, and presents the architecture and relations
between them.

3. Security Assessment of Cloud Infrastructure reports on the design and implementation
of Clouditor, Wazuh, and Vulnerability assessment tools (VAT). The goal of these
components is to provide evidence about conformity to technical measures regarding
the cloud infrastructure and its configuration.

4. Security Assessment of Cloud Applications reports on the design and implementation of
CloudPG and Codyze, components for cloud application source code analysis and
provision of related technical evidence.

5. Assessment of Organisational Measures gives a report on the preliminary design and
implementation state of the component for providing evidence of organisational
measures based on the analysis of CSP’s documentation in various forms.

Finally, Section 6 (Conclusions) summarizes and briefly comments on the reported results.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 9 of 61

www.medina-project.eu

2 Evidence Management Tools High-level Architecture

This section gives an overview of the high-level architecture of MEDINA WP3 components, which
result in the Evidence Management Tools. These components gather evidence about CSP’s
fulfilment of technical and organisational measures, perform initial processing of the evidence,
and transmit it to other MEDINA components. Figure 1 shows the architecture and data
workflow among WP3 and other related components. The following sections of this document
present the technical details and the (current) state of implementation of the evidence
gathering components. Each section also lists the MEDINA requirements (elicited in WP5) and
their current coverage by the implemented tools. The current satisfaction of MEDINA
requirements by all the described tools is presented in an overview in Appendix A.

Tools for collecting evidence about technical measures from cloud infrastructure are described
in Section 3. Clouditor (see Section 3.1) is connected to the cloud interface and collects evidence
about the secure configuration of cloud resources. Wazuh (see Section 3.2) is installed in the
CSP’s cloud infrastructure and monitors the security state of the individual (virtual) machines.
Vulnerability Assessment Tools (see Section 3.3) are also installed in the CSP’s infrastructure and
periodically scan the configured servers and networks for vulnerabilities. The operation of
Wazuh and VAT is inspected by the Wazuh and VAT Evidence Collection component which
produces evidence and forwards them to the Security Assessment component, implemented as
part of Clouditor. The Security Assessment component assesses the received evidence based on
the target values, coming from the certification specification and CSP’s configuration. For each
evidence object, Security Assessment outputs a security assessment result with the information
whether the addressed metric measured on the particular evaluation resource (e.g., computing
resource, process, policy) is compliant or not compliant. Technical evidence, obtained from the
analysis of cloud applications’ source code is gathered by Codyze (see Section 4) which includes
a Security Assessment part and thus outputs assessment results directly to the Orchestrator.
Evidence about technical measures can also be collected by CSP-native components, which can
contain their own security assessment or connect to Clouditor’s Security Assessment.

The component for organisational evidence gathering and processing (see Section 5) analyses
various documents and policies of the CSP and based on this produces evidence about the CSP's
compliance to organisational requirements of the certification framework. This evidence is also
communicated to the rest of the MEDINA framework through Clouditor’s Security Assessment.

The Orchestration component (also implemented as part of Clouditor) is a central point for
gathering evidence objects and their assessment results. The Orchestrator stores these data in
the respective databases and makes it available to other components (e.g., Continuous
Certification Evaluation, Compliance Dashboard UI). Evidence and assessment results are also
forwarded to the Evidence trustworthiness management component which uses blockchain
technologies to ensure the authenticity of data when retrieved at a later stage.

The overall architecture of the MEDINA framework is further presented in D5.1 [3].

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 10 of 61

www.medina-project.eu

Figure 1. Architecture of WP3 and directly related components (source: [2])

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 11 of 61

www.medina-project.eu

3 Security Assessment of Cloud Infrastructure

This section describes the technical structure and implementation state of the components
responsible for collecting evidence about the security performance of cloud workloads (cloud
configuration, virtual machines and containers, or software running in them). The following
subsections present the individual respective components, all being developed in the scope of
Task 3.2.

3.1 Clouditor

3.1.1 Implementation

3.1.1.1 Functional description

Clouditor is an open-source continuous cloud assurance tool. Its main goal is to continuously
evaluate if cloud resources are configured in a secure way and if they comply with security
requirements defined by security requirement catalogues, for example ENISA EUCS [1]. As such,
it implements several components of the MEDINA framework, including evidence gathering,
security assessment of evidence, and the orchestrator.

Clouditor currently supports evidence gathering in Amazon Web Services (AWS), Microsoft
Azure, and Kubernetes. The resource configurations in these platforms are checked by the use
of various metrics. Examples of resource configuration checks are the following:

• Secure transport encryption with TLS

• Secure TLS version

• Data at rest encryption in various storage resources

• Resource deployment in allowed regions

Many other checks are implemented for different resource types in different services, like
networking, storage, and computing. The tool is therefore platform-independent and does not
require agents on the target platform. Instead, resource properties are queried via API calls that
are provided by the respective platform.

To implement the components in a MEDINA-compliant way, Clouditor is subdivided into
microservices which conform to the components defined in MEDINA:

• the discovery service discovers resources and collects their properties

• the assessment service assesses the resource properties against defined metrics

• the orchestrator service is a central component for managing connections and
interactions between different components

An overview of the current Clouditor architecture is shown in Figure 2.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 12 of 61

www.medina-project.eu

Figure 2. Overview of the Clouditor architecture: It is divided into three main components which connect
to various cloud APIs to discover resource properties, to a central catalogue of controls and metrics to
assess the properties against, and to the evaluation component of WP4 (not presented in this figure).

The relevant requirements from Deliverable D5.1 are listed below and a brief description of how
they are implemented is given. The requirements are listed per Clouditor component.

Requirements for the discovery component

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e., in
(high)-frequency intervals.

Implementation
state

Fully implemented

Currently, the interval in the discovery component is set to 5 minutes and can only be changed
in the source code. In the future, this will become customizable configuration through a
configuration file or UI.

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description The developed tools must provide collected evidence to a security
assessment tool via its offered APIs.

Implementation
state

Fully implemented

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 13 of 61

www.medina-project.eu

The Clouditor discovery component sends the evidence to the Clouditor security assessment
component via its offered APIs.

Requirement id TEGT.S. 01

Short title Collect evidence from cloud workloads

Description The developed tool must be able to collect evidence of cloud workloads,
e.g., virtual machines, containers, and serverless functions.

Implementation
state

Partly implemented

The Clouditor discovery component collects the evidence of cloud workloads from different CSPs
(Azure, AWS, K8S). As illustrated in Figure 2, resources are currently discovered in compute,
storage, and network services in Azure, compute and storage services in AWS, and compute and
network services in Kubernetes. These will be extended in future iterations.

Requirement id EAT.02

Short title Continuous evidence assessment

Description All evidence collection tools must forward evidence and measurement
results (according to the data format defined in MEDINA) to the respective
assessment components.

Implementation
state

Fully implemented

The Clouditor discovery component sends the evidence to the Clouditor security assessment by
using the provided APIs. Measurement results are substituted by assessment results which are
generated in the security assessment component.

Requirements for the security assessment component

Requirement id EAT.01

Short title Evidence assessment target

Description The target values for the evidence assessment must be retrieved from a
central repository of target values (WP2).

Implementation
state

Not implemented

The initial version of the security assessment component does not retrieve the target values
from a central repository. Future releases will implement a connection to the central repository
of target values.

Requirement id EAT.03

Short title Evidence assessment results

Description The assessment results of evidence assessments must be submitted to the
evidence orchestrator via the API it provides.

Implementation
state

Fully implemented

The security assessment component submits the assessment result by using the provided
orchestrator APIs.

Requirements for the orchestrator component

Requirement id ECO.01

Short title Provision of Interfaces

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 14 of 61

www.medina-project.eu

Requirement id ECO.01

Description The evidence orchestrator must provide standard interfaces for the
evidence collection and assessment tools (T3.2-T3.4) to securely store
their results.

Implementation
state

Implemented

Interfaces are provided by RPC (Remote Procedure Call) APIs with gRPC1. Currently, the
assessment tools send assessment results accompanied by the evidence they are based on. In a
future release, we foresee a separate component for storing the evidence. This modification is
intended to prevent the orchestrator, which may reside on an external device from the user’s
perspective, from obtaining potential sensitive evidence.

Requirement id ECO.02

Short title Conformity to selected assurance level

Description The evidence orchestrator must ensure that the evidence collection (T3.2-
T3.4) is performed according to the selected assurance level, i.e., it must
trigger the evidence collection of the respective tools.

Implementation
state

Not implemented

Currently, the discovery component (evidence collection) is triggered via a CLI (Command Line
Interface). Then the collected evidence are sent to the security assessment and the generated
assessment results are then sent to the orchestrator which stores them in a database. In the
future, the selected assurance level will be addressed via the selected metrics that should be
assessed.

Requirement id ECO.03

Short title Secure Transmission to evidence storage

Description The evidence orchestrator must securely transmit evidence to the
evidence storage.

Implementation
state

Partly implemented

The orchestrator currently stores the evidence in-memory, i.e., no further security mechanism
is needed. As described above, a new component, the evidence store, is foreseen. It then has
the responsibility to securely transfer the evidence to the evidence storage, which is currently
planned to be located at the orchestrator side as well.

Requirement id ETM.01

Short title Trustworthiness of evidence

Description The evidence orchestrator must integrate reasonable safeguards for
guaranteeing the trustworthiness of collected evidence.

Implementation
state

Not implemented

The initial version of the Orchestrator component does not implement a functionality to store
checksums of evidence. The implementation is planned for the next iteration.

Requirement id ETM.02

Short title Transmission of evidence checksums

1 https://grpc.io/

http://www.medina-project.eu/
https://grpc.io/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 15 of 61

www.medina-project.eu

Description The evidence orchestrator should integrate a Ledger client that stores
checksums of evidence in a DLT.

Implementation
state

Not implemented

The initial version of the Orchestrator component does not implement a functionality to store
checksums of evidence. The implementation is planned for the next iteration.

3.1.1.1.1 Fitting into overall MEDINA Architecture

Figure 1 in Section 2 shows the integration of the Clouditor within the overall MEDINA
architecture. The three microservices representing components are mapped to the MEDINA
framework are as follows:

• the discovery service of Clouditor represents the evidence collection component in the
MEDINA framework,

• the assessment service represents the security assessment component in the MEDINA
framework and

• the orchestrator service represents the orchestrator component in the MEDINA
framework.

The Clouditor (security) assessment component processes the evidence of the Clouditor
evidence collection tool as well as evidence of other evidence collection tools, e.g. Wazuh. The
orchestrator component processes the results of the Clouditor assessment component as well
as results of other security assessment tools, e.g., Codyze.

3.1.1.2 Technical description

In the following the technical description of the Clouditor’s components within the MEDINA
framework is provided. First, the architectural design is presented consisting of the architectural
view and the connection between the respective components. Then information about the
single components is presented and, finally, an overview of the technical description for the
implementation of the prototype is given.

3.1.1.2.1 Prototype architecture

Clouditor employs a microservice architecture allowing individual components to scale and to
be replaced, or allowing to add new components, e.g., for adding an evidence collection tool for
a new CSP. The discovery, security assessment and orchestrator are such modular components
that represent microservices. Like all parts in Clouditor, these services are written in Go and
communicate among themselves via the gRPC protocol. The three microservices representing
components in the MEDINA framework are as follows:

• the discovery service of the Clouditor represents the evidence collection component in
the MEDINA framework,

• the assessment service represents the security assessment component in the MEDINA
framework and

• the orchestrator service represents the orchestrator component in the MEDINA
framework.

An overview of the components and the data flows in the Clouditor prototype is shown in Figure
2.

Since the architecture is defined by its components and connections between them, interface
snippets of the individual components are provided below. For the detailed specification see the

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 16 of 61

www.medina-project.eu

./proto folder within the Clouditor repository2. The specification is defined in the Protocol Buffer
Version 3 Language Specification. In addition, see the ./openapi folder containing for each
component the corresponding auto generated .yaml files which follow the OpenAPI description
for REST APIs.

Discovery interface

Function Name Parameters Return Type Description

Start - successful (bool) Triggers the start of the
discovering process.
Returns true if the
component started
without errors.

Query filtered_type
(string)

results (list of
evidence)

Returns the latest set of
evidence discovered.

Security Assessment interface

Function Name Parameters Return Type Description

TriggerAssessment options (string) - Triggers the security
assessment.

ListAssessmentResults - results (list of
assessment
results)

Lists the latest set of
assessment results.

AssessEvidence/
AssessEvidences

evidence
(Evidence) /
evidences
(stream of
Evidence)

successful (bool)/ - Assesses the evidence/
stream of evidence
provided by the
evidences collection
tool.

Orchestrator interface

Function Name Parameters Return Type Description

RegisterAssessmentTool tools
(AssessmentTool
)

tool
(AssessmentTool)

Registers the
assessment tool

GetAssessmentTool tool_id (string) tool
(AssessmentTool)

Returns the assessment
tool with the given tool
id.

2 https://github.com/clouditor/clouditor

http://www.medina-project.eu/
https://github.com/clouditor/clouditor

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 17 of 61

www.medina-project.eu

Function Name Parameters Return Type Description

UpdateAssessmentTool tool_id (string),
tool
(AssessmentTool
)

tool
(AssessmentTool)

Updates the assessment
tool given by the tool id.

DeregisterAssessmentT
ool

tool_id (string) - Deregisters the
assessment tool with
the given tool id.

StoreAssessmentResult/
StoreAssessmentResults

result
(AssessmentRes
ult) / results
(stream of
AssessmentResu
lt)

- Stores the assessment
result/ stream of
assessment results
provided by the
assessment tool.

StoreEvidenceResult/
StoreEvidenceResults

result
(EvidenceResult)
/ results (stream
of
EvidenceResult)

- Stores the evidence
provided by an
assessment tool.

GetMetric metric_id
(string)

metric (Metric) Returns the metric with
the given metric id.

ListMetrics - metrics (Metric) Returns a list of all
metrics provided by the
catalogue of metrics and
security schemes.

As an example, an excerpt of the AssessmentResult message (type) is shown in Figure 3. It
consists of a unique identifier (id), the corresponding metric id (metric_id), target value
(target_value) compliance status (result) and the corresponding evidence.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 18 of 61

www.medina-project.eu

Figure 3. An example excerpt of the AssessmentResult message. Note that it is a Protobuf definition
where the assigned numbers do not represent actual values, but field numbers

Note that this is the current state, and it is planned to de-couple the evidence storage from the
orchestrator and to let the discovery forwarding the evidence directly to the new introduced
component evidence store which is storing and returning evidence to/from the evidence
storage. Furthermore, we plan to provide a monolithic prototype version of the Clouditor for a
future release that bundles all microservices.

3.1.1.2.2 Description of components

This section presents the tools provided by Clouditor, describing how they have been and will
be further developed to meet the MEDINA requirements.

Evidence Collection

The functionality of the discovery can be divided into 3 parts:

• Fetching relevant properties of cloud resources,

• Creation of evidence objects, and

• Forwarding this evidence to the security assessment component.

Within the discovery service, the discovery package is located at the top-level. Its purpose is to
communicate with other services/components (in this case the Assessment component). In a
first step, this service establishes a connection to the Assessment component, then it starts the
various discoverers (e.g., for AWS S3), and forwards the collected evidence – in a continuous
manner. The transmission is done via a gRPC channel.

For each cloud vendor there is a separate sub package, e.g., for AWS and Azure. In such a
package there is one file (e.g. aws.go) containing the cloud vendor-specific discoverer which
loads and initializes configurations and credentials that all underlying services share. For each
discovered cloud service, there is a corresponding Go file that fetches the desired properties of
that service via API calls (programmatic access). According to the ontology defined in WP2 [6],

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 19 of 61

www.medina-project.eu

these properties are then converted into a format that is independent from the used cloud
vendor. The properties that can be fetched are dependent on the range of API calls the
respective cloud vendor provides.

For Microsoft Azure, the currently discoverable services are compute, blob storage and network.
In the case of Amazon Web Services, compute as well as blob storage can be discovered. Through
the Kubernetes API compute and network resources are currently discoverable.

Security Assessment

The Clouditor's assessment tool (security assessment in the MEDINA terminology) is responsible
for evaluating incoming evidence and sending the produced assessment results to the
orchestrator.

Evidence is received from components which are collecting properties of a cloud service, e.g.,
the evidence collection tools from Clouditor or Wazuh. As mentioned above, Clouditor now
follows a microservice architecture. As a result, also the assessment is a service that other tools
can use to send their evidence for evaluation. Such evidence collection tools only need to
implement the given public API in gRPC to send evidence as Protocol Buffer messages. Using
REST over HTTP is another option for evidence collecting tools that do not use gRPC. However,
the gRPC approach allows to send evidence in a stream which can significantly increase the
throughput. For all defined remote procedure calls, see the API definition in Section 3.1.1.2.1.

In the previous version of Clouditor, a dedicated policy rule language was defined for assessing
evidence. Since no other tools outside the Clouditor tool suite needed to be connected to it, this
approach was sufficient. In MEDINA, however, various microservices are used to decouple the
individual applications so that new or existing components (e.g., Wazuh) can be smoothly
integrated with them. To simplify the definition of policies, a more commonly used policy
language, Rego from Open Policy Agent (OPA)3, was introduced instead. OPA introduced Rego
as a uniform declarative policy language. A policy written in Rego is asserting an input (e.g., an
evidence) against user-specific constraints (target values and operators). This is also the place
where the cloud resource ontology (see D2.3 [6]) comes into play: Since evidence provided by
the evidence collecting tools adhere to it, the Rego policies only need to specify rules based on
properties following the format of the ontology. E.g., see Figure 4 for a policy which checks if
the algorithm used for encrypting data at rest of the input is higher than the given target value.
Figure 5 shows the user-specific constraint that the algorithm has to be at least 256. The input
is illustrated in Figure 6: The algorithm version in the input is 256, therefore the policy engine
will output the compliance state of true. Both, input and the policy written in Rego, are aligned
with the cloud resource ontology. These policies can be written more easily by non-experts
without having to know how evidence collection, assessment, orchestration, etc. work. The
person defining the policy only needs to know the ontology to write policies based on it.

In the MEDINA framework, these policies will be stored as metrics in the catalogue of controls
and security schemes component [7] and fetched by the orchestrator. When the orchestrator
triggers the assessment to start, it also sends the respective metrics along. The assessment then
stores these metrics in cache for fast processing of the evidence. Since WP3 is now in the phase
of implementing and testing the metrics as well as the security assessment, the metrics deduced
so far are currently stored directly with the assessment. In a next step, these metrics are first
outsourced to the orchestrator and after that iteration finally stored in the metrics catalogue.

3 https://www.openpolicyagent.org/docs/latest/policy-language/

http://www.medina-project.eu/
https://www.openpolicyagent.org/docs/latest/policy-language/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 20 of 61

www.medina-project.eu

Figure 4. Sample policies written in Rego: They compare a given encryption algorithm to a given target
value (see next figures), depending on a given operator.

Figure 5. Sample data that will be provided in the future by the central catalogue of metrics and target
values.

Figure 6. A sample excerpt of an evidence

The outcome of these assessments, the assessment results, are then sent to the orchestrator
and will eventually reach the continuous certification evaluation component (see D4.1 [8]).

Orchestrator

The orchestrator is a central component in the MEDINA framework and acts as a central
management component for launching WP3 components and orchestration of dataflows
between components. As such, it also manages the interaction between work packages as
shown in Figure 1. The orchestrator offers APIs to store and retrieve data and manage
assessment tools. The APIs are defined in gRPC such that the components only need to
implement the given API to send the data as Protocol Buffer messages. For some APIs it is also
possible to send the data in a stream which can increase the throughput. An overview of the
provided interfaces can be found in 3.1.1.2.1. Furthermore, data is forwarded to the respective
components, e.g., WP2 or WP4. Its interactions with other components and its functionalities
are summarized in the following:

• Security assessment: The orchestrator exposes two APIs for the security assessment
tools, e.g., Clouditor security assessment, CSP-native or Codyze security assessment
tool. One API is for the assessment results and another one to store evidence directly.

• Catalogue of metrics and security schemes: The orchestrator also acts as the central
interface to the catalogue of metrics and security schemes which is developed in the

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 21 of 61

www.medina-project.eu

scope of WP2 (see deliverable D2.1 [7]). As such, it is responsible for providing relevant
metrics to the assessment component. Note that this integration has not been
developed yet.

• Distributed Ledger Technology (DLT): The orchestrator stores the checksums of the
evidence and assessment results in the DLT. The implementation of the trustworthiness
management system component is reported in D3.1 [2]. Currently, it is not yet decided
which component calculates the checksums and the forwarding is not yet implemented.

• Continuous certification evaluation: The orchestrator forwards the assessment results
to the continuous certification evaluation component which is developed in WP4 (see
deliverable D4.1 [8]). Currently, the connection to the component is not yet
implemented.

• Data storages: The orchestrator stores the evidence as well as the assessment results
into the associated storages. Currently, it is not yet decided which kind of database
technology shall be used, since the selection also depends on the evaluation within Task
4.2, which discusses possible technologies for storing evidence securely. Until this is
decided, the prototype stores data in memory.

3.1.1.2.3 Technical specifications

The prototype is written in Go (version 1.16). A selection of key libraries is shown in the following
and a full list of used libraries can be found in the Github repository2.

• github.com/Azure/azure-sdk-for-go

• github.com/aws/aws-sdk-go-v2

• k8s.io/client-go

• google.golang.org/grpc

• google.golang.org/protobuf

• gorm.io/driver/postgres

• gorm.io/driver/sqlite

Either an in-memory DB or a postgres DB can be used.

3.1.2 Delivery and usage

The following sections give a short overview of the delivery and usage of the prototype. Further
technical details can be found in the Clouditor Github Repository2.

3.1.2.1 Package information

The structure of the important folders and a brief description is shown in Table 1.

Table 1. Overview of the package structure

Folder Description

api/ This folder contains code needed for the communication between
the microservices. It mainly consists of auto-generated Protobuf and
gRPC files.

cli/ This folder contains the Clouditor CLI based source code files.

cmd/ This folder contains the main files.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 22 of 61

www.medina-project.eu

openapi/ This folder contains the auto-generated OpenAPI files.

persistence/ This folder contains the DB specific files.

policies/ This folder contains the Rego policy files per metric.

proto/ This folder contains the Protobuf files.

rest/ This folder contains the REST gateway implementation.

service/ This folder contains the source code for the microservices separated
in individual folders for each service.

voc/ This folder contains the vocabulary files based on the ontology
defined in WP2.

3.1.2.2 Installation instructions

The full up-to-date installation instructions can be found in the README at the Clouditor Github
repository2. A copy of the recent version is given in Appendix B.

To build the Clouditor the Gradle build tool4 is used. To enable an auto-discovery for AWS and/or
Azure the credentials must be stored in the home folder.

Since Protobuf is used, the corresponding packages must also be installed (the installation
command can be found in the README):

• google.golang.org/protobuf/cmd/protoc-gen-go

• google.golang.org/grpc/cmd/protoc-gen-go-grpc

• github.com/grpc-ecosystem/grpc-gateway/v2/protoc-gen-grpc-gateway

• github.com/googleapis/gnostic/apps/protoc-gen-openapi

The Clouditor features its own CLI for which ~/go/bin must be within the $PATH environment
variable.

To build the prototype make sure that $HOME/go/bin is within your $PATH and run the
following 2 commands:

• go generate ./...

• go build ./…

The engine could be started by using an in-memory DB as well as a Postgres DB. To start the
engine with an in-memory DB, use ./engine –db-in-memory if starting with a separate Postgres
DB use ./engine. Start the Postgres DB.

For development, an overview for the installation instructions is given in the following. The
detailed instructions can be found in the Readme file at the Github respository2.

• Build Clouditor with Gradle or alternatively via a docker image

• Build Go components (Protobuf tools needed for compiling the Protobuf files)

• Start the Clouditor with in-memory DB or a Postgres DB

4 https://github.com/clouditor/clouditor/blob/main/README.md

http://www.medina-project.eu/
https://github.com/clouditor/clouditor/blob/main/README.md

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 23 of 61

www.medina-project.eu

• Install and use the CLI for running the Clouditor at runtime

3.1.2.3 User Manual

The Clouditor can be used by its CLI. The help is shown by running cl –help:

Each command can have additional subcommands which are explained by the corresponding
help, e.g., cl assessment –help.

Note, that before using the Clouditor CLI it is necessary to login to Clouditor: cl login
<host:grpcPort>.

3.1.2.4 Licensing information

Clouditor is licensed under the Apache License 2.0.

3.1.2.5 Download

The Clouditor source code can be found in the Clouditor Github respository2.

Source code of the individual Clouditor services can also be accessed in the MEDINA GitLab here:

• Evidence Collection: https://git.code.tecnalia.com/medina/public/cloud-evidence-
collector

• Security Assessment: https://git.code.tecnalia.com/medina/public/security-
assessment

• Orchestrator: https://git.code.tecnalia.com/medina/public/orchestrator

3.1.3 Advancements within MEDINA

Several modifications and features have been implemented in Clouditor within the first year of
the MEDINA project:

user@user:~$ cl --help
The Clouditor CLI

Usage:
 cl [command]

Available Commands:
 assessment Assessment result commands
 completion Generate completion script
 discovery Discovery commands
 help Help about any command
 login Log in to Clouditor
 metric Metric commands
 tool Tool commands

Flags:
 -h, --help help for cl
 -s, --session-directory string the directory where the session will be saved and
loaded from (default "/home/user/.clouditor/")

Use "cl [command] --help" for more information about a command.

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/cloud-evidence-collector
https://git.code.tecnalia.com/medina/public/cloud-evidence-collector
https://git.code.tecnalia.com/medina/public/security-assessment
https://git.code.tecnalia.com/medina/public/security-assessment
https://git.code.tecnalia.com/medina/public/orchestrator

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 24 of 61

www.medina-project.eu

• The project has completely been reimplemented in the Go programming language.

• The previous Clouditor architecture has been redesigned to create several
microservices, e.g., separate microservices for evidence gathering, assessment, and
orchestration. This modularization allows for better scalability, as well as allows to
integrate alternative services, for instance other evidence gathering tools.

• The evidence gathering service has been extended with an ontology mapping, i.e., the
resource properties that are discovered are enhanced with a mapping to a cloud
resource ontology. For example, a virtual machine’s properties are extended with a
mapping to the ontology concepts computing and virtual machine. This approach allows
to define metrics independently from the cloud provider and certification catalogue. For
information, please refer to the respective description in deliverable D2.3 [6] (cloud
resource ontology).

• As described above, the assessment service has been reimplemented as a separate
microservice as well to conform to the MEDINA guidelines and data model. Also, its
usage of the OPA5 policy engine has been added, which is used to evaluate incoming
evidence against metrics and their target values. These are defined using the OPA policy
language Rego.

• The orchestrator service is a completely new component in Clouditor, i.e., its APIs, data
model, and integration with other components has been designed and implemented
from scratch within MEDINA.

3.1.4 Limitations and future work

Discovery (Evidence Collection)

The discovery service, which currently collects evidence from Microsoft Azure systems, is limited
by the access rights that are given in the Azure Active Directory. Therefore, it will only measure
the resources that are visible to its given user. Furthermore, cloud provider APIs may change, so
the component needs to be updated accordingly. If, for instance, relevant security properties
like access control properties change, their inclusion in the MEDINA evidence needs to be
aligned in the discovery service. Also, the evidence collection is limited by the information that
the cloud provider APIs implement: If certain encryption property, for example, would not be
implemented by an API, the evidence collection for that property would not be possible. Since
discovery adds ontological terms to the evidence, also limitations of the ontology need to be
taken into account. First, the ontology terms need to be added correctly to the evidence or the
Security Assessment will apply the wrong metrics to it. Second, the ontology needs to be
maintained and its changes need to be implemented accordingly in the evidence collection.

Furthermore, the collection is currently limited to a small set of Azure and AWS services, which
we will expand in future iterations.

Security Assessment

The Security Assessment component uses the Open Policy Agent (OPA) and Rego to perform the
assessment of evidence against expected values (defined in the MEDINA metrics). OPA is, at the
time of writing, in version 0.42.2; future breaking changes therefore may occur which have to
be incorporated in this component. It is furthermore dependent on the availability of the
Orchestrator, since it must forward assessment results to the Orchestrator and receive metric
implementations (Rego code) from it.

5 https://www.openpolicyagent.org/

http://www.medina-project.eu/
https://www.openpolicyagent.org/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 25 of 61

www.medina-project.eu

The Security Assessment also currently only applies a small set of metrics which we will expand
according to the KPIs.

Orchestrator

The Orchestrator is the central management component in MEDINA. While it presents an
efficient component for forwarding data, managing database accesses, etc., it is also a single
point of failure for the framework since without it, no evidence or assessment results can be
processed or stored.

The main limitation regarding the Orchestrator is that it currently can only manage one cloud
service. In the next iteration, we will therefore add support for multiple cloud services, as well
as for multiple certification frameworks and assurance levels. Also, the integration of the
Orchestrator with some of the other MEDINA components still needs to be finished in a future
iteration.

3.2 Wazuh

3.2.1 Implementation

3.2.1.1 Functional description

Wazuh6 is an open-source security monitoring tool for threat detection, integrity monitoring,
incident response and basic compliance monitoring. It can be deployed on-premises or in hybrid
and cloud environments. Wazuh agents can run on many different platforms, such as Windows,
Linux, Mac OS X, AIX, Solaris, and HP-UX. Unlike Clouditor, Wazuh is not primarily connected to
the cloud interfaces, but its agents are installed directly on the (virtual) machines of the
monitored infrastructure.

Wazuh includes several modules that each support their respective detection capability. For
each of the modules, specific rules are defined that include internal metrics and thresholds to
trigger events or alerts. When an alert is produced based on some detected event(s), additional
actions can be triggered to notify a user or another component about it. With this capability,
certain events (e.g., malware detected, Wazuh agent shutdown…), can trigger changes of values
for specific MEDINA metrics and event-driven generation of evidence.

Wazuh’s detection modules include:

• Occurrence of changes within system files (file integrity checks): Wazuh agent monitors
the file system to detect changes in system files’ content or attributes. Changes of
system settings or other critical files can signify that the monitored machine is
compromised.

• Detection of malware and rootkits installed on the infrastructure: Wazuh can scan the
monitored system for various types of malware. It combines a signature-based approach
for detecting suspicious programs with anomaly detection capabilities, detecting
intrusions by monitoring system call responses. Signature-based malware detection is
supported through integration with the open-source antivirus engine ClamAV [9] or
VirusTotal [10], an online API for analysis of suspicious files.

• Number and severity of infrastructure vulnerabilities detected (e.g., CVE level of
dependencies installed on the OS being monitored): Wazuh identifies the software
installed on the monitored system and compares the versions with its online inventory
in order to find software known to contain vulnerabilities.

6 https://wazuh.com/

http://www.medina-project.eu/
https://wazuh.com/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 26 of 61

www.medina-project.eu

• Monitoring cloud logs via IaaS or PaaS API: Wazuh includes modules for integration with
some cloud providers’ APIs (Amazon AWS, Azure, Google Cloud) to analyse security
configuration of the cloud and notify about detected weaknesses.

• Compliance level with standards such as PCI DSS, HIPAA, GDPR: Wazuh integrates
verification for some of the basic requirements of the mentioned standards. The Wazuh
UI provides a dashboard with an overview of these requirements’ fulfilment.

The main innovation of the usage of Wazuh and the extensions we are planning to provide in
order to satisfy listed requirements mainly lies in the flexibility of the proposed architecture.
MEDINA can offer Wazuh and its extensions to the CSPs as a tool for incident detection and
continuous monitoring of security indicators. Using Wazuh, compliance with several security
controls can be automatically verified and the produced evidence integrated with MEDINA. The
controls that can be satisfied with Wazuh relate to malware protection, logging, threat analytics,
and automatic monitoring (alerting). The initial analysis of EUCS requirements covered by
Wazuh is further described in D3.1 [2]. Beside the provided functionalities, Wazuh also offers a
platform for implementing custom detectors on the monitored machines and easily integrating
them with MEDINA.

An example of collecting evidence with Wazuh is provided here for verifying the fulfilment of
(draft) EUCS requirement OPS-05.3. The requirement reads: “The CSP shall automatically
monitor the systems covered by the malware protection and the configuration of the
corresponding mechanisms to guarantee fulfilment of OPS-05.1”. OPS-05.1 states: “The CSP shall
deploy malware protection, if technically feasible, on all systems that support delivery of the
cloud service in the production environment, according to policies and procedures”. According to
the descriptions of these requirements, the conditions for regarding a machine compliant with
OPS-05.3 as verified by Wazuh, are:

• Enabled file integrity monitoring module

• Enabled malware and rootkit detection module

• Enabled integration with ClamAV or VirusTotal for additional malware protection

• At least one alerting service enabled in Wazuh to automatically notify the responsible
persons in case of detected alerts

The first three conditions ensure that malware protection is enabled, while the last condition
verifies that automatic monitoring is configured as well. To verify all conditions, the Evidence
Collector component makes several API queries to Wazuh for each of the (virtual) machines in
scope. An evidence object is produced for each of the monitored machines with a measurement
value according to the obtained result – positive if (and only if) all the mentioned conditions are
satisfied.

Related requirements

Below is the collection of requirements (from D5.1 [3]) related to the component and a
description of how and to what extent these requirements are implemented at this point of
development.

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e. in
(high)-frequency intervals.

Implementation
state

Partially implemented

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 27 of 61

www.medina-project.eu

Integration with the Evidence Collector component is implemented for a limited number of
evidence types (metrics). Continuous collection is implemented, but the collection intervals are
currently configurable only manually.

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description The developed tools must provide collected evidence to a security
assessment tool via its offered APIs.

Implementation
state

Partially implemented

Interface between the Wazuh & VAT Evidence Collector and Clouditor (providing the security
assessment capabilities) is currently in a prototype state.

Requirement id TEGT.S.08

Short title Provision of malware and vulnerability detection tools

Description Tools for malware detection, intrusion detection, and vulnerability
scanning must be provided to assist CSPs with satisfying related
requirements of security standards or to verify the compliance with such
requirements.

Implementation
state

Fully implemented

Wazuh offers capability of malware scanning and vulnerability detection of the infrastructure
and applications (in some cases). Wazuh agents pull software inventory data and send this
information to the Wazuh Manager, where it is correlated with continuously updated CVE
databases, in order to identify well-known vulnerable software. Automated vulnerability
assessment helps the user identify the weak spots of their critical assets. Integration with the
Evidence Collector allows MEDINA to verify the malware detection state and gather evidence
about it, helping to verify the compliance with certain controls of standards.

3.2.1.1.1 Fitting into overall MEDINA Architecture

Wazuh is integrated with the rest of the MEDINA framework through the Evidence Collector
component that gathers evidence from both Wazuh and VAT. Wazuh is installed inside the CSP’s
infrastructure and gathers information about possible security threats of the system. The state
of Wazuh’s operation and (if required) the security events, gathered by Wazuh, are queried by
the Evidence Collector, which forwards such information to Clouditor (security assessment) in
the form of evidence. Positioning of Wazuh in the architecture among the WP3-related
components is shown in Figure 1.

3.2.1.2 Technical description

3.2.1.2.1 Prototype architecture

Wazuh is composed of a Wazuh server and multiple Wazuh agents. The agents are deployed on
the individual monitored machines and communicate information about the detected
anomalies to the server. In a cloud environment, the agents are deployed on the virtual
machines inside the monitored cloud infrastructure, independent of the cloud provider. Wazuh
server should be installed on a dedicated (virtual) machine, ideally in the same network as the
agents.

The server includes the Wazuh manager component along with the ELK (ElasticSearch, Logstash,
Kibana) stack for gathering, storing, and display of data. Custom integrations are possible to send
alerts from Wazuh to any external component.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 28 of 61

www.medina-project.eu

High level architecture of Wazuh is depicted in Figure 7 below. Looking at it from high-level, it
consists of Wazuh Agents and Wazuh Server. The Wazuh agent (installed on endpoints) with
different interfaces (modules) is able to detect different metrics on the host. The Wazuh Server
consists of worker nodes (Wazuh cluster), a Kibana Server that provides a web user interface for
overview of all logs and relevant events, and an ElasticSearch database server that stores the
logs and detected events, coming from the agents.

Figure 7. High-level Wazuh's architecture.

3.2.1.2.2 Description of components

Agents communicate with the server using Rsyslog. Wazuh is plugged into MEDINA with the
Wazuh & VAT Evidence collector component, which is responsible for extracting the data,
relevant for MEDINA metrics, and transforming it into evidence, compatible with the security
assessment component. It also includes two-way communication with the security assessment
component (Clouditor). This is depicted below in Figure 8.

Figure 8. HIgh-level schema of Wazuh, VAT, and related components.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 29 of 61

www.medina-project.eu

3.2.1.2.3 Technical specifications

The prototype’s implementation mainly consists of:

• MEDINA-specific deployment and configuration scripts for Wazuh (Ansible, YAML
definitions, configuration).

• Wazuh & VAT Evidence Collector, a component that integrates Wazuh with the MEDINA
security assessment. This component is developed in Python and packaged as a Docker
container.

• Specific MEDINA configurations of Wazuh rules (XML, JSON).

3.2.2 Delivery and usage

3.2.2.1 Package information

The package is delivered in a repository, containing all the needed deployment and
configuration scripts for installing Wazuh and the Evidence Collector. For demonstrative
purposes and replicating a deployment on CSP’s infrastructure, the process creates four virtual
machines: a Wazuh server, two Wazuh agents, and a machine with the Evidence Collector.

The tree structure is as follows:

.
├── Makefile
├── README.md
├── ansible
│ ├── clamav
│ │ └── tasks
│ │ └── install-clamav.yml
│ ├── custom-integration
│ │ ├── files
│ │ │ ├── custom-integration
│ │ │ └── custom-integration.py
│ │ └── tasks
│ │ └── main.yml
│ ├── docker
│ │ ├── credentials
│ │ │ ├── credentials.yml
│ │ │ └── vars.yml
│ │ └── tasks
│ │ └── main.yml
│ ├── globals
│ │ ├── globals.yml
│ │ └── vars.yml
│ ├── provision-agents.yml
│ ├── provision-evidence-collector.yml
│ ├── provision-managers.yml
│ └── provision.yml
└── environments
 └── vagrant-full-setup
 ├── Vagrantfile
 ├── inventory.txt
 └── vagrant-full-setup.mk

The ‘ansible’ directory contains all available ansible roles. The ‘environments’ directory contains
available environments towards which the ansible playbook can be executed.

3.2.2.2 Installation instructions

Requirements:

• Vagrant 2.2.14

• Ansible 2.9.16

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 30 of 61

www.medina-project.eu

To setup the demo, simply provision the Wazuh server, Wazuh agents, and Evidence Collector
machines:

$ make create provision

3.2.2.3 User Manual

To access the Wazuh UI, navigate your browser to: https://192.168.33.10:56017 and login with
the default credentials (admin:changeme). Navigate to “Wazuh” section on the left hand-side.

You should see 2 agents registered and running with Wazuh. Evidence Collector is configured to
collect evidence about the malware detection running on the agent machines every minute. This
can be inspected by examining the logs of the Evidence Collector virtual machine.

3.2.2.4 Licensing information

The core Wazuh [11] component is open source, licensed with a modified GPLv2 license8.

The deployment scripts for the MEDINA proof-of-concept and the Wazuh & VAT Evidence
Collector, developed by XLAB, are licenced with the open-source Apache 2.0 licence. All source
code repositories contain a LICENSE file in their root directories.

3.2.2.5 Download

The code is currently available on MEDINA’s git repository, on GitLab hosted by TECNALIA:

• https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector

• https://git.code.tecnalia.com/medina/public/wazuh-deploy

3.2.3 Advancements within MEDINA

Wazuh is a software solution developed independently of MEDINA by its respective owner,
Wazuh Inc. In the scope of MEDINA, an analysis of the EUCS requirements was conducted with
regards to Wazuh to determine which of the requirements can be verified or satisfied by using
Wazuh. Architecture of integrating Wazuh with MEDINA was defined along with the design for
the Evidence Collector component. A prototype of the Evidence Collector was implemented that
connects with Wazuh and produces evidence for metrics about malware protection use on the
targeted machines.

3.2.4 Limitations and future work

In the current state (project month 12), evidence gathering with Wazuh is only possible for a
very limited number of metrics. The supported metrics relate to the (draft) EUCS requirement
OPS-05.3. During further course of the project, this limitation will be progressively removed by
adding support for other metrics.

Wazuh uses various techniques for evidence gathering. By using the integrated anti-malware
and intrusion detection systems, a CSP is satisfying the standardisation requirements. In this
case, evidence is produced bearing the information about the functioning of Wazuh and its
modules. Such evidence has a high level of confidence. If the CSP uses other (unrelated) tools
for malware detection, the limitation is that an integration layer needs to be developed between
those tools and Wazuh. While Wazuh's log collection capabilities make such integration
relatively easy with most tools, support by the other tool might be limited.

7 This URL points to the VM that is created by running the mentioned deployment scripts
8 https://github.com/wazuh/wazuh/blob/master/LICENSE

http://www.medina-project.eu/
https://192.168.33.10:5601/
https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
https://git.code.tecnalia.com/medina/public/wazuh-deploy
https://github.com/wazuh/wazuh/blob/master/LICENSE

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 31 of 61

www.medina-project.eu

Custom Wazuh rules can also be written to evaluate logs, coming from other services and
produce events or alerts based on their contents. Evidence can in turn be produced based on
such events or alerts. Confidence level of evidence obtained in this way is fully dependent on
the implementation of the particular Wazuh rule.

3.3 Vulnerability Assessment Tools

3.3.1 Implementation

3.3.1.1 Functional description

Vulnerability Assessment Tools (VAT) act as a vulnerability scanning and detection framework.
It is intended to be deployed in the CSP's infrastructure and configured to periodically scan the
machines and servers on the monitored network, using several tools to detect vulnerabilities.

These tools comprise two web vulnerability scanners: W3af [12] and OWASP ZAP [13], a network
discovery and auditing tool Nmap [14], and a framework for including user-defined custom
scripts for detecting specific issues or simply notifying about unavailability of particular services.

Beside the vulnerability scanners, VAT is composed of several components supporting the
scheduling of scanning tasks, as well as communication and integration with other MEDINA
tools.

The innovation that VAT brings to MEDINA is the usage of vulnerability scanners for automated
verification of compliance. There are several requirements of security standards that can be
either satisfied with VAT or evidence can be gathered about their fulfilment. EUCS requirements
covered by VAT include several from the vulnerability detection and management categories,
usage of encrypted communication protocols, separation of networks and monitoring new
devices on the network, etc. Coverage of EUCS requirements by VAT is also described in
deliverable D3.1 [2].

Additional innovation of VAT itself is the modularity and flexibility of the VAT framework. Beside
the included vulnerability detection tools, users can define their own scripts written in one of
the several supported programming languages, or even integrate their own vulnerability
scanning tools, depending on their specific needs. Beside the detection of vulnerabilities and
provision of related evidence, the framework thus also enables implementation of custom
detectors to produce other evidence types or monitor other CSP-specific networking metrics.

Related requirements

Below is the collection of requirements (from D5.1 [3]) related to the component and a
description of how and to what extent these requirements are implemented at this point of
development.

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e., in
(high)-frequency intervals.

Implementation
state

Partially implemented

VAT framework enables configuration of the scanning tasks and continuous scanning with
configurable intervals. The integration with Evidence Collector and other components is not yet
implemented.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 32 of 61

www.medina-project.eu

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description The developed tools must provide collected evidence to a security
assessment tool via its offered APIs.

Implementation
state

Not yet implemented

The interface for communication between VAT and the Evidence Collector is not yet
implemented.

Requirement id TEGT.S.08

Short title Provision of malware, intrusion, and vulnerability detection tools

Description Tools for malware detection, intrusion detection, and vulnerability
scanning must be provided to assist CSPs with satisfying related
requirements of security standards or to verify the compliance with such
requirements.

Implementation
state

Partially implemented

VAT includes several vulnerability scanners and a framework for their orchestration and
automated running of the scans. Possibility to add custom vulnerability scanning scripts is also
implemented. The integration with the Evidence Collector and other MEDINA components is not
yet implemented.

3.3.1.1.1 Fitting into overall MEDINA Architecture

The position of Vulnerability Assessment Tools inside the MEDINA architecture is depicted in
Figure 1 (Section 2) and in slightly more detail in Figure 8. VAT scans the monitored machines
inside the CSP’s infrastructure, which is communicated to the Wazuh & VAT Evidence Collector
component that constructs the evidence about fulfilment of the monitored metrics and sends
them to the Security assessment component (Clouditor) for further processing.

3.3.1.2 Technical description

The following subsections describe the technical details of the Vulnerability Assessment Tools.

3.3.1.2.1 Prototype architecture

The internal architecture of the Vulnerability Assessment Tools comprises of several
microservices and is presented below in Figure 9. The main components are: Scan Configurator
(web user interface), Vulnerability Scanning Registry, Catalogue of custom scripts, and VAT
Service Orchestrator with several subcomponents. The figure also shows an example of a user’s
request to issue a scan originating in a web interface and the data flow through the other VAT
subcomponents. The connection to other MEDINA components for evidence gathering is issued
through the Wazuh & VAT Evidence Collection component (also see Figure 8).

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 33 of 61

www.medina-project.eu

Figure 9. Internal architecture schema of Vulnerability Assessment Tools.

3.3.1.2.2 Description of components

Components, comprising Vulnerability Assessment Tools, are described below.

Scan Configurator is a web interface for Vulnerability Assessment Tools. It enables users to
configure and trigger vulnerability scans, set schedules for scanning tasks, review tasks’ results,
as well as create custom vulnerability detection scripts.

These scripts are stored in the Custom Scanning Scripts Catalogue. They can be written in any
of the scripting languages, supported by the script interpreters included in the Registry. The
Catalogue can also store script templates that need to have some missing parameters or code
added before execution.

Vulnerability Scanning Registry is a collection of Docker images for running vulnerability scans.
It contains a Generic Scanners Suite image with several integrated scanning modules and a
result aggregator component that combines results of the scanning modules into a single JSON
result that can be shown in the Scan Configurator UI in a user-friendly way. The integrated
scanning modules are OWASP ZAP [13], w3af [12], and Nmap [14]. ZAP and w3af are web
application vulnerability scanners. When a scan is launched against a targeted website, they use
crawlers to scan the website and identify potentially vulnerable pages and endpoints. For
detection of injection vulnerabilities, they use crafted payloads in automatic queries and
observe the server’s output, searching for patterns that would indicate potential vulnerabilities.
Several server misconfiguration weaknesses can also be detected. Nmap is a network
reconnaissance tool with vulnerability scanning capabilities. It can detect devices on the network
and servers (listening ports) running on them, identify versions of the running servers and use
various scripts to remotely detect specific vulnerabilities.

Beside the Generic Suite, it also holds several Docker images [15] of script interpreters that can
run user-provided custom scanning scripts. These can be used to detect specific vulnerabilities,
to monitor uptime and availability of services, or for other repetitive tasks. Three interpreters

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 34 of 61

www.medina-project.eu

are currently included: Metasploit Framework [16] (running Metasploit resource scripts and
Metasploit modules written in Ruby), Python, and Bash. The Scanning Registry is designed in a
modular way, so that additional scanners or script interpreters can be added easily.

VAT Service Orchestrator contains several subcomponents responsible for scheduling and
orchestration of scans, as well as communication with other components. Internal
communication between components is realized through the AMQP protocol by a RabbitMQ
[17] server (not shown in the figure for clarity). The Scan Configurator server communicates with
the core components through the API, which also provides authentication and authorization
capabilities. The API component is also accessed by the Wazuh & VAT Evidence Collector
component (shown in Figure 8), which generates evidence objects according to the
configuration and results of VAT and forwards them to the Security Assessment component
(part of Clouditor) to be in turn processed by other MEDINA components.

Scheduler is the component responsible for triggering scanning tasks according to their
configured schedules. Task Storage database is used to store the schedules and configurations.
When a specific task is triggered, it communicates its configuration to the Docker Interface
component that prepares the required files and parameters and executes the container
spawned with the respective Docker image from the Registry in the Docker Engine. The Docker
Interface also retrieves results of the finished scanning tasks and stores their output files in the
Object Storage database, from where it can be retrieved by users.

3.3.1.2.3 Technical specifications

The various subcomponents of VAT use different programming languages, frameworks, and
libraries. The backend components are mostly written in Node.js, except Scheduler which is
written in Go. MongoDB [18] is used for the Task Storage, and OpenStack Swift [19] for the
Object Storage and storage of custom scanning scripts. Scan Configurator frontend is built with
the Angular [20] web framework.

The Generic Scanning Suite is built as a single Docker image with Ubuntu as base image with
required scanning modules installed (OWASP ZAP [13], w3af [12], Nmap [14]). Cscan package
(part of the open-source Faraday vulnerability scanning platform [21]) along with several
additional Python and Bash scripts are included for triggering the scanning modules according
to configuration parameters. The Result Aggregator is written in Python and outputs a JSON file
containing outputs of all the scanning modules used.

Custom script interpreters are separate Docker images with the respective tools.

Communication among the core components is carried out with AMQP through a RabbitMQ [17]
server. The API component exposes an HTTP REST API.

3.3.2 Delivery and usage

3.3.2.1 Package information

Code of Vulnerability Assessment Tools is structured in several Git repositories according to the
components described above. All components are packaged as Docker images.

3.3.2.2 Installation instructions

Deployment scripts are provided using Vagrant [22] and Ansible [23] in the “vat-deployment”
repository. Two machines will be provisioned:

• “VAT management” containing the VAT Service Orchestrator, Scan Configurator, and
the catalogue of custom scripts,

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 35 of 61

www.medina-project.eu

• “VAT runtime” with the Docker engine for running the scanning tasks and the necessary
images installed (Vulnerability Scanning Registry).

To run the demo deployment process, simply clone the repository and run:

make create provision

3.3.2.3 User Manual

Navigate your internet browser to the IP address of the management machine and login with
the default credentials: test-user, test-password. You will be able to access the VAT
configuration portal, review the demonstrative vulnerability scans, or create new scanning tasks.

3.3.2.4 Licensing information

Vulnerability Assessment Tools framework is licensed as proprietary, Copyright by XLAB.

The Generic Scanning Suite, a containerized component integrating several vulnerability
scanners, is developed by XLAB and open-sourced with the Apache 2.0 licence.

Several sub-components used as part of VAT are open-source:

• OWASP ZAP (Apache Licence) [13]

• w3af (GPLv2) [12]

• Nmap (modified GPLv2)9 [14]

• Faraday (GPLv3) [21]

• Metasploit (BSD) [16]

3.3.2.5 Download

VAT deployment demo repository is available at MEDINA’s public GitLab:

https://git.code.tecnalia.com/medina/public/vat-deploy

The Generic Scanning Suite source code repository is also available in MEDINA’s public GitLab:

https://git.code.tecnalia.com/medina/public/vat-genscan

Due to proprietary licensing, other parts of the VAT framework are hosted on XLAB’s internal
GitLab. The code can be made available upon request.

Source code of the individual included scanners can be found in their respective project
repositories.

3.3.3 Advancements within MEDINA

Vulnerability Assessment Tools were developed in a previous H2020 project, CYBERWISER.eu
[24]. In that project, the VAT framework was used for detection of vulnerabilities as well as for
scheduling of various actions connected to defence and attacks of infrastructure in a controlled
and enclosed cyber range environment. In the first 12 months of MEDINA, an analysis was made
to determine the EUCS requirements that are feasible to be verified or satisfied by VAT. The
internal architecture of VAT was restructured, and the deployment scripts were rewritten to
support the deployment in a general (cloud) environment instead of the specific cyber range
setting. The APIs were adapted to be prepared for integration with MEDINA components. The

9 https://nmap.org/npsl/

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/vat-deploy
https://git.code.tecnalia.com/medina/public/vat-genscan
https://nmap.org/npsl/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 36 of 61

www.medina-project.eu

Evidence Collector component was developed with a specific module to interact with VAT and
produce relevant evidence.

3.3.4 Limitations and future work

In the current (month 12) state of implementation, VAT is not yet fully integrated with the
Evidence collector, thus providing evidence with VAT is not possible.

As described above, VAT is composed of multiple modules: several vulnerability scanners and a
framework for running custom, user-defined evidence collection scripts. Confidence of the
evidence gathered with VAT can vary greatly depending on the VAT module used and the
definition of a specific metric. The generic vulnerability scanners (e.g., w3af, OWASP ZAP) are
primarily designed to be used in manually guided penetration tests. Thus, vulnerability detection
results can often contain false positives that should be analysed by an expert. Evidence collected
solely based on the results of such results therefore cannot be regarded with full confidence.

On the other hand, there are considerably less errors when a vulnerability detection tool is
configured to check for presence of a specific vulnerability (e.g., Nmap or Metasploit script). The
accuracy of custom (user-provided) scripts entirely depends on their implementation, in this
case VAT is only used as a framework for running such scripts and packaging and forwarding the
results as evidence.

Some requirements of the EUCS standardisation framework require the CSP to have
vulnerability or malware detection tools deployed on certain systems and to monitor their
results. By using vulnerability scanning capabilities of VAT (combined with monitoring of the
results), the CSP effectively satisfies such requirements for their cloud service. In this case, the
automatically obtained evidence refers to the functioning of VAT, which can be managed
effectively and monitored with high confidence.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 37 of 61

www.medina-project.eu

4 Security Assessment of Cloud Applications

This section presents the MEDINA components, related to estimating the security of cloud
applications and collecting evidence based on the analysis of their source code. The
functionalities and implementation of the two components under development in Task 3.3 are
described in the following subsections.

4.1 Cloud Property Graph

Cloud Property Graph (CloudPG) is another tool, developed within the first year of the MEDINA
project. It combines source code analysis with infrastructure analysis. To that end, a library for
static code analysis, the cpg10, has been extended with analysis logic for cloud workloads. The
implementation of this tool is being developed in GitHub11.

One problem the CloudPG addresses is that isolated security analysis on workload- or source
code-level can result in many false positives: for example, authorization or encryption
requirements may be implemented either on the infrastructure- or source code-level, thus both
levels have to be analysed in combination to allow for a comprehensive assessment of, e.g.,
authorization or encryption requirements.

A scientific paper about this approach and tool has been written and accepted at the IEEE
International Conference on Cloud Computing 2021 (CLOUD), but not yet published at the time
of writing.

4.1.1 Implementation

4.1.1.1 Functional description

The cpg creates a property graph of source code that is enhanced by the CloudPG with
information about the current resource configurations, as well as data flows between resources.

Figure 10 shows an excerpt of a graph generated by the Cloud Property Graph. This example
shows several nodes and edges introduced by the CloudPG, for example security properties
(based on the cloud resource ontology), like authenticity and transport encryption (see top left),
and HTTP calls: the POST node describes a HTTP POST request to (TO edge) a HTTP endpoint that
in turn has a certain path as its PROXY_TARGET.

Using such a graph it is possible to identify security problems in the intersection between
infrastructure and source code. For example, it can be detected if logging functionalities are
implemented and if yes, if the logs are stored in an allowed region. This combined reasoning
would be more difficult to do when assessing isolated evidence later using pre-defined metrics
and target values.

Since this combined analysis requires a common model of how, e.g., logging functionalities are
implemented and what they are called in different cloud systems, the CloudPG again makes use
of the cloud resource ontology presented in deliverable D2.3 [6], and the security properties it
defines. Consequently, security-relevant concepts can be analysed across source code and
infrastructure configurations.

4.1.1.1.1 Fitting into overall MEDINA Architecture

The CloudPG is a separate service implementing an evidence gathering component. In the
current state, it is not yet integrated with other components. Two possible approaches exist for

10 https://github.com/Fraunhofer-AISEC/cpg
11 https://github.com/clouditor/cloud-property-graph/

http://www.medina-project.eu/
https://github.com/Fraunhofer-AISEC/cpg
https://github.com/clouditor/cloud-property-graph/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 38 of 61

www.medina-project.eu

its integration: First, its output is adjusted such that it provides evidence in the required MEDINA
format to the Clouditor assessment service. In this case the CloudPG’s graph-based analysis
results (see Figure 10) would have to be transformed to the respective evidence format. Second,
it can be extended with a custom assessment service which is then integrated with the
orchestrator. This latter approach has the advantage of leaving more room for custom
assessment logic but may require more effort.

Figure 10. An excerpt from the graph generated by the Cloud Property Graph

4.1.1.2 Technical description

4.1.1.2.1 Prototype Architecture

The CloudPG employs a straightforward architecture. First it uses the cpg library to build a code
property graph of available source code. It then applies custom passes, i.e., extendible modular
analysis logic, to analyse properties of the code and its deployment that are relevant in the
context of cloud security. This added information is then introduced in the graph to make it
accessible for manual analysis and possibly automatic analysis applications.

Some examples of such custom passes are presented in the following:

• HTTP calls: The CloudPG analyses code to detect HTTP calls between microservices and
adds edges to the graph between the respective nodes, e.g., from a code entity that
uses an HTTP framework to realize the HTTP call to the respective HTTP endpoint. HTTP
endpoints are identified in another pass which is able to detect these in the Spring

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 39 of 61

www.medina-project.eu

framework for Java, the Flask framework for Python, as well as the Gin framework for
Go.

• Logging: The CloudPG detects logging functionality, such as the zerolog12 library for Go

• Deployment information: The CloudPG detects GitHub workflow files in a project, which
specifies where the code is deployed, e.g., as Docker containers in a Kubernetes cluster,
and adds configuration information about the deployment environment

4.1.1.2.2 Description of components

The CloudPG is not divided into separate components. Yet, a separate assessment component
may be developed in the future. It does, however, employ an easily extendible structure for
additional passes.

4.1.1.2.3 Technical specifications

The CloudPG is written in Kotlin. As described above, it makes use of the cpg library to build a
basic code property graph.

4.1.2 Delivery and usage

4.1.2.1 Package

The tool is not yet available as a Docker image. It currently needs to be installed as described
below.

4.1.2.2 Installation

Note that the installation instructions may change with the advancement of the tool, so consider
the installation details in the Readme file on the GitHub repository13. The following instructions
and the following manual are partly copied from this file:

1. Clone the git repository git@github.com:clouditor/cloud-property-graph.git
2. Set the JAVA_HOME variable to Java 11
3. Install jep, follow the instructions at https://github.com/Fraunhofer-AISEC/cpg#python

4. For usage of experimental language, e.g., go
a. Checkout Fraunhofer AISEC - Code Property Graph and build by using the

property -Pexperimental: ./gradlew build -Pexperimental
b. The libcpgo.so must be placed somewhere in the java.library.path. (For further

informaton see https://github.com/Fraunhofer-AISEC/cpg#usage-of-
experimental-languages)

i. Under Linux in /lib/. sudo cp ./cpg-library/src/main/golang/libcpgo.so
/lib/

ii. And Mac in ~/Library/Java/Extensions.
5. To build, the graph classes need to be built from the Ontology definitions by calling

./build-ontology.sh. Then build using ./gradlew installDist.

4.1.2.3 User Manual

Start neo4j using docker run -d --env NEO4J_AUTH=neo4j/password -p7474:7474 -p7687:7687
neo4j or docker run -d --env NEO4J_AUTH=neo4j/password -p7474:7474 -p7687:7687
neo4j/neo4j-arm64-experimental:4.3.2-arm64 on ARM systems.

Run cloudpg/build/install/cloudpg/bin/cloudpg. This will print a help message with any
additional needed parameters. The root path is required, and the program can be called as

12 https://pkg.go.dev/github.com/rs/zerolog
13 https://github.com/clouditor/cloud-property-graph/blob/main/README.md

http://www.medina-project.eu/
mailto:git@github.com:clouditor/cloud-property-graph.git
https://github.com/Fraunhofer-AISEC/cpg#python
https://github.com/Fraunhofer-AISEC/cpg#usage-of-experimental-languages
https://github.com/Fraunhofer-AISEC/cpg#usage-of-experimental-languages
https://pkg.go.dev/github.com/rs/zerolog
https://github.com/clouditor/cloud-property-graph/blob/main/README.md

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 40 of 61

www.medina-project.eu

follows: cloudpg/build/install/cloudpg/bin/cloudpg --root=/x/testprogramm folder1/ folder2/
folder 3/

4.1.2.4 Licensing

The tool is licensed under the Apache 2.0 license.

4.1.2.5 Download

The project is available as an open-source project on GitHub14.

4.1.3 Advancements within MEDINA

The Cloud Property Graph is based on the cpg which is a project that is developed independently
of MEDINA. The CloudPG’s additions described above, however, have completely been
developed within the MEDINA project. In its approach of combining source code analysis with
infrastructure analysis, it complements Codyze which is described in the next section.

The CloudPG is not yet integrated with the overall MEDINA architecture, since its output is a
graph which is currently not assessable with the Clouditor assessment service. A possible
integration approach is to extend it with a custom assessment logic that is integrated with the
orchestrator.

4.1.4 Limitations and future work

The approach we have implemented in the Cloud Property Graph has some general limitations.
First, it is constrained by the available source code and accessible APIs, i.e., when libraries are
used whose source code is not available, or source code is not available for other reasons, it will
not be part of the resulting graph and cannot be analysed for security problems. Regarding the
APIs, the limitation is the same as for the evidence collection with Clouditor: only the
information the cloud APIs offer can be analysed. Second, the approach currently generates
additional manual effort since the tool has to be set up, it has to be manually applied, and its
results need to be manually evaluated. However, its application and result analysis have
potential for automation which should be addressed in future work. Also, its integration with
the MEDINA framework, i.e., with the Security Assessment or Orchestrator should be addressed
in future work.

4.2 Codyze

By presenting the structure and implementation of Codyze, this section reports on the results of
Task 3.3.

4.2.1 Implementation

4.2.1.1 Functional description

Codyze is an open-source static application security testing tool. Its main goal is to verify if
application source code complies to security requirements. Security requirements are derived
from security requirement catalogues such as ENISA EUCS. High-level security requirements
from catalogues like ENISA EUCS are broken down into checkable source code properties.
Afterwards, Codyze verifies specified source code properties and thereby can provide evidence
and assessment results if a high-level requirement is sufficiently realized in software.

Codyze uses the MARK DSL [25] to specify checkable software properties. MARK can model
entities and define rules that must hold for the usage of an entity. Codyze evaluates MARK rules

14 https://github.com/clouditor/cloud-property-graph

http://www.medina-project.eu/
https://github.com/clouditor/cloud-property-graph

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 41 of 61

www.medina-project.eu

against provided source code and attest if a rule is adhered to or not. Based on the evaluation
result from MARK rules, software properties required to fulfil security requirements are
validated.

Currently, Codyze can analyse source code written in C/C++ and Java. Moreover, it ships with
MARK rules for cryptographic libraries Bouncy Castle for Java and Botan for C++. Thus, source
code can be checked if cryptographic operations with Bouncy Castle or Botan are properly
implemented and thereby attest state-of-the-art cryptography of sufficient strength.

As Codyze analyses source code, it is not integrated into the cloud platform itself. It is a tool
used by CSPs to validate the source code of applications and services prior to deployment and
general availability in the cloud. Therefore, Codyze must be integrated into the development,
continuous integration and continuous deployment pipeline. Once integrated Codyze can check
submitted code while it is being developed. Configured as a breaking check point in a CI/CD
pipeline, it can prevent the roll out of software not meeting security requirements.

The relevant requirements from D5.1 [3] are listed below and a brief description of how they
are implemented is given.

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e. in
(high)-frequency intervals.

Implementation
state

Partially implemented

Codyze is integrated into the CI/CD pipeline at CSPs. It is executed based on the frequency of
committed code changes.

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description The developed tools must provide collected evidence to a security
assessment tool via its offered APIs.

Implementation
state

Not implemented

Currently, the interface is not implemented in Codyze.

Requirement id TEGT.S.03

Short title Implement information and data flow analysis

Description The developed tool must be able to perform information and data flow
analysis on a cloud application.

Implementation
state

Implemented

Codyze is able to perform information and source code analysis; the extended analysis for
contextual information of cloud workloads has been addressed in the Cloud Property Graph tool
which is closely related to Codyze. For example, it can analyse infrastructure configurations and
CI/CD information of respective configuration files to check where a certain piece of code is
deployed in a cloud service.

Requirement id TEGT.S.04

Short title Support expression of security requirements

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 42 of 61

www.medina-project.eu

Description The developed tool must be able to support the expression of security
requirements to be checked on application code. Requirements come for
example from WP2.

Implementation
state

Not implemented

While Codyze is able to verify security requirements defined in the MARK DSL, it is not yet able
to verify MEDINA-related requirements, e.g., written in Rego.

Requirement id TEGT.S.05

Short title Verify security requirements

Description The developed tool must be able to verify security requirements and raise
warnings/errors with respect to secure coding practices and secure
information and data flows.

Implementation
state

Partially implemented

Codyze is currently able to generate warnings for identified non-compliances. It remains to
integrate these warnings in MEDINA, e.g., in a user interface.

Requirement id TEGT.S.06

Short title Retrieve source code of cloud applications

Description The developed tool should be able to retrieve (semi-)automatically the
source code of cloud applications requiring analysis.

Implementation
state

Partly implemented

Source code is provided as part of the CI/CD pipeline.

Requirement id TEGT.S.07

Short title Support for common programming languages, libraries, cloud services

Description The developed tool should support common programming languages,
libraries and cloud services. Support for all programming languages,
libraries and cloud services is infeasible.

Implementation
state

Partly implemented

Codyze supports the programming languages C/C++ and Java. In addition, Codyze ships with
rules for cryptographic libraries for Bouncy Castle and Botan. The underlying components can
parse source code in JavaScript, Python and Go. However, the analysis and evaluation in Codyze
is not yet implemented.

Requirement id TEGT.S.08

Short title Provision of malware, intrusion, and vulnerability detection tools

Description Tools for malware detection, intrusion detection, and vulnerability
scanning must be provided to assist CSPs with satisfying related
requirements of security standards or to verify the compliance with such
requirements.

Implementation
state

Partially implemented

Codyze is provided as a container image. It can be integrated as a validation step in CI/CD
pipelines. The integration, usage and suggested configuration must still be documented.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 43 of 61

www.medina-project.eu

4.2.1.2 Fitting into overall MEDINA Architecture

Figure 1 in Section 2 shows the integration of Codyze within the overall MEDINA architecture
(see Application-level evidence collection and security assessment).

Codyze assesses the source code of cloud application and ensures compliance to security
requirements catalogues like ENISA EUCS within applications. Thereby, it ensures that the
individual applications and services at CSPs comply with security requirement catalogues. Other
tools in the MEDINA framework such as Clouditor ensure that applications and services are
consumed in a secure manner.

4.2.2 Technical description

4.2.2.1 Prototype architecture

Codyze consists of an executable binary distribution and runs stand-alone. It is also available as
a container image. Codyze is executed on source code of cloud application and services.
Therefore, there are no server components nor agents.

In Figure 11, the architecture of Codyze is depicted. Codyze provides two frontends. One is an
implementation of the Language Server Protocol. This interface is mainly used by developers
during the development process. It can provide immediate feedback to a developer if source
code changes comply to defined security requirements. The second interface is a command line
interface. This is the main interface to run Codyze automatically in a CI/CD pipeline. In this mode,
Codyze generates a report that contains problematic source code locations where security
requirements are not met. In addition, this mode will return an error code when security
requirements are not met and can thus terminate CI/CD pipelines. This behaviour ensures that
Codyze prevents the roll out of cloud applications and services that do not comply to security
requirements as required by catalogues like ENISA EUCS.

Figure 11. Codyze architecture

Internally, Codyze uses the CPG library. This library implements a code property graph. This
graph is a multigraph representing source code structures in a graph representation. On this
graph model of the source code, Codyze can perform the source code evaluation.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 44 of 61

www.medina-project.eu

The evaluation is specified in MARK. MARK files are provided to Codyze either as part of Codyze
or as a path to MARK files on the command line. These MARK files are parsed by Codyze and
define the necessary evaluation steps to validate the compliance to security requirements.

The results of the evaluation are provided to developers via the Language Server Protocol. In
addition, findings are generated as console output. This output will be submitted to the
orchestrator of the MEDINA framework in the specified data format.

4.2.2.2 Description of components

Codyze does not have separate components. It uses libraries as dependencies to implement its
functionality. Codyze itself is a single, self-contained tool.

4.2.2.3 Technical specifications

Codyze is developed in Java and Kotlin. It uses the libraries CPG and MARK as dependencies. In
addition, Codyze ships with MARK rules that check compliance to strong, state-of-the-art
cryptography as specified by the German BSI. These rules are specific to cryptographic libraries
Bouncy Castle and Botan.

The integration of Codyze at the CSPs requires a platform for CI/CD. Codyze can be integrated
into CI/CD pipelines either by using the binary distribution or the container image as a step
during validation step of the pipeline.

4.2.3 Delivery and usage

4.2.3.1 Package information

The project structure of Codyze with the important folders is presented with short descriptions
in Table 2.

Table 2. Overview and description of package structure for Codyze

Folder Description

docs/ Content and templates for static website content published at
https://www.codyze.io/. Among others, the website contains
documentation on Codyze and MARK. It describes how the tools are
installed, used and worked with.

plugins/vscode A plugin for Visual Studio Code that calls out to Codyze using LSP to
analyse source code while a programmer develops an application or
service. The analysis results are displayed in Visual Studio Code like
compiler warnings and problems. This interface is meant for direct
interaction with developers.

src/ Contains the source code for Codyze including MARK files shipped
with Codyze releases.

src/dist/mark/ Predefined set of MARK files with entities and rule specifications that
Codyze will validate when analysing source code.

src/main/ Source code implementing Codyze with its user interface and the
analysis and evaluation engine.

src/test/ Unit tests for Codyze

http://www.medina-project.eu/
https://www.codyze.io/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 45 of 61

www.medina-project.eu

Codyze uses the MARK DSL to specify entities and rules. MARK itself has its own code repository.
The MARK package is structured as described in Table 3.

Table 3. Overview and description of package structure for Codyze's subcomponent MARK

Folder Description

de.fraunhofer.aisec.mark/ Contains the Xtext grammar for MARK as well as the
generated parser.

de.fraunhofer.aisec.mark.feature/ Bundles MARK as an installable feature for the
Eclipse IDE.

de.fraunhofer.aisec.mark.ide/ IDE components for Eclipse IDE like customized
editors.

de.fraunhofer.aisec.mark.ui/ UI components for Eclipse IDE to write MARK files. It
provides content assist, code completion, quick fixes
and other IDE features.

de.fraunhofer.aisec.mark.updatesite/ Defines the configuration for an Eclipse IDE update
site. From this update site, Eclipse IDE can retrieve
the MARK feature and install it into an Eclipse IDE.

4.2.3.2 Installation instructions

The full up-to-date installation instructions are described by the README in the Codyze GitHub
repository and in the MARK GitHub repository. In addition, the website for Codyze --
https://www.codyze.io/ -- provides documentation with installation instructions. In particular,
the latter contains special installation instructions for the various plugins into Eclipse IDE.

Codyze uses the build tool Gradle. The source code ships with the Gradle wrapper such that
Gradle can be executed without prior installation. The wrapper is a shell and Windows batch file
that downloads, installs and executes Gradle.

To build Codyze, one can run the following command:

• ./gradlew[.bat] clean build test installDist

The command cleans out previous compilation files (clean), compiles the sources (build), runs
any unit test (test) and creates an installable binary (installDist). Afterwards, the executable
Codyze binary can be found at {project-dir}/build/install/codyze/. In this directory one
can find three directories:

• bin/ -- contains a shell Windows batch script to run Codyze

• lib/ -- contains all library files

• mark/ --- contains the MARK files included in Codyze

The start scripts in bin/ will print a command help when executed. The command help contains
short descriptions of each command argument and parameter. The help looks like:

http://www.medina-project.eu/
https://www.codyze.io/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 46 of 61

www.medina-project.eu

An example usage of Codyze is described in the README of the GitHub repository as well as on
the Codyze website.

In addition to building Codyze from source, the GitHub repository provides build artifacts and
release binaries. Releases are distributed as Zip archives and can be downloaded directly from
the Codyze GitHub repository. The archive has the same structure as the {project-
dir}/build/install/codyze/ folder. Moreover, Codyze is provided as a container image and
can be run by container runtimes like Docker. The container image will execute the Codyze script
when the container image is run.

MARK uses the build tool Maven. The source code ships with the Maven wrapper such that
Maven can be executed without prior installation. The wrapper is a shell and Windows batch file
that downloads, installs and executes Maven.

To build MARK, one can run the following command:

• ./mvnw[.cmd] clean install

The command cleans out previous compilation files (clean) and compiles the source code and
installs it into the local Maven repository (install). Afterwards, Codyze can retrieve MARK as
a library dependency.

Usually, MARK does not need to be built from source. MARK is a library dependency for Codyze.
It is pulled in when building Codyze either from the local repository, as an artifact automatically
built from source or from Maven Central repository.

The MARK plugin for Eclipse IDE is provided by an Eclipse update site. The installation of this
plugin is described on the Codyze website.

$./codyze --help
Usage: codyze [-hV] [--enable-go-support] [--enable-python-support] [--no-good-findings]
 [-o=<file>] [-s=<path>] [--timeout=<minutes>] [-m=<path>[,<path>...]]... (-c | -l |
 -t) [[--typestate=<NFA|WPDS>]] [[--analyze-includes] [--includes=<includesPath>[:|;
 <includesPath>...]]...]
Codyze finds security flaws in source code
 -s, --source=<path> Source file or folder to analyze.
 -m, --mark=<path>[,<path>...]
 Loads MARK policy files
 -o, --output=<file> Write results to file. Use - for stdout.
 --timeout=<minutes> Terminate analysis after timeout
 Default: 120
 --no-good-findings Disable output of "positive" findings which indicate correct
 implementations
 --enable-python-support
 Enables the experimental Python support. Additional files need to be
 placed in certain locations. Please follow the CPG README.
 --enable-go-support Enables the experimental Go support. Additional files need to be placed
 in certain locations. Please follow the CPG README.
 -h, --help Show this help message and exit.
 -V, --version Print version information and exit.
Execution mode
 -c Start in command line mode.
 -l Start in language server protocol (LSP) mode.
 -t Start interactive console (Text-based User Interface).
Analysis settings
 --typestate=<NFA|WPDS>
 Typestate analysis mode
 NFA: Non-deterministic finite automaton (faster, intraprocedural)
 WPDS: Weighted pushdown system (slower, interprocedural)
Translation settings
 --analyze-includes Enables parsing of include files. By default, if --includes are given,
 the parser will resolve symbols/templates from these include, but not
 load their parse tree.
 --includes=<includesPath>[:|;<includesPath>...]
 Path(s) containing include files. Path must be separated by :
 (Mac/Linux) or ; (Windows)

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 47 of 61

www.medina-project.eu

4.2.3.3 User Manual

A user manual for Codyze and MARK can be found at the Codyze website --
https://www.codyze.io/.

4.2.3.4 Licensing information

Codyze and its DSL library MARK are licensed under the Apache License 2.0.

4.2.3.5 Download

The Codyze source code can be found in the Codyze GitHub repository:

• https://github.com/Fraunhofer-AISEC/codyze

The MARK source code can be found in the MARK GitHub repository:

• https://github.com/Fraunhofer-AISEC/codyze-mark-eclipse-plugin

The Codyze Wrapper which integrates it with the MEDINA framework can be found in the public
MEDINA GitLab:

• https://git.code.tecnalia.com/medina/public/codyze

4.2.4 Advancements within MEDINA

Codyze has not yet been further developed in the scope of MEDINA. Within the upcoming tool
integration efforts, however, it will be adapted to the MEDINA data model and integrated with
Clouditor.

4.2.5 Limitations and future work

Codyze analyses source code and its usefulness is therefore limited by the inputs it gets: Since
there is no reliable source for knowing which code exists and should be deployed, it is also not
possible to verify within Codyze if all relevant code has been analysed. Therefore, we assume
that Codyze is applied to all relevant code. A limitation that occurs in the integration of existing
tools like Codyze is that metric details, e.g., target values, that shall be changed cannot currently
be conveyed to these tools. Future work should therefore explore the possibilities to enhance
MEDINA's data model in that regard.

http://www.medina-project.eu/
https://www.codyze.io/
https://github.com/Fraunhofer-AISEC/codyze
https://github.com/Fraunhofer-AISEC/codyze-mark-eclipse-plugin
https://git.code.tecnalia.com/medina/public/codyze

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 48 of 61

www.medina-project.eu

5 Assessment of Organisational Measures

This section presents the technical design of the MEDINA component for the assessment of
organisational measures. This is the result of activities in the scope of Task 3.4. This section
describes the initial design for the component, while the methodology is further described in
D3.1 [2]. The detailed technical implementation of the component will be presented in the
subsequent versions of this report.

5.1 Functional description

The main goal of this component is to aid in continuously determining the compliance status to
a selected set of organisational requirements from security catalogues like ENISA EUCS.
Deliverable D3.1 Section 2.3 [2] describes the underlying problems and possible solutions that
build the foundations of this task’s research goal and prototypical implementation. The main
problem identified so far is related to the fact that different CSPs use different kinds of
evaluation of single organisational measures and various types of evidence documents, thus
additional research is required before implementing the component. This chapter provides an
overview of the interactions of involved (sub)-components and the technical details for the
research prototypes.

The component is a tool to process documents that reflect the raw, unprocessed evidence for
security requirements. Depending on the document type (e.g., image, text document) and
content, this component will use different subcomponents to extract “audit-relevant”
information or provide a status of the evidence – e.g., is it compliant/similar to a predefined
evidence document. Using predefined metrics (like for the technical assessment components in
MEDINA) for the organisational requirements – paired with this component’s information
extraction functionalities - the organisational requirements can be transformed into automatic
assessable structure. This renders at least a subsection of the organisational requirements
technical (from an evaluation/assessment point of view). Of course, this needs additional
research and will most certainly only work in a subset of the organisational requirements – and
could be CSP dependent, or at least be dependent on the infrastructure status (how much is
already automated, digitalized).

5.1.1 Fitting into overall MEDINA Architecture

Figure 2 shows the integration of this component within the MEDINA architecture. The
component will interact with Clouditor to integrate the assessment results in the continuous
assessment cycle. If possible, for a document category, the evidence information is passed to
Clouditor in a way similar to the input of a CSP specific or MEDINA evidence collection
component. Otherwise, the component internal assessment result will be passed in a
meaningful way to be compatible to the rest of the MEDINA architecture.

If feasible, metrics and/or assessment rules will be retrieved from the catalogue of controls &
security schemes (see [7] for more information) to be used for the assessment and for extracting
the relevant information.

5.2 Technical description

The following subsections describe the envisioned technical details of the component.

5.2.1 Prototype architecture

Figure 12 depicts the component’s abstract interactions with other MEDINA components. The
component interacts with the catalogue of controls & security schemes to retrieve data like
requirements and metrics. From the repository of documents, the raw evidence to be processed

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 49 of 61

www.medina-project.eu

will be retrieved, processed and either stored in a subcomponent or prepared for (external)
assessment. The extracted information will be prepared for assessment and provided to
Clouditor or similar assessment tools. The other component’s connections were omitted for
simplicity. Figure 13 depicts the current envisioned architecture of the “Organizational evidence
gathering and processing” component which is briefly described in the following section.

Figure 12. Abstract schema of the organizational evidence gathering and processing component

Figure 13. Prototype architecture

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 50 of 61

www.medina-project.eu

5.2.2 Description of components

Figure 13 depicts the prototype architecture which will be improved and detailed as the research
experiment results in Task 3.4 become available, which will be reported in the next versions of
this deliverable, namely D3.5 [4] and D3.6 [5].

The top purple section of the figure depicts possible input formats (e.g., from the repository of
evidence documents, or direct CSP input documents). Raw evidence refers to the unprocessed
evidence documents, which cannot be used for direct technical assessment. The middle section
depicts a necessary transformation step to handle the data in the information retrieval sub-
components. The bottom green layer depicts possible “information retrieval” sub-components
still to be determined by concrete experiments and evidence data, and which will be reported
in subsequent versions of this deliverable.

5.2.3 Technical specifications

The prototype will be developed in Python and will probably depend on common machine
learning and data science libraries like Pandas, NumPy, scikit-learn and others like OpenCV –
depending on the subtask. The component will be containerized to be able to be integrated in
the MEDINA CI/CD infrastructure. If required by the subcomponents a NoSQL database like
MongoDB can be used for internal document and assessment result storage. The service will
provide an API supported by a Python Flask server.

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 51 of 61

www.medina-project.eu

6 Conclusions

In this deliverable D3.4, which is the initial output of Task 3.2, Task 3.3, and Task 3.4, we
presented the technical report about the design, architecture, and current implementation
states of MEDINA evidence gathering components. The components follow the overall MEDINA
framework approach and are aligned with the requirements gathered in the scope of WP5. This
deliverable presents the relation of the presented components with the other parts of the
MEDINA framework and details the individual components’ internal structure, their
subcomponents, and information about their technical implementation.

The components presented in this document include three tools supporting the security
assessment of cloud infrastructure (Clouditor, Wazuh, and Vulnerability Assessment Tools), a
pair of tools for assessing the security and compliance of cloud application’s source code (Codyze
and CloudPG), and a component for the assessment of organisational measures based on
analysis of CSP’s documentation. At this point in the project, the components, based on some
background works, already have working prototypes that can be (partially) integrated with some
other MEDINA components and satisfy some of their respective requirements as expressed in
D5.1 [3] as well as to comply with the needs of EUCS requirements of assurance level high, the
goal of MEDINA. There is currently no implemented prototype of the component for assessment
of organisational measures, but the methodology for its production, as well as the envisioned
design and architecture are described. An overview of the current satisfaction of MEDINA
requirements by the implemented tools is presented in Appendix A.

The components, presented in this deliverable, will be integrated into the MEDINA framework
in WP5. The subsequent iterations of this report will give reports on the updated components
in month 24 (D3.5 [4]) and month 30 (D3.6 [5]).

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 52 of 61

www.medina-project.eu

7 References

[1] European Union Agency for Cybersecurity (ENISA), “EUCS – Cloud Services Scheme
(draft),” 22 December 2020. [Online]. Available:
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme.

[2] MEDINA Consortium, “D3.1: Tools and techniques for the management of trustworthy
evidence - V1,” 2021.

[3] MEDINA Consortium, “D5.1: MEDINA requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy,” 2021.

[4] MEDINA Consortium, “D3.5 Tools and techniques for collecting evidence of technical and
organisational measures-v2,” 2022.

[5] MEDINA Consortium, “D3.6 Tools and techniques for collecting evidence of technical and
organisational measures-v3,” 2023.

[6] MEDINA Consortium, “D2.3: Specification of the Cloud Security Certification Language -
V1,” 2021.

[7] MEDINA Consortium;, “D2.1 – Continuously certifiable technical and organizational
measures and catalogue of cloud security metrics-v1,” 2021.

[8] MEDINA Consortium;, “D4.1 Tools and Techniques for the Management and Evaluation of
Cloud Security Certifications,” 2021.

[9] Cisco, “ClamAV,” [Online]. Available: https://www.clamav.net/. [Accessed October 2021].

[10] Chronicle Security, “VirusTotal,” [Online]. Available: https://www.virustotal.com/.
[Accessed October 2021].

[11] Wazuh Inc., “Wazuh,” [Online]. Available: https://wazuh.com/. [Accessed October 2021].

[12] “w3af,” [Online]. Available: http://w3af.org/. [Accessed September 2021].

[13] OWASP Foundation, “OWASP Zed Attack Proxy (ZAP),” [Online]. Available:
https://owasp.org/www-project-zap/. [Accessed September 2021].

[14] “Nmap,” [Online]. Available: https://nmap.org/. [Accessed September 2021].

[15] Docker, Inc., “Docker,” [Online]. Available: https://www.docker.com/. [Accessed October
2021].

[16] Rapid7, “Metasploit,” [Online]. Available: https://www.metasploit.com/. [Accessed
October 2021].

[17] VMware, Inc., “RabbitMQ,” [Online]. Available: https://www.rabbitmq.com/. [Accessed
October 2021].

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 53 of 61

www.medina-project.eu

[18] MongoDB, Inc., “MongoDB,” [Online]. Available: https://www.mongodb.com/. [Accessed
October 2021].

[19] OpenStack, “OpenStack Swift (Github repository),” [Online]. Available:
https://github.com/openstack/swift. [Accessed October 2021].

[20] Google LLC, “Angular,” [Online]. Available: https://angular.io/. [Accessed October 2021].

[21] Faraday Security, “Faraday (Github repository),” [Online]. Available:
https://github.com/infobyte/faraday. [Accessed October 2021].

[22] HashiCorp, Inc., “Vagrant,” [Online]. Available: https://www.vagrantup.com/. [Accessed
October 2021].

[23] Red Hat, Inc., “Ansible,” [Online]. Available: https://www.ansible.com/. [Accessed October
2021].

[24] CYBERWISER.eu consortium, “CYBERWISER.eu,” [Online]. Available:
https://www.cyberwiser.eu/. [Accessed October 2021].

[25] Fraunhofer AISEC, “MARK (Modeling Language for Cryptography Requirements and
Guidelines) GitHub page,” [Online]. Available: https://github.com/Fraunhofer-
AISEC/codyze-mark-eclipse-plugin. [Accessed October 2021].

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 54 of 61

www.medina-project.eu

Appendix A. MEDINA requirements implementation overview

Table 4 below presents an overview of requirements and their fulfilment with the currently
implemented tools presented in this document. The requirements were elicited in WP5 and are
detailed in D5.1 [3]. For the common requirements, implementation status is given for all the
related components, while tool-specific requirements are presented in groups according to their
respective components, such as they are also structured in D5.1. Implementation status has
three possible values represented in the table by colours:

• Green: fully implemented

• Orange: partially implemented

• Red: not implemented

This table will be updated and presented in the next versions of this report for easier comparison
and progress tracking.

Table 4. Overview of requirements satisfaction according to current implementation of presented tools

Requirement
ID

Short title Implementation status

Common requirements for technical
evidence gathering

Clouditor Wazuh VAT Codyze

TEGT.C.01 Continuous collection

TEGT.C.02 Provision to defined
interfaces

Clouditor (Gathering evidence from cloud interfaces)

TEGT.S.01 Collect evidence from cloud interfaces

EAT.02 Continuous evidence assessment

Clouditor (Security assessment)

EAT.01 Evidence assessment target

EAT.03 Evidence assessment results

Clouditor (Evidence orchestration)

ECO.01 Provision of Interfaces

ECO.02 Conformity to selected assurance level

ECO.03 Secure Transmission to evidence storage

ETM.01 Trustworthiness of evidence

ETM.02 Transmission of evidence checksums

Wazuh (Gathering evidence from computing resources)

TEGT.S.08 Provision of malware, intrusion, and vulnerability detection
tools

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 55 of 61

www.medina-project.eu

VAT (Gathering evidence from computing resources)

TEGT.S.08 Provision of malware, intrusion, and vulnerability detection
tools

Codyze + CloudPG (Gathering evidence from application source code)

TEGT.S.02 Collect evidence from source code via CPG

TEGT.S.03 Implement information and data flow analysis

TEGT.S.04 Support expression of security requirements

TEGT.S.05 Verify security requirements

TEGT.S.06 Retrieve source code of cloud applications

TEGT.S.07 Support for common programming languages, libraries, cloud
services

TEGT.S.08 Provision of malware, intrusion, and vulnerability detection
tools

Organizational evidence gathering and management

OEGM.01 Continuous collection of organizational evidence

OEGM.02 Provision to defined interfaces

OEGM.03 Usability for auditors

OEGM.04 Minimum evidence storage

In total, there are 30 requirements (if the common requirements are counted once for each
component) related to the presented components. 7 (23%) of them are currently marked as fully
implemented, 11 (37%) as partly implemented, and 12 (40%) as not implemented. The basic
statistic of requirement coverage by component is presented in Table 5.

Table 5. Requirements satisfied by tool

Tool Number of
requirements

Fully
implemented

Partially
implemented

Not
implemented

Clouditor 11 5 2 4

Wazuh 3 1 2 0

VAT 3 0 2 1

Codyze +
CloudPG

9 1 5 3

Organisational
evidence
gathering

4 0 0 4

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 56 of 61

www.medina-project.eu

Appendix B. Clouditor README file

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 57 of 61

www.medina-project.eu

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 58 of 61

www.medina-project.eu

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 59 of 61

www.medina-project.eu

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 60 of 61

www.medina-project.eu

http://www.medina-project.eu/

D3.4 – Tools and techniques for collecting evidence
of technical and organisational measures – v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 61 of 61

www.medina-project.eu

http://www.medina-project.eu/

	Table of contents
	List of tables
	List of figures
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Evidence Management Tools High-level Architecture
	3 Security Assessment of Cloud Infrastructure
	3.1 Clouditor
	3.1.1 Implementation
	3.1.1.1 Functional description
	3.1.1.1.1 Fitting into overall MEDINA Architecture

	3.1.1.2 Technical description
	3.1.1.2.1 Prototype architecture
	3.1.1.2.2 Description of components
	3.1.1.2.3 Technical specifications

	3.1.2 Delivery and usage
	3.1.2.1 Package information
	3.1.2.2 Installation instructions
	3.1.2.3 User Manual
	3.1.2.4 Licensing information
	3.1.2.5 Download

	3.1.3 Advancements within MEDINA
	3.1.4 Limitations and future work

	3.2 Wazuh
	3.2.1 Implementation
	3.2.1.1 Functional description
	3.2.1.1.1 Fitting into overall MEDINA Architecture

	3.2.1.2 Technical description
	3.2.1.2.1 Prototype architecture
	3.2.1.2.2 Description of components
	3.2.1.2.3 Technical specifications

	3.2.2 Delivery and usage
	3.2.2.1 Package information
	3.2.2.2 Installation instructions
	3.2.2.3 User Manual
	3.2.2.4 Licensing information
	3.2.2.5 Download

	3.2.3 Advancements within MEDINA
	3.2.4 Limitations and future work

	3.3 Vulnerability Assessment Tools
	3.3.1 Implementation
	3.3.1.1 Functional description
	3.3.1.1.1 Fitting into overall MEDINA Architecture

	3.3.1.2 Technical description
	3.3.1.2.1 Prototype architecture
	3.3.1.2.2 Description of components
	3.3.1.2.3 Technical specifications

	3.3.2 Delivery and usage
	3.3.2.1 Package information
	3.3.2.2 Installation instructions
	3.3.2.3 User Manual
	3.3.2.4 Licensing information
	3.3.2.5 Download

	3.3.3 Advancements within MEDINA
	3.3.4 Limitations and future work

	4 Security Assessment of Cloud Applications
	4.1 Cloud Property Graph
	4.1.1 Implementation
	4.1.1.1 Functional description
	4.1.1.1.1 Fitting into overall MEDINA Architecture

	4.1.1.2 Technical description
	4.1.1.2.1 Prototype Architecture
	4.1.1.2.2 Description of components
	4.1.1.2.3 Technical specifications

	4.1.2 Delivery and usage
	4.1.2.1 Package
	4.1.2.2 Installation
	4.1.2.3 User Manual
	4.1.2.4 Licensing
	4.1.2.5 Download

	4.1.3 Advancements within MEDINA
	4.1.4 Limitations and future work

	4.2 Codyze
	4.2.1 Implementation
	4.2.1.1 Functional description
	4.2.1.2 Fitting into overall MEDINA Architecture

	4.2.2 Technical description
	4.2.2.1 Prototype architecture
	4.2.2.2 Description of components
	4.2.2.3 Technical specifications

	4.2.3 Delivery and usage
	4.2.3.1 Package information
	4.2.3.2 Installation instructions
	4.2.3.3 User Manual
	4.2.3.4 Licensing information
	4.2.3.5 Download

	4.2.4 Advancements within MEDINA
	4.2.5 Limitations and future work

	5 Assessment of Organisational Measures
	5.1 Functional description
	5.1.1 Fitting into overall MEDINA Architecture

	5.2 Technical description
	5.2.1 Prototype architecture
	5.2.2 Description of components
	5.2.3 Technical specifications

	6 Conclusions
	7 References
	Appendix A. MEDINA requirements implementation overview
	Appendix B. Clouditor README file

