

Deliverable D3.6

Tools and techniques for collecting evidence of technical
and organisational measures – v3

Editor(s): Hrvoje Ratkajec

Responsible Partner: XLAB

Status-Version: v1.0

Date: 05.05.2023

Distribution level (CO, PU): PU

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 2 of 100

www.medina-project.eu

Project Number: 952633

Project Title: MEDINA

Title of Deliverable:
Tools and techniques for collecting evidence of technical
and organisational measures – v3

Due Date of Delivery to the EC 30.04.2023

Workpackage responsible for the
Deliverable:

WP3 – Tools to gather evidences for high-assurance
cybersecurity certification

Editor(s): Hrvoje Ratkajec (XLAB)

Contributor(s):
Immanuel Kunz, Florian Wendland (FhG), Franz Deimling
(Fabasoft)

Reviewer(s):
Björn Fanta (Fabasoft), Olivia Kagerer (Fabasoft)
Cristina Martinez (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5, and WP6

Abstract: This deliverable presents tools and techniques for the

evidence collection of technical measures, such as
security assessment of virtual machines, containers and
server less functions or based on the analysis of
information and data flows as well as organisational
measures through the use of machine-learning and NLP.
This is the third and final iteration of the tool integration,
based on a refinement of the technical architecture and
reflects the feedback from the validation at use cases.
This deliverable is the result of Task 3.2, Task 3.3 and Task
3.4.

Keyword List: Evidence gathering, Security assessment, Technical
measures, Organisational measures, Components
implementation, Clouditor, Codyze, Wazuh, Vulnerability
Assessment Tools, Cloud Property Graph, LLVM
Extensions of the Code Property Graph, Assessment and
Management of Organisational Evidence

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 3 of 100

www.medina-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 08/03/2023 First draft version - ToC Hrvoje Ratkajec (XLAB)

v0.2 17/03/2023 Added new section 4.2, added and
updated the contents in section 2 and
3.1

Immanuel Kunz (FhG)

v0.3 20/03/2023 Added and updated the contents in
sections 3.1, 4.1 and 4.3

Immanuel Kunz (FhG)

v0.4 22/03/2023 Added contents to sections 3.2 and
3.3.

Hrvoje Ratkajec (XLAB)

v0.5 29/03/2023 Updated contents in section 5 and in
Appendix E

Franz Deimling
(Fabasoft)

v0.6 03/04/2023 Added component cards to sections
3.1, 3.2, 3.3, 4.3 and 5, added
Appendix F

Hrvoje Ratkajec (XLAB)

v0.7 06/04/2023 Review of changes from other
contributors, updated Executive
Summary and Conclusions, formatting

Hrvoje Ratkajec (XLAB)

v0.8 20/04/2023 Internal review contents added Björn Fanta (Fabasoft),
Olivia Kagerer
(Fabasoft)

v0.9 03/04/2023 Addressing comments from the
internal review

Hrvoje Ratkajec (XLAB),
Immanuel Kunz, Florian
Wendland (FhG), Franz
Deimling (Fabasoft)

v1.0 05/05/2023 Ready for submission Cristina Martínez
(TECNALIA)

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 4 of 100

www.medina-project.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 9

1 Introduction ... 10

1.1 About this deliverable .. 10

1.2 Document Structure .. 10

1.3 Updates from D3.5 ... 11

2 Evidence Management Tools High-level Architecture .. 13

3 Security Assessment of Cloud Infrastructure .. 15

3.1 Clouditor-Based Components .. 15

3.1.1 Implementation ... 15

3.1.2 Delivery and usage .. 29

3.1.3 Advancements within MEDINA ... 30

3.1.4 Limitations and future work .. 31

3.2 Wazuh .. 32

3.2.1 Implementation ... 32

3.2.2 Delivery and usage .. 41

3.2.3 Advancements within MEDINA ... 43

3.2.4 Limitations and future work .. 43

3.3 Vulnerability Assessment Tools ... 45

3.3.1 Implementation ... 45

3.3.2 Delivery and usage .. 50

3.3.3 Advancements within MEDINA ... 52

3.3.4 Limitations and future work .. 52

4 Security Assessment of Cloud Applications ... 54

4.1 Cloud Property Graph .. 54

4.1.1 Implementation ... 54

4.1.2 Delivery and usage .. 57

4.1.3 Advancements within MEDINA ... 57

4.1.4 Limitations and future work .. 58

4.2 LLVM Extensions of the Code Property Graph .. 59

4.2.1 Implementation ... 59

4.2.2 Delivery and usage .. 61

4.2.3 Advancements within MEDINA ... 61

4.2.4 Limitations and future work .. 61

4.3 Codyze .. 63

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 5 of 100

www.medina-project.eu

4.3.1 Implementation ... 63

4.3.2 Delivery and usage .. 69

4.3.3 Advancements within MEDINA ... 69

4.3.4 Limitations and future work .. 70

5 Assessment of Organisational Measures .. 71

5.1 Implementation ... 71

5.1.1 Functional description ... 71

5.1.2 Technical description ... 75

5.2 Delivery and Usage .. 77

5.2.1 Package .. 77

5.2.2 Installation ... 77

5.2.3 User Manual .. 78

5.2.4 Licensing .. 78

5.2.5 Download .. 78

5.3 Advancements within MEDINA .. 78

5.4 Limitations and future work .. 80

6 Conclusions .. 82

7 References ... 83

8 Appendix A: MEDINA Requirements Implementation Overview .. 85

9 Appendix B: Clouditor - Readme, Installation instructions and User manual 88

9.1 README ... 88

9.2 Installation instructions ... 89

9.3 User Manual ... 90

10 Appendix C: Codyze - Installation instructions and User manual.. 91

10.1 Installation instructions ... 91

10.2 User Manual ... 91

11 Appendix D: Cloud Property Graph - Installation instructions and User manual 92

11.1 Installation instructions ... 92

11.2 User Manual ... 92

12 Appendix E: AMOE User Manual ... 93

13 Appendix F: Wazuh and VAT Evidence Collector - Readme and installation instructions .. 98

13.1 Readme .. 98

13.2 Installation instructions & use ... 99

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 6 of 100

www.medina-project.eu

 List of tables

TABLE 1. OVERVIEW OF DELIVERABLE UPDATES WITH RESPECT TO D3.5 .. 11
TABLE 2. COMPONENT CARD FOR THE CLOUD EVIDENCE COLLECTOR .. 17
TABLE 3. COMPONENT CARD FOR THE SECURITY ASSESSMENT ... 18
TABLE 4. COMPONENT CARD FOR THE ORCHESTRATOR .. 19
TABLE 5. OVERVIEW OF THE CLOUD EVIDENCE COLLECTOR'S API FUNCTIONS .. 23
TABLE 6. OVERVIEW OF THE SECURITY ASSESSMENT MODULE'S API FUNCTIONS .. 24
TABLE 7. OVERVIEW OF THE ORCHESTRATOR'S API FUNCTIONS ... 24
TABLE 8. OVERVIEW OF THE CLOUDITOR PACKAGE STRUCTURE .. 29
TABLE 9. COMPONENT CARD FOR WAZUH ... 34
TABLE 10. COMPONENT CARD FOR WAZUH AND VAT EVIDENCE COLLECTOR .. 35
TABLE 11. OVERVIEW OF THE WAZUH-DEPLOY PACKAGE STRUCTURE ... 41
TABLE 12. OVERVIEW OF THE WAZUH AND VAT EVIDENCE COLLECTOR PACKAGE STRUCTURE 41
TABLE 13. THE COMPONENT CARD FOR THE VULNERABILITY ASSESSMENT TOOLS 45
TABLE 14. COMPONENT CARD FOR CODYZE ... 64
TABLE 15. COMPONENT CARD FOR THE ASSESSMENT AND MANAGEMENT OF ORGANISATIONAL EVIDENCE 72
TABLE 16. OVERVIEW OF AMOE'S SOURCE CODE PACKAGE CONTENTS ... 77
TABLE 17. OVERVIEW OF REQUIREMENTS SATISFACTION ACCORDING TO CURRENT IMPLEMENTATION OF THE

TOOLS PRESENTED IN THIS DELIVERABLE ... 85
TABLE 18. REQUIREMENTS SATISFIED BY EACH TOOL .. 86

List of figures

FIGURE 1. WP3 ARCHITECTURE AND DIRECTLY RELATED COMPONENTS (SOURCE: D3.3 [2]) 14
FIGURE 2. OVERVIEW OF THE CLOUDITOR ARCHITECTURE ... 16
FIGURE 3. SAMPLE POLICIES WRITTEN IN REGO: THEY COMPARE A GIVEN ENCRYPTION ALGORITHM TO A GIVEN

TARGET VALUE (SEE NEXT FIGURES), DEPENDING ON A GIVEN OPERATOR ... 28
FIGURE 4. SAMPLE DATA THAT IS PROVIDED BY THE CENTRAL CATALOGUE OF CONTROLS AND METRICS VALUES

 ... 28
FIGURE 5. A SAMPLE EXCERPT OF AN EVIDENCE ... 28
FIGURE 6. HIGH-LEVEL WAZUH'S ARCHITECTURE .. 39
FIGURE 7. HIGH-LEVEL SCHEMA OF WAZUH, VAT, AND RELATED COMPONENTS .. 40
FIGURE 8. INTERNAL ARCHITECTURE SCHEMA OF THE VULNERABILITY ASSESSMENT TOOLS 49
FIGURE 9. AN EXCERPT FROM THE GRAPH GENERATED BY THE CLOUD PROPERTY GRAPH 55
FIGURE 10. CODYZE ARCHITECTURE .. 67
FIGURE 11. MAIN ARCHITECTURE FOR AMOE (KEYWORD-BASED EXTRACTION METHOD) 71
FIGURE 12. AMOE PROTOTYPE ARCHITECTURE .. 75
FIGURE 13. AMOE FILE UPLOAD DIALOG ... 93
FIGURE 14. AMOE LANDING PAGE AFTER FILE UPLOAD .. 93
FIGURE 15. AMOE EVIDENCE EXTRACTION PROGRESS ... 94
FIGURE 16. AMOE ASSESSMENT STATUS OVERVIEW PER DOCUMENT ... 94
FIGURE 17. AMOE OVERVIEW OF EXTRACTED EVIDENCE AND META DATA LINKED TO THE UPLOADED FILE 95
FIGURE 18. AMOE VIEW OF ORGANISATIONAL EVIDENCE... 96
FIGURE 19. SHOW PROCESSED EVIDENCE (HTML VIEW) .. 97

http://www.medina-project.eu/
file:///C:/Users/106369/Fabasoft%20Cloud%20Austria/Organization%20Folder/Work%20Packages/WP3/Deliverables/D3.6/01_Final/MEDINA_D3.6_Tools_and_techniques_for_collecting_evidence_of_technical_and_organisational_measures-v3_v1.0.docx%23_Toc134187920

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 7 of 100

www.medina-project.eu

Terms and abbreviations

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AWS Amazon Web Services

BSD Berkeley Software Distribution

BSI Bundesamt für Sicherheit in der Informationstechnik

CI/CD Continuous Integration / Continuous Deployment

CLI Command Line Interface

CloudPG Cloud Property Graph

CPG Code Property Graph

CPU Central Processing Unit

CSA or EU CSA EU Cybersecurity Act

CSP Cloud Service Provider

CVE Common Vulnerabilities and Exposures

DB Data Base

DSL Domain Specific Language

DLT Distributed Ledger Technologies

EC European Commission

ELK ElasticSearch, Logstash, Kibana

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

GDPR General Data Protection Regulation

GNU GPL GNU General Public License

GPL General Public License

gRPC Google Remote Procedure Call

GPU Graphics Processing Unit

GUI Graphical User Interface

HIPAA Health Insurance Portability and Accountability Act

HTTP HyperText Markup Language

IaaS Infrastructure as a Service

IDE Integrated Development Environment

JNI Java Native Interface

JSON JavaScript Object Notation

K8S Kubernetes

KPI Key Performance Indicator

LLVM Low Level Virtual Machine

LLVM-IR Low Level Virtual Machine Intermediate Representation

LSP Language Server Protocol

Nmap Network Mapper

OASIS Organization for the Advancement of Structured Information

OPA Open Policy Agent

OS Operating System

OWASP Open Web Application Security Project

PaaS Platform as a Service

PCI DSS Payment Card Industry Data Security Standard

PoC Proof of Concept

RAM Random Access Memory

REST Representational State Transfer

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 8 of 100

www.medina-project.eu

RPC Remote Procedure Calls

SARIF Static Analysis Results Interchange Format

SAST Static Application Security Testing

SSL Secure Sockets Layer

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

YAML Yet Another Markup Language

XML Extensible Markup Language

VAT Vulnerability Assessment Tools

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 9 of 100

www.medina-project.eu

Executive Summary

This deliverable presents the third and final version of the design, architecture, and
implementation state of the MEDINA evidence gathering components which have been
developed in the scope of Task 3.2, Task 3.3, and Task 3.4. It describes the components that
produce evidence based on the assessment of cloud infrastructure (Clouditor, Wazuh, VAT),
assessment of cloud applications source code (Cloud Property Graph and its LLVM extension and
Codyze), and assessment of organisational measures (AMOE), providing an overview of how
these components relate and interact between each other and the rest of the MEDINA
framework.

For each component, this document describes its purpose and scope, the coverage of MEDINA
requirements, the component’s internal architecture and its subcomponents, the external
architecture and relation to other components, the implementation state at the point of
producing this deliverable, and technical details of the component including the programming
languages and frameworks used, information about the packaging and installation of the
component, and licensing. It is also mentioned which EUCS [1] requirements the respective
evidence gathering tool should cover.

The components presented in this document currently satisfy all their functional requirements
and are fully integrated with other components of the MEDINA framework. An overview of
requirement fulfilment is presented in Appendix A: MEDINA Requirements Implementation
Overview.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 10 of 100

www.medina-project.eu

1 Introduction

Any automated compliance monitoring must start with the gathering of evidence upon which
the analysis and decisions about the certification state can be made. In the case of MEDINA, this
is done with components that first assess cloud infrastructure, resources and processes and then
produce evidence about their status for further compliance check.

This document presents the technical details about the implementation of evidence gathering
tools. The evidence gathering methodology, integration of evidence gathering tools into
MEDINA framework (Task 3.1) and maintaining the trustworthiness of evidence (Task 3.5) are
presented in more detail in deliverable D3.3 [2] that has been released in parallel with D3.6. The
deliverable D3.3 also contains description of the design of evidence gathering components, an
overview of the related state of the art as well as a more detailed analysis of the coverage of
EUCS requirements by each of all MEDINA evidence gathering tools. The external architecture
of the components and the relationship with all other MEDINA tools is further described in the
scope of the overall MEDINA architecture in D5.2 [3], which also lists all MEDINA functional and
technical requirements, elicited in WP5.

This document is the successor of D3.5 [4], which presented the intermediate (in month 24)
versions of the same components mentioned above. D3.6 follows the same structure and keeps
some of the content of the previous version to keep the document self-contained and easier to
follow.

1.1 About this deliverable

This is a report on the final version of the design, implementation, and integration of the
MEDINA Evidence Management Tools. It is the third of three iterations (following D3.5 [4]) of
the deliverable resulting from:

• Task 3.2, implementing the tools for assessing the security performance of cloud
workloads and providing evidence about fulfilment of technical measures related to the
operational cloud infrastructure.

• Task 3.3, implementing tools for assessing and collecting evidence about the security
implications of cloud applications used and their data flows through analysis of the
application source code.

• Task 3.4, implementing a component for the assessment of organisational measures
based on the analysis of CSP’s documentation about their policies and processes.

1.2 Document Structure

This document is organised in the following sections:

1. Introduction (section 1) provides the context of the results reported in this document,
their scope and structure, and mentions the relationship to other work in the MEDINA
project, as well as the modifications of this document compared to its second version,
D3.5 [4].

2. Evidence Management Tools High-level Architecture (section 2) gives an overview of the
components described in this document, and presents the architecture and relations
between them.

3. Security Assessment of Cloud Infrastructure (section 3) reports on the design and
implementation of Clouditor, Wazuh, and Vulnerability Assessment Tools. The goal of
these components is to provide evidence about conformity to technical measures
regarding the cloud infrastructure and its configuration.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 11 of 100

www.medina-project.eu

4. Security Assessment of Cloud Applications (section 4) reports on the design and
implementation of Cloud Property Graph and Codyze components for cloud application
source code analysis and provision of related technical evidence.

5. Assessment of Organisational Measures (section 5) gives a report on the design and
implementation of the component for extracting evidence of organisational measures
from policy documents (AMOE).

6. Conclusion (section 6) summarizes and briefly comments on the reported results.

Appendix A (section 8) gives an overview on how components cover the EUCS requirements.

Appendices B - F (sections 9-13) contain the readme, installation instructions and user manuals

for the components described in the document.

1.3 Updates from D3.5

It should be noted that this document keeps some content that was included in D3.5 [4] and has
not changed since then. Such material is kept in this deliverable to make it self-contained and
easier to follow. For simpler tracking of progress and updates with regards to the previous
deliverable version (D3.5), Table 1 shows a brief overview of the changes and additions to each
of the document sections.

Table 1. Overview of deliverable updates with respect to D3.5

Section Changes

2 Minor updates to the description of the Cloud Property Graph and LLMV
extensions

3.1 • Minor updates to the general description

• Updated requirements implementation status

• Updated info about the database in the section “Technical specifications”

• Added description of new features in the section “Advancements within
MEDINA”

• Updated info about Security Assessment and the Orchestrator in the
section “Limitations and future work”

3.2 • Updated requirements implementation status

• Updated info about Wazuh and VAT Evidence Collector packages in the
section “Package information”

• Updated description of covered metrics in the section “Limitations and
future work”

3.3 • Updated description of requirements/metrics covered and the custom
script functionality in the section “Functional description”

• Updated requirements implementation status

• Updated description of advances in the section “Advancements within
MEDINA”

• Updated description of the custom script implementation status in
section “Limitations and future work”

4.1 • Updated functional description

• Update section on relevant requirements and their implementation state

4.2 • Added new section “LLVM Extensions of the Code Property Graph”

4.3 • Moved the Codyze description from section 4.2 to 4.3

• Update section on relevant requirements and their implementation state

• Updated section on limitation and future work reflecting progress

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 12 of 100

www.medina-project.eu

5 • Updated descriptions regarding installation and download

6 • Updated description to reflect the final status of evidence gathering
components

Appendix A Contents were updated according to the current (final) implementation state
of the components. Added info about requirements covered by the LLVM
Extensions of the Code Property Graph.

Appendix B Footnote corrections in the section containing a README, user manual and
installation instructions for Clouditor.

Appendix C Updated installation instructions and footnote corrections in the section
containing the user manual and installation instructions for Codyze.

Appendix D Minor text corrections.

Appendix E Figure numbers and minor text corrections in the section containing the user
manual for AMOE.

Appendix F New section containing readme and installation instructions for Wazuh and
VAT Evidence Collector.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 13 of 100

www.medina-project.eu

2 Evidence Management Tools High-level Architecture

This section gives a brief overview of the high-level architecture of MEDINA WP3 components,
which result in the MEDINA Evidence Management Tools. These components gather evidence
about CSP’s fulfilment of technical and organisational measures, perform initial processing of
the evidence, and transmit it to other MEDINA components. The overall architecture of the
MEDINA framework is presented in more detail in D5.2 [3].

Figure 1 shows the architecture and data workflow among WP3 and other related components
in the MEDINA framework. The tools for collecting evidence about technical measures are
represented at the bottom part of the figure. They are connected to the infrastructure under
evaluation either through an interface of the underlying cloud provider or installed directly in
the CSP’s (virtual) machines. These components are further described in section 3:

• Clouditor (section 3.1) collects evidence about the secure configuration of cloud
resources.

• Wazuh (section 3.2) is installed in the CSP’s cloud infrastructure and monitors the
security state of the individual machines.

• Vulnerability Assessment Tools (section 3.3) are also installed in the CSP’s infrastructure
and can periodically scan the configured servers and networks for vulnerabilities, or run
user-provided custom scripts for monitoring specialized metrics and producing evidence
based on the output.

Technical evidence, obtained from the analysis of the source code of cloud applications, is
gathered by Codyze (section 4.3). The Cloud Property Graph (section 4.1) and the LLVM
extensions (section 4.2) can also gather evidence based on the analysed source code or binaries,
but they are not included in the architectural diagram since they are novel research approaches
that are not integrated with the other components (see explanation in section 4). Evidence
about technical measures can also be collected by custom CSP-native components.

AMOE, the component for organisational evidence gathering and processing (section 5) analyses
various documents and policies of the CSP and based on this produces evidence about the CSP's
compliance to organisational requirements of the certification framework.

The tools for processing the evidence into assessment results and gathering them are
represented in the middle of Figure 1. The evidence produced by all the above-mentioned
components must be transformed into security assessment results with the information
whether the addressed metric measured on the particular evaluation resource (e.g., virtual
machine, cloud computing resource, storage, process, policy) is compliant or not. The
assessment results can be either produced by the evidence collection components internally
and sent directly to the Orchestrator, or by the specialized Security Assessment component (both
described in section 3.1).

The Security Assessment component assesses the received evidence based on the target values
coming from the certification specification and the CSP’s configuration. For each evidence
object, the Security Assessment outputs a security assessment result with the information
whether the addressed metric measured on the particular evaluation resource (e.g., virtual
machine, cloud computing resource, storage, process, policy) is compliant or not. The
component is based on the respective component in the Clouditor framework.

The assessment results and associated evidence are all gathered by the Orchestrator (also based
on Clouditor). It stores this data in the respective databases and makes it available to the other

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 14 of 100

www.medina-project.eu

components, mostly part of WP4 and WP6 (e.g., Continuous Certification Evaluation 1, Company
Compliance Dashboard 2). The evidence and assessment results are also forwarded to the
MEDINA Evidence Trustworthiness Management system 3, which uses Blockchain technologies
to ensure the authenticity of data when retrieved at a later stage.

Figure 1. WP3 Architecture and directly related components (source: D3.3 [2])

1 CCE is developed in the scope of WP4 and reported in D4.3 [54]
2 CCD is developed in the scope of WP6 and reported in D6.3 [55]
3 MEDINA Evidence Trustworthiness Management is developed in the scope of WP3 and reported in D3.3
[3]

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 15 of 100

www.medina-project.eu

3 Security Assessment of Cloud Infrastructure

This section describes the technical structure and implementation state of the components
responsible for collecting evidence about the security performance of cloud workloads (e.g.,
cloud configuration, virtual machines and containers, or software running in them). The
following subsections present the individual components, developed in the scope of Tasks 3.1
and 3.2.

3.1 Clouditor-Based Components

Clouditor is a monitoring tool for cloud systems that can automatically and continuously discover
existing resources in a cloud system, query their configuration, assess the gathered information
according to pre-defined metrics, and more. These metrics may be mapped to certification
frameworks, such as the EUCS [1], to demonstrate compliance with the certification
requirements.

Several components in the MEDINA framework are based on Clouditor, i.e., the Cloud Evidence
Collector, the Security Assessment, and the Orchestrator.

3.1.1 Implementation

The following subsections provide functional and technical descriptions of the Clouditor-based
components.

3.1.1.1 Functional description

There are three components that make up Clouditor: the Cloud Evidence Collector, which
discovers cloud resources and creates MEDINA evidence for them; the Security Assessment,
which uses metrics to assess evidence and creates assessment results; and the Orchestrator,
which manages the evidence and assessment results flow, storage, and other utility
functionalities.

The current implementation of Clouditor supports several cloud systems, i.e., Microsoft Azure,
Amazon Web Services, and Kubernetes. The resource configurations in these platforms are
checked by means of various metrics. Examples of resource configuration checks are the
following:

• Secure transport encryption with TLS

• Secure TLS version

• Data at rest encryption in various storage resources

• Resource deployment in allowed regions

3.1.1.1.1 Fitting into overall MEDINA Architecture

The three microservices that make up Clouditor constitute central components in the MEDINA
framework as described in the following. Figure 2 shows an overview of the current Clouditor
architecture.

Cloud Evidence Collector

The Cloud Evidence Collector gathers evidence from cloud workloads. As such, it is one of the
evidence collectors that can be integrated into the MEDINA framework.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 16 of 100

www.medina-project.eu

Security Assessment

The Security Assessment first retrieves metrics and target values from the Orchestrator and then
assesses any incoming evidence accordingly. The Security Assessment can be integrated with
various evidence collectors. In this way, CSPs can develop their own evidence collectors, and
simply let them send evidence to the (Clouditor) Security Assessment.

Orchestrator

The Orchestrator is the central management component of MEDINA which manages database
access, cloud services, a user interface, and more. If CSPs decide to implement a custom Security
Assessment, they can integrate it with the Orchestrator according to the MEDINA data model.

The Clouditor Security Assessment currently processes evidence of the Cloud Evidence Collector,
as well as evidence of other evidence collection tools, e.g., Wazuh. The Orchestrator processes
the results of the Clouditor Security Assessment as well as results of other security assessment
tools, e.g., Codyze.

Figure 2. Overview of the Clouditor architecture

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 17 of 100

www.medina-project.eu

3.1.1.1.2 Component cards

Table 2. Component card for the Cloud Evidence Collector

Component
Name

Cloud Evidence Collector

Main
functionalities

The component provides the following functionalities:

• Evidence gathering from Cloud APIs

Sub-
components
Description

The evidence gathering discovers resources in cloud systems, like Azure and
AWS, via their standard APIs, and forwards this information to the Security
Assessment. It is thus composed of the subcomponents Azure-Discovery,
AWS-Discovery, and Kubernetes-Discovery.

Main logical
Interfaces

The Cloud Evidence Collector does not offer APIs to be called by other
components. It only retrieves data about cloud resources and translates them
to the MEDINA evidence data model.

Note that a graphical presentation of the resources that are discovered by this
component can be obtained via the Orchestrator UI.

Requirements
Mapping

List of requirements covered by this component (see in D5.2 [3]):
TEGT.C.01-02, TEGT.S.01

Interaction
with other

components

Interfacing Component Interface Description

Security Assessment Send evidence

Relevant
sequence
diagram/s

Current TRL4 TRL4

Target TRL5 TRL5

Programming
language

Go

License Apache 2.0

WP and task WP3, Task 3.1

MEDINA
Workflows

WF2 “Preparation of MEDINA Components”, and
WF5 “EUCS Compliance Assessment” (see D5.4 [5])

4 TRL value before validation
5 TRL value after validation

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 18 of 100

www.medina-project.eu

Table 3. Component card for the Security Assessment

Component
Name

Security Assessment

Main
functionalities

The component provides the following functionalities:

• Assessment of evidence according to pre-defined metrics

Sub-
components
Description

The Security Assessment compares the received evidence against pre-defined
metrics and their target values and forwards the resulting assessment results
to the Orchestrator.

Main logical
Interfaces

Note that a graphical presentation of assessment results can be obtained via
the Orchestrator UI.

Interface name Description Interface technology

Assessment
interface

An interface for providing
evidence to be assessed against
suitable metrics

gRPC

Requirements
Mapping

List of requirements covered by this component (see D5.2 [3]):
EAT.01-03

Interaction
with other

components

Interfacing Component Interface Description

Orchestrator Send assessment results

Relevant
sequence
diagram/s

Current TRL6 TRL4

Target TRL7 TRL5

Programming
language

Go

License Apache 2.0

WP and task WP3, Task T3.2

MEDINA
Workflows

WF2 “Preparation of MEDINA Components”, and
WF5 “EUCS Compliance Assessment” (see D5.4 [5])

6 TRL value before validation
7 TRL value after validation

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 19 of 100

www.medina-project.eu

Table 4. Component card for the Orchestrator

Component
Name

Orchestrator

Main
functionalities

The component provides the following functionalities:

• Provide configuration interfaces

• Provide interfaces to the databases

• Forward assessment results to appropriate components

Sub-
components
Description

The Orchestrator mainly provides APIs to various components (see below).

Main logical
Interfaces

Interface name Description Interface technology

Assessment
results storage

An interface to provide
assessment results which are
then stored in the relevant
database, and forwarded to the
relevant components

REST / gRPC

Database
access

An interface that provides
access to stored evidence and
assessment results, to the
configuration of cloud services
and targets of evaluation, etc.

REST / gRPC

DLT storage An interface to the DLT through
which evidence and assessment
result checksums are stored to
the trustworthiness system.

REST

Configure
metrics and
target values

An interface that provides
access to metrics and target
values

REST / gRPC

Graphical UI A graphical UI that allows to
view stored data, configure
cloud services and targets of
evaluation, etc.

JavaScript

Requirements
Mapping

List of requirements covered by this component (see D5.2 [3]):
ECO.01-04

Interaction
with other

components

Interfacing Component Interface Description

Assessment tools Receives assessment results from
assessment tools

Databases Stores and retrieves evidence/assessment
results from the relevant databases

Trustworthiness system Sends assessment result hashes to the
trustworthiness system

Metrics and target values
repository

Retrieves metrics and target values for the
assessment components and offers an API to
modify them

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 20 of 100

www.medina-project.eu

Relevant
sequence
diagram/s

Current TRL8 TRL4

Target TRL9 TRL5

Programming
language

Go

License Apache 2.0

WP and task WP3, Task3.1

MEDINA
Workflows

WF2 “Preparation of MEDINA Components”,
WF3 “EUCS deployment on ToC”,
WF5 “EUCS Compliance Assessment”, and
WF6 “EUCS – Maintenance of ToC certificate” (see D5.4 [5])

3.1.1.1.3 Related requirements, common for all Clouditor’s components

The relevant requirements from Deliverable D5.2 [3] are listed below with a brief description of
how they are implemented. The requirements are grouped by each Clouditor component.

Common requirements

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e. in
(high)-frequency intervals.

Implementation
state

Fully implemented

Currently, the discovery interval in the Cloud Evidence Collector component is set to 5 minutes
and can only be changed in the source code.

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description The developed tools must provide collected evidence to a security
assessment tool via its offered APIs.

Implementation
state

Fully implemented

The Cloud Evidence Collector sends evidence to the Security Assessment component via its
offered APIs.

8 TRL value before validation
9 TRL value after validation

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 21 of 100

www.medina-project.eu

Related requirements for the Cloud Evidence Collector component

Requirement id TEGT.S.01

Short title Collect evidence from cloud interfaces

Description The developed tool must be able to collect evidence of cloud workloads,
e.g., virtual machines, containers, and serverless functions.

Implementation
state

Fully implemented

The Cloud Evidence Collector gathers evidence of cloud workloads from different CSPs (Azure,
AWS, etc.). Resources are currently discovered in compute, storage, and network services in
Azure, compute and storage services in AWS, and compute and network services in Kubernetes.

Requirement id TEGT.S.09

Short title Collect evidence from CSP-native services

Description The developed tool should be able to query findings from CSP-native
services, like Azure Policy, to integrate them in MEDINA by querying the
respective cloud API.

Implementation
state

Fully implemented

Currently, a prototypical implementation of the CSP-native evidence collection is implemented.
CSPs benefit from this component by integrating security assessment results from existing
security posture management systems, such as Microsoft Azure Security Center.

Related requirements for the Security Assessment component

Requirement id EAT.01

Short title Evidence assessment target

Description The target values for the evidence assessment must be retrieved from a
central repository of target values (WP2).

Implementation
state

Fully implemented

The Security Assessment component retrieves target values from the Orchestrator, which in turn
retrieves them from a central repository.

Requirement id EAT.02

Short title Continuous evidence assessment

Description All evidence collection tools must forward evidence and measurement
results (according to the data format defined in MEDINA) to the respective
assessment components.

Implementation
state

Fully implemented

The Cloud Evidence Collector sends evidence to the Security Assessment by using the provided
APIs. They are then used to generate assessment results which indicate if the evidence is
compliant or not.

Requirement id EAT.03

Short title Evidence assessment results

Description The assessment results of evidence assessments must be submitted to the
evidence Orchestrator via the API it provides.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 22 of 100

www.medina-project.eu

Implementation
state

Fully implemented

The Security Assessment component submits the assessment results by using the provided
Orchestrator APIs.

Requirement id EAT.04

Short title Assess CSP-Native evidence

Description The developed tool should be able to assess the CSP-native evidence or
translate CSP-native assessment results to the MEDINA data model.

Implementation
state

Fully implemented

Currently, a prototypical implementation of the CSP-native evidence collection and assessment
is implemented. See also TEGT.S.09.

Related requirements for the Orchestrator component

Requirement id ECO.01

Short title Provision of Interfaces

Description The evidence Orchestrator must provide standard interfaces for the
evidence collection and assessment tools (T3.2-T3.4) to securely store
their results.

Implementation
state

Fully implemented

Interfaces are provided by RPC (Remote Procedure Call) APIs with gRPC10, as well as via REST.
Currently, the assessment tools send assessment results accompanied by the evidence they are
based on. The transmission of evidence to the database can be encrypted.

Requirement id ECO.02

Short title Conformity to selected assurance level

Description The evidence Orchestrator must ensure that the evidence collection (T3.2-
T3.4) is performed according to the selected assurance level, i.e., it must
trigger the evidence collection of the respective tools.

Implementation
state

Not implemented (out of scope)

Currently, the Cloud Evidence Collector is triggered via a CLI (Command Line Interface)
command. Then the collected evidence is sent to the Security Assessment and the generated
assessment results are then sent to the Orchestrator which stores them in a database. Since
MEDINA focuses only on the high assurance level, this requirement is out of scope and is not
implemented.

Requirement id ECO.03

Short title Secure Transmission to evidence storage

Description The evidence Orchestrator must securely transmit evidence to the
evidence storage.

Implementation
state

Fully implemented

10 https://grpc.io/

http://www.medina-project.eu/
https://grpc.io/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 23 of 100

www.medina-project.eu

The Orchestrator can store evidence either in memory or in a persistent database. In the latter
case, the evidence can also be transmitted in an encrypted form, simply by specifying an SSL
URL.

Requirement id ECO.04

Short title Transmission of evidence checksums

Description The evidence Orchestrator should integrate a Ledger client that stores
checksums of evidence in a DLT.

Implementation
state

Fully implemented

The Orchestrator transforms assessment results into the desired format and forwards them to
the ledger client.

3.1.1.2 Technical description

In the following sections, we provide the technical description of Clouditor’s components. First,
the architectural design is presented consisting of the architectural view and the connection
between the respective components. Then, information about the single components is
presented and, finally, an overview of the technical description for the implementation of the
prototype is given.

3.1.1.2.1 Prototype architecture

Clouditor employs a microservice architecture allowing individual components to scale and to
be replaced, or allowing to add new components, e.g., adding evidence collection tools for new
cloud services/providers. The Cloud Evidence Collector, Security Assessment and Orchestrator
are such modular components that represent microservices. Like all parts in Clouditor, they are
written in Go and communicate among each other via the gRPC protocol.

Since the architecture is defined by the three components and the communication between
them, interface snippets of the individual components are provided below. For the detailed
specification see the ./proto folder within the Clouditor repository11. The specification is defined
in the Protocol Buffer Version 3 Language Specification. In addition, see the ./openapi folder
containing each component`s auto generated .yaml files which follow the OpenAPI description
for REST APIs.

Cloud Evidence Collector interface

Table 5. Overview of the Cloud Evidence Collector's API functions

Function Name Parameters Return Type Description

Start - successful
(bool)

Triggers the start of the discovering
process. Returns true if the
component started without errors

Query filtered_type
(string)

results (list of
evidence)

Returns the latest set of evidence
discovered

11 https://github.com/clouditor/clouditor

http://www.medina-project.eu/
https://github.com/clouditor/clouditor

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 24 of 100

www.medina-project.eu

Security Assessment interface

Table 6. Overview of the Security Assessment module's API functions

Function Name Parameters Return Type Description

TriggerAssessment options (string) - Triggers the security
assessment

ListAssessmentResults - results (list of
assessment
results)

Lists the latest set of
assessment results

AssessEvidence/
AssessEvidences

evidence
(Evidence) /
evidences
(stream of
Evidence)

successful (bool)/ - Assesses the evidence/
stream of evidence
provided by the
evidence collection tool

Orchestrator interface

Table 7. Overview of the Orchestrator's API functions

Function Name Parameters Return Type Description

RegisterAssessmentTool tools
(AssessmentTool)

tool
(AssessmentTool)

Registers the
assessment tool

GetAssessmentTool tool_id (string) tool
(AssessmentTool)

Returns the
assessment tool with
the given tool id

UpdateAssessmentTool tool_id (string),
tool
(AssessmentTool)

tool
(AssessmentTool)

Updates the
assessment tool given
by the tool id

DeregisterAssessmentT
ool

tool_id (string) - Deregisters the
assessment tool with
the given tool id

StoreAssessment/
StoreAssessment

result
(AssessmentResult)
/ results (stream of
AssessmentResult)

- Stores the assessment
result/ stream of
assessment results
provided by the
assessment tool

StoreEvidenceResult/
StoreEvidenceResults

result
(EvidenceResult)/
results (stream of
EvidenceResult)

- Stores the evidence
provided by an
assessment tool

GetMetric metric_id (string) Metric Returns the metric
with the given metric
id

ListMetrics - List of Metrics Returns a list of all
metrics provided by
the Catalogue of
Controls and Metrics

GetCertificate Certificate ID Certificate Gets a certificate, e.g.,
an EUCS certificate

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 25 of 100

www.medina-project.eu

Function Name Parameters Return Type Description

ListCertificate - List of certificates Returns a list of
certificates

CreateCertificate Certificate Certificate Validates, stores, and
returns the created
certificate

UpdateCertificate Certificate,
Certifiate ID

Certificate Validates, updates,
and returns the
updated certificate

RemoveCertificate Certificate ID - Deletes the certificate

GetCloudService Cloud Service ID Cloud Service Returns the Cloud
Service

ListCloudServices - List of Cloud
Services

Returns a list of Cloud
Services

RegisterCloudService Cloud Service Cloud Service Validates, stores, and
returns the created
certificate

UpdateCloudService Cloud Service,
Cloud Service ID

Cloud Service Validates, updates,
and returns the
updated certificate

RemoveCloudService Cloud Service ID - Deletes the Cloud
Service

GetMetricImplementati
on

Metric
Implementation

Metric
Implementation

Gets a Metric
Implementation

ListMetricImplementati
ons

- List of certificates Returns a list of Metric
Implementations

CreateMetricImplement
ation

Metric
Implementation

Metric
Implementation

Validates, stores, and
returns the created
Metric
Implementation

UpdateMetricImplemen
tation

Metric
Implementation,
Metric
Implementation ID

Metric
Implementation

Validates, updates,
and returns the
updated Metric
Implementation

RemoveMetricImpleme
ntation

Metric
Implementation ID

- Deletes the Metric
Implementation

GetCatalog Catalog ID Catalog Gets a Catalog

ListCatalogs - List of Catalogs Returns a list of
Catalogs

CreateCatalog Catalog Catalog Validates, stores, and
returns the created
Catalog

UpdateCatalog Catalog, CatalogID Catalog Validates, updates,
and returns the
updated Catalog

RemoveCatalog CatalogID - Deletes the Catalog

GetCategory Category ID Category Gets a Category

ListCategory - List of Categories Returns a list of
Categories

GetControl Control ID Control Gets the Control

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 26 of 100

www.medina-project.eu

Function Name Parameters Return Type Description

ListControl - Controls Returns a list of
Controls

GetTargetOfEvaluation Target Of
Evaluation ID

Target Of
Evaluation

Gets a Target Of
Evaluation

ListTargetsOfEvaluation - List of Targets Of
Evaluation

Returns a list of
Targets Of Evaluation

CreateTargetOfEvaluati
on

Target Of
Evaluation

Target Of
Evaluation

Validates, stores, and
returns the created
Target Of Evaluation

UpdateTargetOfEvaluati
on

Target Of
Evaluation, Target
Of Evaluation ID

Target Of
Evaluation

Validates, updates,
and returns the
updated Target Of
Evaluation

RemoveTargetOfEvaluat
ion

Target Of
Evaluation ID

- Deletes the Target Of
Evaluation

3.1.1.2.2 Description of components

This section presents the tools provided by Clouditor (see Figure 2), describing how they have
been developed to meet the MEDINA requirements.

Cloud Evidence Collector

The functionality of the Cloud Evidence Collector can be divided into 3 parts:

• Fetching relevant properties of cloud resources (discovery),

• Creation of evidence objects, including their ontological concepts (see also D2.5 [6]),
and

• Forwarding this evidence to the Security Assessment component.

Within the Cloud Evidence Collector, the discovery package is located at the top-level. Its
purpose is to communicate with other services/components (in this case the Security
Assessment component). In a first step, this service establishes a connection to the Security
Assessment component, then it starts the various discoverers (e.g., for AWS S3), and forwards
the collected evidence in a continuous manner. The transmission is done via a gRPC channel.

For each cloud vendor there is a separate sub-package, e.g., for AWS and Azure. In such a
package there is one file (e.g. aws.go) containing the cloud vendor-specific discoverer which
loads and initializes configurations and credentials that all underlying services share. For each
discovered cloud service, there is a corresponding Go file that fetches the desired properties of
that service via API calls (programmatic access). According to the ontology defined in WP2, these
properties are then converted into a format that is independent from the used cloud vendor.
The properties that can be fetched are dependent on the range of API calls the respective cloud
vendor provides.

For Microsoft Azure, the currently discoverable services are compute, blob storage and network.
In the case of Amazon Web Services, compute as well as blob storage. Through the Kubernetes
API compute and network resources are currently discoverable.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 27 of 100

www.medina-project.eu

Security Assessment

Clouditor's Security Assessment is responsible for evaluating incoming evidence and sending the
generated assessment results to the Orchestrator.

Evidence is received from components – the evidence collectors – such as the Cloud Evidence
Collector or the Wazuh and VAT Evidence Collector. As mentioned above, Clouditor follows a
microservice architecture which allows any evidence collector to connect to it in a modular way.
Such evidence collection tools only need to implement the MEDINA API in gRPC to send evidence
as Protocol Buffer messages. Additionally, REST over HTTP is available for evidence collecting
tools. The gRPC approach, however, allows to send evidence in a stream which can significantly
increase the throughput.

In a previous version of Clouditor, a dedicated policy rule language was used to assess evidence.
Since no other tools outside the Clouditor tool suite needed to be connected to it, this approach
was sufficient. In MEDINA, however, various evidence collection tools may connect to Clouditor
– either to the Security Assessment or to the Orchestrator. To simplify the definition of policies,
a more commonly used policy language, Rego from Open Policy Agent (OPA)12, was introduced
instead. OPA uses Rego as a uniform declarative policy language. A policy written in Rego asserts
that an input (e.g., an evidence) conforms to user-specified constraints (target values and
operators).

In the definition of Rego policies, the cloud resource ontology (see D2.45 [6]) is used. Since
evidence provided by the evidence collection tools provide their ontological assignments, the
Rego policies only need to specify rules based on properties following the format of the
ontology. Consider the following example: A policy checks if an encryption algorithm’s key
length is larger than the given target value, e.g., 256 bits (see Figure 3). The user-specific
constraint may then state that the algorithm’s key length must be at least 256 bit long (see
Figure 4). The input, i.e., the evidence, is illustrated in Figure 5. The algorithm version in the
input is 256, therefore the policy engine will output the compliance state of true. Both, input
and the policy written in Rego, are aligned with the cloud resource ontology. These policies can
be written more easily by non-experts without having to know how evidence collection,
assessment, orchestration, etc. work. The person defining the policy only needs to know the
ontology to write policies based on it.

In the MEDINA framework, the Rego policies are generated from metrics which are stored in the
Catalogue of controls and metrics component (see D2.2 [7]). When the Orchestrator triggers the
assessment to start, it also sends the respective metrics along. The assessment then stores these
metrics in cache for fast processing of the evidence.

The outcome of these assessments, the assessment results, are then sent to the Orchestrator
and will eventually reach the Continuous Certification Evaluation component (see D4.3 [8]).

12 https://www.openpolicyagent.org/docs/latest/policy-language/

http://www.medina-project.eu/
https://www.openpolicyagent.org/docs/latest/policy-language/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 28 of 100

www.medina-project.eu

Figure 3. Sample policies written in Rego: They compare a given encryption algorithm to a given target
value (see next figures), depending on a given operator

Figure 4. Sample data that is provided by the central Catalogue of Controls and Metrics values

Figure 5. A sample excerpt of an evidence

The approach of semantically enriching evidence to enable a generic assessment as shown
above has also been published at the SAC 2023 conference13.

Orchestrator

The Orchestrator is a central component in the MEDINA framework and manages dataflows
between components. As such, it also manages the interaction between components of
different work packages. The Orchestrator also offers APIs to store and retrieve data and
manage assessment tools. The APIs are defined in gRPC allowing other components to only
implement the given API to send the data as Protocol Buffer messages. For some APIs it is also
possible to send the data in a stream which can increase the throughput. Its interactions with
other components and its functionalities are summarized in the following:

• The Orchestrator exposes two APIs for the security assessment tools, e.g., Clouditor
Security Assessment, CSP-native or Codyze security assessment tool. One API is for the
assessment results and another one to store evidence directly.

• The Orchestrator also acts as the central interface to the Catalogue of controls and
metrics which is developed within WP2 (see deliverable D2.2 [7]). As such, it is
responsible for providing relevant metrics to the assessment component.

13 At the time of writing, the proceedings have not yet been published.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 29 of 100

www.medina-project.eu

• Furthermore, the Orchestrator stores checksums of evidence and assessment results in
the DLT via a Blockchain client. The implementation of the MEDINA Evidence
Trustworthiness Management System component is also described in D3.3 [2].

• Additionally, the Orchestrator forwards assessment results to the Continuous
Certification Evaluation component which is developed within WP4 (see deliverable
D4.3 [8]).

• The Orchestrator stores the evidence as well as the assessment results into the
associated storages. It offers an in-memory storage as well as a PostgreSQL connection.

3.1.1.2.3 Technical specifications

The prototype is written in Go (version 1.19). A selection of key libraries is shown in the following
and a full list of used libraries can be found in the Github repository11.

• github.com/Azure/azure-sdk-for-go

• github.com/aws/aws-sdk-go-v2

• k8s.io/client-go

• google.golang.org/grpc

• google.golang.org/protobuf

• gorm.io/driver/postgres

• gorm.io/driver/sqlite

Either an in-memory or a PostgreSQL database can be used.

3.1.2 Delivery and usage

The following sections give a short overview of the delivery and usage of the prototype. Further
technical details can be found in the Clouditor Github Repository11.

Please note that the README, installation instructions and user manual of Clouditor can be
found in Appendix B: Clouditor - Readme, Installation instructions and User manual.

3.1.2.1 Package information

Table 8 shows the structure of the important folders and a brief description of them.

Table 8. Overview of the Clouditor package structure

Folder Description

api/ Code needed for the communication between the microservices. It
mainly consists of auto-generated Protobuf and gRPC files.

cli/ This folder contains the Clouditor CLI based source code files.

cmd/ This folder contains the main files.

openapi/ This folder contains the auto-generated OpenAPI files.

persistence/ This folder contains the DB specific files.

policies/ This folder contains the Rego policy files per metric.

proto/ This folder contains the Protobuf files.

rest/ This folder contains the REST gateway implementation.

service/ This folder contains the source code for the microservices separated in
individual folders for each service.

voc/ This folder contains the vocabulary files based on the ontology defined in
WP2.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 30 of 100

www.medina-project.eu

3.1.2.2 Licensing information

The Clouditor components are licensed under the open-source Apache License 2.0.

3.1.2.3 Download

The Clouditor source code can be found in the Clouditor Github repository14. The adapted
MEDINA components can be found in the public MEDINA repository15.

3.1.3 Advancements within MEDINA

Several modifications and features have been implemented in Clouditor throughout the MEDINA
project:

• The component has been completely reimplemented in the Go programming language.

• The previous Clouditor architecture has been redesigned to create several
microservices, e.g., separate microservices for evidence gathering, assessment, and
orchestration. This modularization allows for better scalability, as well as allows to
integrate alternative services, for instance other evidence gathering tools.

• The evidence gathering service has been extended with an ontology mapping, i.e., the
resource properties that are discovered are enhanced with a mapping to a cloud
resource ontology. For example, a virtual machine’s properties are extended with a
mapping to the ontology concepts computing and virtual machine. This approach allows
to define metrics independently from the cloud provider and certification catalogue. For
information, please refer to the respective description in deliverable D2.5 [6] (cloud
resource ontology).

• As described above, the assessment service has been reimplemented as a separate
microservice as well to conform to the MEDINA guidelines and data model. Also, its
usage of the OPA16 policy engine has been added, which is used to evaluate incoming
evidence against metrics and their target values. These are defined using the OPA policy
language Rego.

• The Orchestrator service is a completely new component in Clouditor, i.e., its APIs, data
model, and integration with other components has been designed and implemented
from scratch within MEDINA.

• The three components have been integrated and tested with each other, as well as with
other MEDINA components, such as the Continuous Certification Evaluation, the
MEDINA Evidence Trustworthiness Management System, the Catalogue of Controls and
Metrics, and the DSL Mapper.

• Additional APIs have been implemented, for instance for the update of metric target
values.

• Integration of the various components with the central OAuth server.

• Improvement of the data model and persistence.

• Introduction of data entities and APIs for adding cloud services and certification
frameworks.

• Introduction of the Target of Evaluation which binds a cloud service to a certification
framework and supports an n:m relation between cloud services and certification
frameworks to be evaluated.

14 https://github.com/clouditor/clouditor
15 https://git.code.tecnalia.com/medina/public
16 https://www.openpolicyagent.org/

http://www.medina-project.eu/
https://github.com/clouditor/clouditor
https://git.code.tecnalia.com/medina/public
https://www.openpolicyagent.org/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 31 of 100

www.medina-project.eu

• Also, multiple integrations with other components have been developed to
automatically propagate newly created, or somehow updated, cloud services and
targets of evaluation to all components which need this data (e.g. the Risk Assessment
and Optimisation Framework).

• A user interface has been developed and adapted to the needs of the MEDINA use cases.

• Based on the feedback received from the first validation phase, numerous
improvements have been made with regard to the usability of the UI. Furthermore,
authorization functionalities have been implemented to limit the retrieval of
information about cloud services, Targets of Evaluation, certificates, etc., to the
authorized roles as specified in D5.4 [5].

3.1.4 Limitations and future work

Cloud Evidence Collector

The Cloud Evidence Collector, which currently collects evidence from Microsoft Azure, AWS, and
Kubernetes systems, is limited by the access rights it is given in the respective user management
system, such as Azure Active Directory. Therefore, it will only measure the resources that are
visible to its given user. Furthermore, cloud provider APIs may change, so the component needs
to be updated accordingly. If, for instance, relevant security properties like access control
properties change, their inclusion in the MEDINA evidence needs to be aligned in this
component. Also, the evidence collection is limited by the information that the cloud provider
APIs implement: if a certain encryption property, for example, would not be implemented by an
API, the evidence collection for that property would not be possible. Since Cloud Evidence
Collector adds ontological terms to the evidence, also limitations of the ontology need to be
considered. First, the ontology terms need to be added correctly to the evidence or the Security
Assessment will apply the wrong metrics to it. Second, the ontology needs to be maintained and
its changes need to be implemented accordingly in the evidence collection.

Security Assessment

The Security Assessment component uses the Open Policy Agent (OPA) and Rego to perform the
assessment of evidence against expected values (defined in the MEDINA metrics). OPA is in
version 0.50 as of March 2023; future breaking changes therefore may occur which have to be
incorporated in this component. It is furthermore dependent on the availability of the
Orchestrator since it must forward assessment results to the Orchestrator and receive metric
implementations (Rego code) from it.

Orchestrator

The Orchestrator is the central management component in MEDINA. While it presents an
efficient component for forwarding data, managing database accesses, etc., it is also a single
point of failure for the framework since without it, no evidence or assessment results can be
processed or stored.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 32 of 100

www.medina-project.eu

3.2 Wazuh

Wazuh [9] is an open-source security monitoring tool for threat detection, integrity monitoring,
incident response and basic compliance monitoring. It can be deployed on-premises or in hybrid
and cloud environments.

3.2.1 Implementation

The following subsections provide functional and technical descriptions of Wazuh.

3.2.1.1 Functional description

Wazuh’s role in MEDINA is to provide capabilities for threat detection to MEDINA users (CSPs)
while producing evidence related to its usage and potentially detected threats. Wazuh’s
connection to MEDINA is enabled by the Wazuh and VAT Evidence Collector component. It
connects to Wazuh to query its configuration and detected events and produces evidence based
on this data.

Unlike some other evidence gathering tools (e.g., Clouditor), Wazuh is not primarily connected
to the cloud interfaces, but its agents are installed directly on the (virtual) machines of the
monitored infrastructure. The agents can run on many different platforms, such as Windows,
Linux, Mac OS X, AIX, Solaris, and HP-UX. Wazuh includes several modules that each support
their respective detection capability. For each of the modules, specific rules are defined that
include internal metrics and thresholds to trigger events or alerts. When an alert is produced
based on some detected event(s), additional actions can be triggered to notify a user or another
component about it. With this capability, certain events (e.g., malware detected, Wazuh agent
shutdown…), can trigger changes of values for specific MEDINA metrics and event-driven
generation of evidence.

Wazuh’s detection modules include the following:

• Occurrence of changes within system files (file integrity checks): Wazuh agent monitors
the file system to detect changes in system files’ content or attributes. Changes of
system settings or other critical files can signify that the monitored machine is
compromised.

• Detection of malware and rootkits installed on the infrastructure: Wazuh can scan the
monitored system for various types of malware. It combines a signature-based approach
for detecting suspicious programs with anomaly detection capabilities, detecting
intrusions by monitoring system call responses. Signature-based malware detection is
supported through integration with the open-source antivirus engine ClamAV [10] or
VirusTotal [11], an online API for analysis of suspicious files.

• Number and severity of infrastructure vulnerabilities detected (e.g., CVE level of
dependencies installed on the OS being monitored): Wazuh identifies the software
installed on the monitored system and compares the versions with its online inventory
in order to find software known to contain vulnerabilities.

• Monitoring cloud logs via IaaS or PaaS API: Wazuh includes modules for integration with
some cloud providers’ APIs (Amazon AWS, Azure, Google Cloud) to analyse security
configuration of the cloud and notify about detected weaknesses.

• Compliance level with standards such as PCI DSS, HIPAA, GDPR: Wazuh integrates
verification for some of the basic requirements of the mentioned standards. The Wazuh
UI provides a dashboard with an overview of these requirements’ fulfilment.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 33 of 100

www.medina-project.eu

The main innovation of the usage of Wazuh and the extensions provided by MEDINA mainly lies
in the flexibility of the proposed architecture. MEDINA can offer Wazuh and its extensions to
the CSPs as a tool for incident detection and continuous monitoring of security indicators. Using
Wazuh, compliance with several security controls can be automatically verified and the
produced evidence integrated with the MEDINA framework. The controls that can be satisfied
with Wazuh relate to malware protection, logging, threat analytics, and automatic monitoring
(alerting). The final analysis of EUCS requirements covered by Wazuh is further described in D3.3
[2]. Beside the provided functionalities, Wazuh also offers a platform for implementing custom
detectors on the monitored machines and easily integrating them with MEDINA.

An example of collecting evidence with Wazuh is provided here for verifying the fulfilment of
(draft) EUCS requirement OPS-05.3H. This requirement reads: “The CSP shall automatically
monitor the systems covered by the malware protection and the configuration of the
corresponding mechanisms to guarantee fulfilment of above requirements, and the antimalware
scans to track detected malware or irregularities.” (The above requirement refers to the other
requirements from the OPS-05 control: Protection against malware – implementation).
According to the descriptions of these requirements, the conditions for regarding a machine
compliant with OPS-05.3H as verified by Wazuh, are:

• Enabled file integrity monitoring module

• Enabled malware and rootkit detection module

• Enabled integration with ClamAV or VirusTotal for additional malware protection

• At least one alerting service enabled in Wazuh to automatically notify the responsible
persons in case of detected alerts

The first three conditions ensure that malware protection is enabled, while the last condition
verifies that automatic monitoring is configured as well. To verify all conditions, the Wazuh and
VAT Evidence Collector component makes several API queries to Wazuh for each of the (virtual)
machines in scope. An evidence object is produced for each of the monitored machines with a
measurement value according to the obtained result – positive if (and only if) all the mentioned
conditions are satisfied.

3.2.1.1.1 Fitting into overall MEDINA Architecture

Wazuh is integrated with the rest of the MEDINA framework through the Wazuh and VAT
Evidence Collector component that gathers evidence from both Wazuh and VAT. Wazuh is
installed inside the CSP’s infrastructure and gathers information about possible security threats
of the system. The state of Wazuh’s operation and the detected security events, gathered by
Wazuh, are queried by the Wazuh and VAT Evidence Collector, which forwards such information
to Clouditor’s Security Assessment in the form of evidence. Figure 1 shows the positioning of
Wazuh in the MEDINA architecture among the WP3-related components.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 34 of 100

www.medina-project.eu

3.2.1.1.2 Component cards

Table 9. Component card for Wazuh

Component
Name

Wazuh

Main
functionalities

In general, Wazuh is a HIDS solution that provides the following
functionalities:

• Malware and intrusion detection

• Log data analysis

• File integrity monitoring

• Vulnerability detection

• Configuration assessment

• (Limited) monitoring of data about AWS & Azure infrastructure with simple
compliance assessment

In MEDINA, Wazuh will be offered to the users as a tool to help CSPs satisfy
compliance with certain EUCS controls as well as an evidence gathering tool.

Sub-
components
Description

Wazuh is composed of a Wazuh server and Wazuh agents. The agents are
deployed on the individual monitored machines and communicate information
about the detected anomalies to the server.

• The Wazuh server includes the Wazuh manager component along with the
ELK (ElasticSearch, Logstash, Kibana) stack for gathering, storing, and display
of data. Custom integrations are possible to send alerts from Wazuh to any
external component.

• The Wazuh Agents communicate with the server using Rsyslog.

Wazuh is plugged into MEDINA with the Wazuh and VAT Evidence Collector,
which is responsible for extracting the data relevant for MEDINA metrics, and
transforming it into evidence, compatible with the Security Assessment
component. It also includes two-way communication with the Security
Assessment component (Clouditor).

Main logical
Interfaces

Interface name Description Interface technology

Wazuh WUI Main web UI Web, based on Kibana

ElasticSearch ElasticSearch HTTP API (REST)

Requirements
Mapping

List of requirements covered by this component (see D5.2 [3]):
TEGT.C.01, TEGT.C.02, TEGT.S.08

Interaction
with other

components

Interfacing Component Interface Description

Wazuh and VAT Evidence
Collector

Wazuh and VAT Evidence Collector pulls
information from the Wazuh server
(custom integration sub-component).
Interface technology is HTTP REST API.

Relevant
sequence
diagram/s

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 35 of 100

www.medina-project.eu

Current TRL 17 Based on existing open-source Wazuh platform: TRL9.

Target TRL 18 Based on existing open-source Wazuh platform: TRL9.

Programming
language

C, Python, C++, Javascript

License Open source: GNU GPL v2

WP and task WP3, Task 3.2

MEDINA
wokflows

WF2 “Preparation of MEDINA Components”, and
WF5 “EUCS Compliance Assessment” (see D5.4 [5])

Table 10. Component card for Wazuh and VAT Evidence Collector

Component
Name

Wazuh and VAT Evidence Collector

Main
functionalities

Wazuh and VAT Evidence Collector provides the following functionalities:

• Collecting data from Wazuh

• Creating scans and fetching scan results from VAT

• Creating evidence based on data gathered from Wazuh and VAT

• Forwarding evidence to the Security Assessment interface (Clouditor)

Sub-
components
Description

It is composed of following subcomponents:

• Wazuh Evidence Collector: responsible for collecting data from Wazuh

• VAT Evidence Collector: creating VAT scans and gathering data from scans

• Clouditor Interface: forwards evidence to the Security Assessment (Clouditor)
and is in charge of Clouditor Authentication and other communication with
Orchestrator.

Main logical
Interfaces

No endpoints.

Requirements
Mapping

List of requirements covered by this component (see D5.2 [3]):
TEGT.C.01, TEGT.C.02, TEGT.S.08

17 TRL value before validation
18 TRL value after validation

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 36 of 100

www.medina-project.eu

Interaction
with other

components

Interfacing Component Interface Description

Wazuh Pulls data from Wazuh API

Wazuh Elasticsearch Pulls data from Wazuh`s Elasticsearch API

VAT Post scan requests and pulls data from VAT

Assessment Interface Forwards evidence from Wazuh and VAT

Authentication Interface Wazuh and VAT Evidence Collector
authenticates with the Clouditor

Orchestrator Interface Get a cloud service ID for Wazuh and VAT

Relevant
sequence
diagram/s

Current TRL 19 TRL5

Target TRL 20 TRL6

Programming
language

Python

License Apache 2.0

WP and task WP3, Task 3.2

MEDINA
Workflows

WF2 “Preparation of MEDINA Components”, and
WF5 “EUCS Compliance Assessment” (see D5.4 [5])

3.2.1.1.3 Related requirements

Below is the collection of requirements (described in D5.2 [3]) related to the component and a
description of how and to what extent these requirements are implemented at this point of
development.

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e., in
high-frequency intervals.

19 TRL value before validation
20 TRL value after validation

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 37 of 100

www.medina-project.eu

Implementation
state

Fully implemented

Continuous collection is implemented for all selected metrics.

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description The developed tools must provide collected evidence to a security
assessment tool via its offered APIs.

Implementation
state

Fully implemented

Interface between the Wazuh and VAT Evidence Collector components and Clouditor (providing
the security assessment capabilities) is implemented.

Requirement id TEGT.S.08

Short title Provision of malware and vulnerability detection tools

Description Tools for malware detection, intrusion detection, and vulnerability
scanning must be provided to assist CSPs with satisfying related
requirements of security standards or to verify the compliance with such
requirements.

Implementation
state

Fully implemented

Wazuh offers capability of malware scanning and vulnerability detection of the infrastructure
and applications (in some cases). Wazuh agents pull software inventory data and send this
information to the Wazuh Manager, where it is correlated with continuously updated CVE
databases, in order to identify well-known vulnerable software. Automated vulnerability
assessment helps the user identify the weak spots of their critical assets. Integration through
the Wazuh and VAT Evidence Collector allows MEDINA to verify the malware detection state and
gather evidence about it.

3.2.1.2 Technical description

The following subsections describe the technical details of Wazuh.

3.2.1.2.1 Prototype architecture

Wazuh is composed of a Wazuh server and multiple Wazuh agents. The agents are deployed on
the individual monitored machines and communicate information about the detected
anomalies to the server. In a cloud environment, the agents are deployed on the virtual
machines inside the monitored cloud infrastructure, independent of the cloud provider. Wazuh
server should be installed on a dedicated (virtual) machine, ideally in the same network segment
as the agents or otherwise made available by the network routing rules.

The server includes the Wazuh manager component along with the ELK (ElasticSearch, Logstash,
Kibana) stack for gathering, storing, and displaying data. Custom integrations are possible to
send alerts from Wazuh to any external component.

The basic architecture of Wazuh is depicted in Figure 6. Looking at it from high-level, it consists
of Wazuh Agents and Wazuh Server. The Wazuh agent (installed on endpoints) with different
interfaces (modules) is able to detect different metrics on the host. The Wazuh Server consists
of worker nodes (Wazuh cluster), a Kibana Server that provides a web user interface for

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 38 of 100

www.medina-project.eu

overview of all logs and relevant events, and an ElasticSearch database server that stores the
logs and detected events, coming from the agents.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 39 of 100

www.medina-project.eu

Figure 6. High-level Wazuh's architecture

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 40 of 100

www.medina-project.eu

3.2.1.2.2 Description of components

The components comprising Wazuh are described below.

Wazuh Agents communicate with the Wazuh server using Rsyslog. Wazuh is plugged into
MEDINA with the Wazuh and VAT Evidence Collector component, which is responsible for
extracting the data, relevant for MEDINA metrics, and transforming it into evidence compatible
with the Security Assessment component. The Evidence Collector communicates with the Wazuh
server using HTTP (API exposed by Wazuh). It also includes a two-way communication with the
Security Assessment component (Clouditor). This is depicted below in Figure 7.

Figure 7. High-level schema of Wazuh, VAT, and related components

3.2.1.2.3 Technical specifications

The prototype’s implementation consists of the following:

• MEDINA-specific deployment and configuration scripts for Wazuh (Ansible deployment
scripts, YAML definitions, configuration). This also contains specific MEDINA
configurations of Wazuh rules (XML, JSON).

• Wazuh and VAT Evidence Collector, a component that integrates Wazuh and VAT with
the MEDINA Security Assessment. This component is developed in Python and packaged
as a Docker container.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 41 of 100

www.medina-project.eu

3.2.2 Delivery and usage

The following sections give a short overview of the delivery and usage of the Wazuh tool.

Please note that the README and installation instructions can be found in Appendix F: Wazuh
and VAT Evidence Collector - Readme and installation instructions.

3.2.2.1 Package information

Tables 11 and 12 show the structure of the important folder with a brief description for Wazuh
and the Wazuh and VAT Evidence Collector.

Wazuh deployment package

The Wazuh deployment package contains all the needed deployment and configuration scripts
for installing Wazuh, Wazuh and VAT Evidence Collector, and also Clouditor (needed by the
Evidence Collector to connect with). For demonstrative purposes and replicating a deployment
on CSP’s infrastructure, the process locally creates five virtual machines (using Vagrant): a
Wazuh server, two Wazuh agents, Wazuh and VAT Evidence Collector, and Clouditor Security
Assessment. Table 11 describes the important folders and files of this package.

Table 11. Overview of the Wazuh-deploy package structure

File / folder Description

ansible/ This folder contains Ansible playbooks – scripts for installation of
individual sub-components.

environments/ This folder contains several sets of configurations for different
installation environments (based on the purpose, some components
might not be installed or have various configuration applied – README
file contains details).

custom-provision/ This folder contains the configuration set for installation on existing
machines in the CSP’s infrastructure.

Makefile Contains simplified make scripts that trigger the installation
procedures.

README.md Contains details about installation requirements and instructions.

Wazuh and VAT Evidence Collector

The Wazuh and VAT Evidence Collector repository contains the source code of the connector
between Wazuh (or VAT) and the MEDINA Security Assessment component (Clouditor). The
source code is written in Python and contains a Docker file so that it can be simply built and used
as a Docker container. Table 12 describes the important files and folders of this package.

Table 12. Overview of the Wazuh and VAT Evidence Collector package structure

File / folder Description

clouditor_interface/ This folder contains code responsible for packaging and sending
evidence objects to Clouditor (Security Assessment).

grpc_gen/ This folder contains code, automatically generated based on the
protocol buffer definitions of the Clouditor Security Assessment gRPC
interface.

id_maps/ This folder contains JSON files with ID maps for various services and
resources.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 42 of 100

www.medina-project.eu

File / folder Description

kubernetes/ This folder contains Kubernetes definition files for automated
deployment on the MEDINA Kubernetes dev & test clusters.

log_config/ This folder contains logging configuration code.

proto/ This folder contains the protocol buffer definitions of various
Clouditor gRPC interfaces.

scheduler/ This folder contains code responsible for scheduling of the evidence
gathering process.

test/ This folder contains code for (self-) testing of the component as a part
of a CI pipeline.

vat_evidence_collect
or/

This folder contains the contains all the code related to VAT evidence
gathering including VAT API client.

wazuh_evidence_col
lector/

This folder contains the core code responsible for the communication
with Wazuh API and building (internal) evidence objects.

Dockerfile This file contains the definition for building the Docker image of
Wazuh and VAT Evidence Collector.

Licence Contains Apache License 2.0

Manifest Contains version and service info.

Makefile Wrapper file containing all the commands and required variables to
simplify CLI interactions with Wazuh and VAT Evidence Collector.

README.md Contains installation and configuration instructions.

entrypoint.sh Contains Docker image entrypoint script.

kubernetes_cloudito
r_demo.env

Contains Kubernetes environment variables - used for local testing
purposes.

requirements.txt Contains required libraries, modules, and packages information.

3.2.2.2 Installation instructions

Requirements:

• Vagrant 2.2.14

• Ansible 2.9.16

Clone the Wazuh deployment repository (see 3.2.2.5 below). To setup the demo, simply
provision the Wazuh server, Wazuh agents, Clouditor, and Evidence Collector virtual machines
by running:

make create provision

For other installation options, please consult the README file in the repository.

3.2.2.3 User Manual

After installation on a local Vagrant environment, the Wazuh UI can be accessed by navigating
a web browser to https://192.168.33.10:5601 (if using the default deployment configuration).
Default credentials (admin:changeme) can be used for logging in the web interface.

After accessing the “Wazuh” section in the web UI, the user can notice two agents registered
and running with Wazuh. Evidence Collector is configured to collect evidence about the malware
detection running on the agent machines every minute. This can be inspected by examining the
logs of the Evidence Collector virtual machine.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 43 of 100

www.medina-project.eu

3.2.2.4 Licensing information

The core Wazuh [9] component is open source, licensed with a modified GPLv2 license21.

The deployment scripts for the MEDINA proof-of-concept and the Wazuh and VAT Evidence
Collector, developed by XLAB, are licenced with the open-source Apache Licence 2.0.

3.2.2.5 Download

The code of open-source components built by MEDINA is available on the project’s git
repository, on GitLab hosted by TECNALIA, for Wazuh and VAT Evidence Collector22 and for
Wazuh deployment repository23.

3.2.3 Advancements within MEDINA

Wazuh is a software solution developed independently of MEDINA by its respective owner,
Wazuh Inc. In the scope of MEDINA, several advancements have been made in terms of
integration with MEDINA, associated configurations and implementation of the Wazuh and VAT
Evidence Collector component. The (non-exclusive) list of work done in the project is as follows:

• Analysis of the EUCS requirements to determine which of the requirements can be
verified or satisfied by using Wazuh.

• Definition of architecture for collecting evidence with Wazuh and integrating it with
MEDINA (Wazuh and VAT Evidence Collector).

• Implementation of Wazuh and VAT Evidence Collector with connection to Clouditor
Security Assessment service.

• Implementation of CI/CD pipelines for automatic installation on the MEDINA “dev” and
“test” deployments.

• Production of deployment scripts to enable easier installation of software on the pilots’
infrastructure.

• Improvements of Wazuh and VAT Evidence Collector to support multiple metrics.

• Implementation of changes related to advancements in the MEDINA data model.

3.2.4 Limitations and future work

Evidence gathering with Wazuh is currently possible for a limited number of metrics related to
the (draft) EUCS requirement OPS-05.3H.

Wazuh uses various techniques for evidence gathering. By using the integrated anti-malware
and intrusion detection systems, a CSP is satisfying the standardisation requirements. In this
case, evidence is produced bearing the information about the functioning of Wazuh and its
modules. Such evidence has a high level of confidence. If the CSP uses other (unrelated) tools
for malware detection, the limitation is that an integration layer needs to be developed between
those tools and Wazuh. While Wazuh's log collection capabilities make such integration
relatively easy with most tools, support by the other tool might be limited.

Custom Wazuh rules can also be written to evaluate logs, coming from other services and
produce events or alerts based on their contents. Evidence can in turn be produced based on

21 https://github.com/wazuh/wazuh/blob/master/LICENSE
22 https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
23 https://git.code.tecnalia.com/medina/public/wazuh-deploy

http://www.medina-project.eu/
https://github.com/wazuh/wazuh/blob/master/LICENSE
https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
https://git.code.tecnalia.com/medina/public/wazuh-deploy

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 44 of 100

www.medina-project.eu

such events or alerts. The level of confidence obtained in this way is fully dependent on the
implementation of the Wazuh particular rule.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 45 of 100

www.medina-project.eu

3.3 Vulnerability Assessment Tools

Vulnerability Assessment Tools (VAT) act as a vulnerability scanning and detection framework.
VAT is intended to be deployed in the CSP's infrastructure and configured to periodically scan
the machines and servers on the monitored network, using several tools to detect
vulnerabilities.

3.3.1 Implementation

The following subsections provide functional and technical descriptions of VAT.

3.3.1.1 Functional description

VAT’s collection of vulnerability scanning tools comprise two web vulnerability scanners (W3af
[12] and OWASP ZAP [13]), a network discovery and auditing tool Nmap [14], and a framework
for including user-defined custom scripts for detecting specific issues or simply notifying about
unavailability of particular services.

Beside the vulnerability scanners, VAT is composed of several components supporting the
scheduling of scanning tasks, definition of custom scripts for scanning or monitoring, as well as
communication and integration with other MEDINA tools.

The innovation that VAT brings to MEDINA is the usage of vulnerability scanners for automated
verification of compliance. There are several requirements of security standards that can be
either satisfied with VAT or evidence that can be gathered about their fulfilment. EUCS
requirements covered by VAT include vulnerability detection and management categories and
the usage of encrypted communication protocols.

A more detailed coverage of EUCS requirements by VAT is also described in deliverable D3.3 [2].

3.3.1.1.1 Fitting into overall MEDINA Architecture

The position of Vulnerability Assessment Tools inside the MEDINA architecture is depicted in
Figure 1 (section 2) and in slightly more detail in Figure 7. VAT scans the monitored machines
inside the CSP’s infrastructure, which is communicated to the Wazuh and VAT Evidence Collector
component that constructs the evidence about fulfilment of the monitored metrics and sends
them to the Security assessment component (Clouditor) for further processing.

3.3.1.1.2 Component card

Table 13. The component card for the Vulnerability Assessment Tools

Component
Name

Vulnerability Assessment Tools (VAT)

Main
functionalities

The component provides the following functionalities:

• Detection of web vulnerabilities by running integrated vulnerability
scanners to scan web applications (OWASP ZAP24, w3af25)

• Network reconnaissance (running hosts, open ports – exposed services)
using integrated Nmap26

• Detection of vulnerable software (known vulnerable service versions)

• Running custom scripts for detection of specific vulnerabilities

24 https://owasp.org/www-project-zap/
25 http://w3af.org/
26 https://nmap.org/

http://www.medina-project.eu/
https://owasp.org/www-project-zap/
http://w3af.org/
https://nmap.org/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 46 of 100

www.medina-project.eu

• Scheduling repeating vulnerability scans

In MEDINA, VAT will be offered to the users as a tool to help CSPs satisfy
compliance with certain EUCS controls as well as an evidence gathering tool.

Sub-
components
Description

• Scheduler: responsible for triggering scanning tasks according to the
configured schedules

• Docker interface: a component managing the connection with the Docker
runtime, executing the tasks by running appropriate docker images and
obtaining their results

• Frontend: web UI management interface

• RabbitMQ: connection between the subcomponents

• VAT-genscan: integrating and orchestrating some vulnerability scanning
tools and combining their results into a common report (based on Faraday
CSCAN27)

• Wazuh and VAT Evidence Collector: a component responsible for
extracting the data relevant for MEDINA metrics, and transforming it into
evidence, compatible with the Security assessment component. It also
includes a communication with the Security assessment component
(Clouditor).

Main logical
Interfaces

Interface name Description Interface technology

Scan reports output Pushing the results of scan
tasks (vulnerability reports)

RabbitMQ (AMQP),
JSON

Management UI Web UI to manage the
scanning tasks and review their
results

Web

Requirements
Mapping

List of requirements covered by this component (see D5.2 [3]):
TEGT.C.01, TEGT.C.02, TEGT.S.08

Interaction
with other

components

Interfacing Component Interface Description

Wazuh and VAT Evidence
Collector

Wazuh and VAT Evidence Collector pulls
reports from VAT. Interface technology is
HTTP REST API.

27 https://github.com/infobyte/faraday/tree/master/scripts/cscan

http://www.medina-project.eu/
https://github.com/infobyte/faraday/tree/master/scripts/cscan

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 47 of 100

www.medina-project.eu

Relevant
sequence
diagram/s

Current TRL 28

Based on existing Vulnerability Assessment Tools component developed in the
scope of H2020 CYBERWISER29, which been adapted and integrated in the
MEDINA framework: the TRL is 4.
Integrated vulnerability scanners used are separately developed components
by their respective owners: their TRLs are higher (8-9).

Target TRL 30 VAT integrated in the MEDINA framework: TRL 6

Programming
language

Go, node.js, Javascript, Python, Bash.

License

The VAT platform is proprietary, closed-source (developed by XLAB).
Some sub-components and integrated vulnerability scanning tools are open-
source:

• OWASP ZAP: Apache License

• W3af: GNU GPL v2

• Nmap: Nmap Public Source License based on GNU GPL v2

WP and task WP3, Task 3.2

MEDINA
Workflows

WF2 “Preparation of MEDINA Components”, and
WF5 “EUCS Compliance Assessment” (see D5.4 [5])

3.3.1.1.3 Related requirements

Below is the collection of requirements (from D5.2 [3]) related to the component and a
description of how and to what extent these requirements are implemented at this point of
development.

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e., in
(high)-frequency intervals.

28 TRL value before validation
29 CYBERWISER.eu | Cyber Range & Capacity Building in Cybersecurity
30 TRL value after validation

http://www.medina-project.eu/
https://www.cyberwiser.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 48 of 100

www.medina-project.eu

Implementation
state

Fully implemented

VAT framework enables configuration of the scanning tasks and continuous scanning with
adjustable intervals and manually configured metrics. Evidence is currently collected from the
results of the generic (integrated) vulnerability scanners.

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description The developed tools must provide collected evidence to a security
assessment tool via its offered APIs.

Implementation
state

Fully implemented

The interface for communication between the component core API, the VAT & Wazuh Evidence
Collector, and Clouditor (Security Assessment) is implemented.

Requirement id TEGT.S.08

Short title Provision of malware, intrusion, and vulnerability detection tools

Description Tools for malware detection, intrusion detection, and vulnerability
scanning must be provided to assist CSPs with satisfying related
requirements of security standards or to verify the compliance with such
requirements.

Implementation
state

Fully implemented

VAT includes several vulnerability scanners and a framework for their orchestration and
automated running of the scans. The possibility to add custom vulnerability scanning scripts is
also implemented.

3.3.1.2 Technical description

The following subsections describe the technical details of the Vulnerability Assessment Tools.

3.3.1.2.1 Prototype architecture

The internal architecture of the Vulnerability Assessment Tools consists of several microservices
(see Figure 8). The main components are: Scan Configurator (web user interface), Vulnerability
Scanning Registry, Catalogue of custom scripts, and VAT Service Orchestrator with several
subcomponents. The figure also shows an example of a user’s request to issue a scan originating
in web interface and the data flow through the other VAT subcomponents. The connection to
other MEDINA components for evidence gathering is issued through the Wazuh and VAT
Evidence Collection component (see also Figure 7), which communicates with the VAT Service
Orchestrator API.

3.3.1.2.2 Description of components

The components comprising Vulnerability Assessment Tools are described below.

Scan Configurator

A web interface for Vulnerability Assessment Tools. It enables users to configure and trigger
vulnerability scans, set schedules for scanning tasks, review tasks’ results, as well as create
custom vulnerability detection scripts.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 49 of 100

www.medina-project.eu

Figure 8. Internal architecture schema of the Vulnerability Assessment Tools

Custom Scanning Scripts Catalogue

The custom vulnerability detection scripts are stored in the Custom Scanning Scripts Catalogue.
They can be written in any of the scripting languages, supported by the script interpreters
included in the Registry. The Catalogue can also store script templates that need to have some
missing parameters or code added before execution.

Vulnerability Scanning Registry (with Generic Scanners Suite and Result Aggregator)

A collection of Docker images for running vulnerability scans. It contains a Generic Scanners
Suite image with several integrated scanning modules and a Result Aggregator component that
combines results of the scanning modules into a single JSON result that can be shown in the
Scan Configurator UI in a user-friendly way. The integrated scanning modules are OWASP ZAP
[13], w3af [12], and Nmap [14]. ZAP and w3af are web application vulnerability scanners. When
a scan is launched against a targeted website, they use crawlers to scan the website and identify
potentially vulnerable pages and endpoints. For the detection of injection vulnerabilities, they
use crafted payloads in automatic queries and observe the server’s output, searching for
patterns that would indicate potential vulnerabilities. Several server misconfiguration
weaknesses can also be detected. Nmap is a network reconnaissance tool with vulnerability
scanning capabilities. It can detect devices on the network and servers (listening ports) running
on them, identify versions of the running servers and use various scripts to remotely detect
specific vulnerabilities.

Collection of script interpreters

Beside the Generic Suite, the Vulnerability Scanning Registry also holds several Docker images
[15] of script interpreters that can run user-provided custom scanning scripts. This Collection of

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 50 of 100

www.medina-project.eu

script interpreters can be used to detect specific vulnerabilities, to monitor uptime and
availability of services, or for other repetitive tasks. Three interpreters are currently included:
Metasploit Framework [16] (running Metasploit resource scripts and Metasploit modules
written in Ruby), Python, and Bash. The Scanning Registry is designed in a modular way, so that
additional scanners or script interpreters can be added easily.

The functionality of custom scanning scripts can be used to gather evidence about any metric
obtainable by executing some code. For example, such scripts can access a CSP-internal API,
check whether some server is available, search for errors in logs obtained from another server,
etc. The script should return the result either in its exit code or as contents of a file. The result
is then used by VAT to construct an evidence object with the pre-configured metric identifier.

VAT Service Orchestrator

This component contains several subcomponents responsible for scheduling and orchestration
of scans, as well as communication with other components. Internal communication between
components is realized through the AMQP protocol by a RabbitMQ [17] server (not shown in
Figure 8 for clarity). The Scan Configurator server communicates with the core components
through the API, which also provides authentication and authorization capabilities. The API
component is also accessed by the Wazuh and VAT Evidence Collector component (see Figure
7), which generates evidence objects according to the configuration and results of VAT and
forwards them to the Security Assessment component (part of Clouditor) to be in turn processed
by other MEDINA components.

Scheduler

A component responsible for triggering scanning tasks according to their configured schedules.
A Task Storage database is used to store the schedules and configurations. When a specific task
is triggered, it communicates its configuration to the Docker Interface component that prepares
the required files and parameters and executes the container spawned with the respective
Docker image from the Registry in the Docker Engine. The Docker Interface also retrieves results
of the finished scanning tasks and stores their output files in the Object Storage database, from
where it can be retrieved by users.

3.3.1.2.3 Technical specifications

The various subcomponents of VAT use different programming languages, frameworks, and
libraries. The backend components are mostly written in Node.js, except Scheduler which is
written in Go. MongoDB [18] is used for the Task Storage, and OpenStack Swift [19] for the
Object Storage and storage of custom scanning scripts. Scan Configurator frontend is built with
the Angular [20] web framework.

The Generic Scanning Suite is built as a single Docker image with Ubuntu as base image with
required scanning modules installed (OWASP ZAP [13], w3af [12], Nmap [14]). The Result
Aggregator is written in Python and outputs a JSON file containing outputs of all the scanning
modules used.

3.3.2 Delivery and usage

3.3.2.1 Package information

The code of Vulnerability Assessment Tools is structured in several Git repositories according to
the components described above. All components are packaged as Docker images.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 51 of 100

www.medina-project.eu

The component acting as a bridge of Vulnerability Assessment Tools to MEDINA, Wazuh and VAT
Evidence Collector, is described in section 3.2.2.1.

3.3.2.2 Installation instructions

Deployment scripts are provided using Vagrant [21] and Ansible [22] in the “vat-deployment”
repository. A single virtual machine is provisioned running all the necessary services for VAT.

To run the demo deployment process, simply clone the repository and run:

make create provision

3.3.2.3 User Manual

By navigating an internet browser to the IP address of the management machine, the user can
access the VAT configuration portal, review the demonstrative vulnerability scans, or create new
scanning tasks.

3.3.2.4 Licensing information

Vulnerability Assessment Tools framework is licensed as proprietary, Copyright by XLAB.

The Generic Scanning Suite, a containerized component integrating several vulnerability
scanners, is developed by XLAB and open-sourced with the Apache Licence 2.0.

Several sub-components used as part of VAT are open source:

• OWASP ZAP (Apache Licence) [13]

• w3af (GPLv2) [12]

• Nmap (modified GPLv2)31 [14]

• Faraday (GPLv3) [23]

• Metasploit (BSD) [16]

Wazuh and VAT Evidence Collector, developed by XLAB, is available open source (Apache Licence
2.0).

3.3.2.5 Download

VAT deployment demo repository is available at MEDINA’s GitLab32, along with the Generic
Scanning Suite source code repository33.

Due to proprietary licensing, other parts of the VAT framework are hosted on XLAB’s internal
GitLab. The code can be made available upon request.

Source code of the individual included scanners can be found in their respective project
repositories.

Source code of the Wazuh and VAT Evidence Collector is available in a separate repository34.

31 https://nmap.org/npsl/
32 https://git.code.tecnalia.com/medina/public/vat-deploy
33 https://git.code.tecnalia.com/medina/public/vat-genscan
34 https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector

http://www.medina-project.eu/
https://nmap.org/npsl/
https://git.code.tecnalia.com/medina/public/vat-deploy
https://git.code.tecnalia.com/medina/public/vat-genscan
https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 52 of 100

www.medina-project.eu

3.3.3 Advancements within MEDINA

Vulnerability Assessment Tools were developed in a previous H2020 project, CYBERWISER.eu
[24]. In that project, the VAT framework was used for the detection of vulnerabilities as well as
for the scheduling of various actions connected to defence and attacks of infrastructure in a
controlled and enclosed cyber range environment.

In the initial phase of MEDINA, an analysis was made to determine the EUCS requirements that
were feasible to be verified or satisfied by VAT. Later, the internal architecture of VAT was
restructured, and the deployment scripts were rewritten to support the deployment in a general
(cloud) environment instead of the specific cyber range setting. The APIs were adapted to be
prepared for the integration with the MEDINA components. The Wazuh and VAT Evidence
Collector component was developed with a specific module to interact with VAT and produce
relevant evidence.

In the scope of MEDINA, the following advancements have been made so far:

• Analysis of the EUCS requirements, feasible to be verified or satisfied by VAT.

• Restructuring of the internal VAT architecture.

• Deployment scripts adapted and rewritten to support deployment in a general (cloud)
environment.

• Adaptation of APIs.

• Development of the Wazuh and VAT Evidence Collector with the connection to Clouditor
(Security Assessment and Orchestrator) and a VAT-interface module.

• Adaptation of the web interface and authorization modules.

Based on the feedback from the first-round validation in WP6 in 2023, a more detailed Readme
for Wazuh and VAT Evidence Collector was produced that better describes the installation and
configuration of the component (see Appendix F: Wazuh and VAT Evidence Collector - Readme
and installation instructions).

3.3.4 Limitations and future work

As described above, VAT is composed of multiple modules: several vulnerability scanners and
also a framework for running custom, user-defined evidence collection scripts. Confidence of
the evidence gathered with VAT can vary greatly depending on the VAT module used and the
definition of a specific metric. The generic vulnerability scanners (e.g., w3af, OWASP ZAP) are
primarily designed to be used in manually guided penetration tests. Thus, vulnerability detection
results can often contain false positives that should be analysed by an expert. Evidence collected
solely based on the results of such results therefore cannot be regarded with full confidence.

On the other hand, there are considerably less errors when a vulnerability detection tool is
configured to check for the presence of a specific vulnerability (e.g., Nmap or Metasploit script).
The accuracy of custom (user-provided) scripts entirely depends on their implementation, in this
case VAT is only used as a framework for running such scripts and packaging and forwarding the
results as evidence.

Some requirements of the EUCS standardisation framework require the CSP to have
vulnerability tools deployed on certain systems and to monitor their results. By using the
vulnerability scanning capabilities of VAT (combined with monitoring of the results), the CSP
effectively satisfies such requirements for their cloud service. In this case, the automatically
obtained evidence refers to the functioning of VAT, which can be managed effectively and
monitored with high confidence.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 53 of 100

www.medina-project.eu

Future work would be to exploit the modularity and flexibility of the VAT framework. Beside the
included vulnerability detection tools, users could define their own scripts written in one of the
several supported programming languages, or even integrate their own vulnerability scanning
tools, depending on their specific needs. VAT’s feature of including custom scripts for monitoring
metrics would enable the user to easily provide their own code for checking specific metrics.
Ideally, the output of such code (script) would be automatically transformed into evidence and
integrated into the MEDINA workflows.

This scenario was already mentioned in the deliverable D3.5 [3] but the process of integrating
VAT into MEDINA framework using the Wazuh and VAT Evidence Collector showed that the user-
provided custom scripts could not work properly in the current MEDINA framework setup. It was
therefore decided to stay with the (pre)configured VAT scans.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 54 of 100

www.medina-project.eu

4 Security Assessment of Cloud Applications

This section presents the MEDINA components related to estimating the security of cloud
applications and collecting evidence based on the analysis of their source code. The
functionalities and implementation of the two components under development in Task 3.3
(Cloud Property Graph, Codyze, and extensions) are described in the following subsections.

4.1 Cloud Property Graph

The Cloud Property Graph (CloudPG) is a further tool, developed within the first year of the
MEDINA project and improved and extended until M30. It combines static source code analysis
with cloud infrastructure analysis. To that end, a library for static code analysis, the cpg35, has
been extended with analysis logic for cloud workloads. The implementation of this tool is
developed in an open-source repository on GitHub36.

One problem the CloudPG addresses is that isolated security analysis on workload- or source
code-level can result in many false positives: for example, authorization or encryption
requirements may be implemented either on the infrastructure- or source code-level, thus both
levels have to be analysed in combination to allow for a comprehensive assessment of, e.g.,
authorization or encryption requirements.

4.1.1 Implementation

The following subsections provide functional and technical descriptions of the Cloud Property
Graph tool.

4.1.1.1 Functional description

The cpg library, which forms the basis of the CloudPG, creates a property graph of source code
that is enhanced by the CloudPG with information about the current resource configurations.
Also, data flows between resources are added to the graph, e.g., HTTP requests between
microservices for an excerpt of a graph generated by the Cloud Property Graph. Figure 9 shows
several nodes and edges introduced by the CloudPG, for example security properties (based on
the cloud resource ontology), like authenticity and transport encryption (see top left), and HTTP
calls: the POST node describes a HTTP POST request to (TO edge) a HTTP endpoint that in turn
has a certain path as its PROXY_TARGET.

This way, it is possible to identify security problems in the intersection between infrastructure
and source code. For example, it can be detected if logging functionalities are implemented and
if yes, if the logs are stored in an allowed region. This combined reasoning would be more
difficult to do when assessing isolated evidence about source code and cloud workloads.

To also enable the detection of privacy threats, the CloudPG implementation has been extended
with the following features: improved detection of data flows in HTTP connections, taint tracking
via dedicated labels, detection of cryptographic libraries (e.g., for cryptographic signatures),
detection of database operations, and more. This extension for semi-automatic detection of
privacy threats has been published in [25].

Since this combined analysis requires a common model of how, e.g., logging functionalities are
implemented, and what they are called in different cloud systems, the CloudPG again makes use
of the cloud resource ontology presented in deliverable D2.5 [6], and the security properties it

35 https://github.com/Fraunhofer-AISEC/cpg
36 https://github.com/clouditor/cloud-property-graph/

http://www.medina-project.eu/
https://github.com/Fraunhofer-AISEC/cpg
https://github.com/clouditor/cloud-property-graph/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 55 of 100

www.medina-project.eu

defines. Consequently, security-relevant concepts can be analysed across source code and
infrastructure configurations.

Figure 9. An excerpt from the graph generated by the Cloud Property Graph

4.1.1.1.1 Fitting into overall MEDINA Architecture

The CloudPG is a separate component implementing evidence gathering and assessment. As it
is a new research approach, it is not integrated with other MEDINA components. Two possible
approaches exist for its integration: First, its output may be adjusted to provide evidence in the
required MEDINA format to the Clouditor Security Assessment. In this case the CloudPG’s graph-
based analysis results would have to be transformed to the respective evidence format. Second,
it can be extended with a custom assessment service which is then integrated with the
Orchestrator. This latter approach has the advantage of leaving more room for custom
assessment logic but may require more effort.

4.1.1.1.2 Related requirements

The relevant requirements from the deliverable D5.2 [3] are listed below with a brief description
of how they are implemented.

Requirement id TEGT.S.02

Short title Collect evidence from source code via CPG

Description The developed tool must be able to parse the source code of cloud
applications written in different programming languages and transform
into the agnostic representation of the CPG.

Implementation
state

Fully implemented

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 56 of 100

www.medina-project.eu

Requirement id TEGT.S.03

Short title Implement information and data flow analysis

Description The developed tool must be able to perform information and data flow
analysis on a cloud application.

Implementation
state

Fully implemented

Similar to Codyze, the CloudPG is able to analyse source code regarding data flows, control
dependence, and other properties.

Requirement id TEGT.S.10

Short title Connect infrastructure- and application-level security analyses

Description The developed tool should be able to bridge the gap between
infrastructure- and application-level security analysis by extending graph-
based code analysis to the cloud resources, allowing to identify data flows
across cloud resources.

Implementation
state

Fully implemented

This requirement describes the core idea of the CloudPG: by combining both source code
analysis and deployment information, an accurate assessment of security properties can be
made.

Requirement id TEGT.S.07

Short title Support for common programming languages, libraries, cloud services

Description The developed tool should support common programming languages,
libraries and cloud services. Support for all programming languages,
libraries and cloud services is infeasible.

Implementation
state

Fully implemented

Similar to Codyze, the CloudPG supports multiple programming languages, including Java, C,
Python, Go, and Typescript.

Note that the common requirements (TEGT.C.X) are currently not relevant for this tool. They
specify, for instance, that the tools need to comply to the MEDINA data model. The Cloud
Property Graph, however, is still a novel research concept, whose integration into the framework
needs to be designed and implemented in future work.

4.1.1.2 Technical description

The following subsections describe the technical details of the CloudPG.

4.1.1.2.1 Prototype Architecture

The CloudPG’s architecture is based on the architecture of the underlying cpg library. First, it
uses the cpg library to build a code property graph of the given source code. It then applies
custom passes, i.e., extendible modular analysis logic, to analyse properties of the code and its
deployment that are relevant in the context of (cloud) security. This added information is then
introduced in the graph to make it accessible for manual analysis and possibly automatic analysis
applications.

Some examples of such custom passes are presented in the following:

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 57 of 100

www.medina-project.eu

• HTTP calls: The CloudPG analyses code to detect HTTP calls between microservices and
adds edges to the graph between the respective nodes, e.g., from a code entity that
uses an HTTP framework to realize the HTTP call to the respective HTTP endpoint. HTTP
endpoints are identified in another pass which is able to detect these in the Spring
framework for Java, the Flask framework for Python, as well as the Gin framework for
Go.

• Logging: The CloudPG detects logging functionality, such as the zerolog37 library for Go.

• Deployment information: The CloudPG detects GitHub workflow files in a project, which
specifies where the code is deployed, e.g., as Docker containers in a Kubernetes cluster,
and adds configuration information about the deployment environment.

• Databases: The CloudPG identifies connections and other operations related to
databases, such as MongoDB and PostgreSQL.

• Label extraction: In the context of improvements of the CloudPG for privacy analysis,
labels have been added to mark personal data (or otherwise sensitive data), which can
be extracted by a dedicated pass to track their flow across the application.

4.1.1.2.2 Description of components

The CloudPG is not divided into separate components. A separate assessment component may
be developed in the future. It does, however, employ an easily extendible structure for
additional passes.

4.1.1.2.3 Technical specifications

The CloudPG is written in Kotlin. As described above, it makes use of the cpg library to build a
basic code property graph.

Please note that the user manual and installation instructions of CloudPG can be found in
Appendix D: Cloud Property Graph - Installation instructions and User manual.

4.1.2 Delivery and usage

The following sections give a short overview of the delivery and usage of the CloudPG. Please
note that additional instructions can be found in Appendix D: Cloud Property Graph - Installation
instructions and User manual.

4.1.2.1 Package

The tool is not yet available as a Docker image. It currently needs to be installed as described in
Appendix D: Cloud Property Graph - Installation instructions and User manual.

4.1.2.2 Licensing

The tool is licensed under the open-source Apache License 2.0.

4.1.2.3 Download

The project is available open source on GitHub38.

4.1.3 Advancements within MEDINA

The Cloud Property Graph is based on the cpg, which is a project developed independently of
MEDINA. The CloudPG’s additions described above, however, have completely been developed

37 https://pkg.go.dev/github.com/rs/zerolog
38 https://github.com/clouditor/cloud-property-graph/

http://www.medina-project.eu/
https://pkg.go.dev/github.com/rs/zerolog
https://github.com/clouditor/cloud-property-graph/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 58 of 100

www.medina-project.eu

within the MEDINA project. In its approach of combining source code analysis with infrastructure
analysis, it complements Codyze (see section 4.3).

During the second and third iteration of the MEDINA components’ development, the CloudPG
was extended with dedicated privacy analysis functionalities. To that end, the various privacy
goals defined in the LINDDUN framework [26] were analysed, operationalized, and translated to
code properties. Finally, respective passes have been integrated, e.g., for database connections,
specific HTTP connections, privacy labels, and more. Also, a testing library has been developed
for the evaluation of the component.

A scientific paper about the tool and the described approach has been published at the IEEE
International Conference on Cloud Computing 2021 (CLOUD) [27]. A further publication about
extensions of the CloudPG for privacy analysis – the Privacy Property Graph – has been published
at the 23rd Privacy Enhancing Technologies Symposium [25].

4.1.4 Limitations and future work

The approach implemented in the Cloud Property Graph has some general limitations. First, it is
constrained by the available source code and accessible APIs, i.e., when libraries are used whose
source code is not available, or source code is not available for other reasons, it will not be part
of the resulting graph and cannot be analysed for security problems. Regarding the APIs, the
limitation is the same as for the evidence collection with Clouditor: only the information the
cloud APIs offer can be analysed. Second, the approach currently generates additional manual
effort since the tool has to be set up, it has to be manually applied, and its results need to be
manually evaluated. However, its application and result analysis have potential for automation
which should be addressed in future work. Also, regarding integration with the MEDINA
framework, i.e., with the Security Assessment or Orchestrator should be addressed in future
work, as the novel approach that the Cloud Property Graph’s implements, generates results that
are not yet compatible with the MEDINA data model.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 59 of 100

www.medina-project.eu

4.2 LLVM Extensions of the Code Property Graph

While the CloudPG component requires source code to be available to analyse it for compliance
with security requirements, in a real-world cloud system, the source code is not always available.
Consider the following use case: A CSP operates a cloud system including different types of
computing resources which include a number of Function-as-a-Service resources (“serverless
functions”). These functions make use of external libraries which are not open-source, but are
only available as binaries. In this case, we require a new method that allows to translate a binary
to the code property graph representation which we can analyse, subsequently similarly to the
CloudPG.

A number of extensions of the code property graph library enable such an analysis of low-level
code representations of applications. In particular, the extensions are able to parse LLVM-IR, an
intermediate representation which is used by various compilers and binary lifters, and transfer
this representation to the code property graph. The translation step is designed in a way to be
fully compatible with the existing cpg representation which is already supported by the tools
CloudPG (see section 4.1) and Codyze (see section 4.3). This allows full reusability of the existing
concepts to analyse such code.

The current implementation supports nearly all combinations which exist in LLVM-IR retrieved
during compilation and from lifters and improves the scalability of the approach by an order of
magnitude. In addition, existing analyses can be reused with minimal changes.

4.2.1 Implementation

The following subsections provides functional and technical descriptions of the LLVM extensions
to the Code Property Graph.

4.2.1.1 Functional description

This approach extends the cpg library which is used by Clouditor and Codyze as a unified code
representation with the ability to parse LLVM-IR. The extension consists of a cpg language
frontend which uses the LLVM API through JNI to parse LLVM-IR files and translates each
statement and expression to its equivalent in the cpg representation.

This translation is implemented in a way to reuse only the existing types of nodes and edges in
the Code Property Graph. Furthermore, the translation tries to map LLVM-IR’s specific data types
and operations to the ones used by high-level programming languages to reuse the existing
analyses without the need to adapt them. However, since the cpg’s data model does not account
for all statements which exist in LLVM-IR, several specifics of the programming language are
modeled to minimize the loss of information while still keeping the semantics of the program.

Furthermore, a cpg pass optimizes the result of the translation by removing auxiliary nodes
which are required during the translation to collect relevant information and yet parse the files
sequentially. In addition, the pass refines the information which is contained in the nodes.

Contrary to prior approaches, the translation scales well even in the presence of large LLVM-IR
files.

4.2.1.1.1 Fitting into overall MEDINA Architecture

The LLVM extensions of the cpg are integrated into the Code Property Graph library which is
used by the CloudPG as described in section 4.1 and by Codyze as described in section 4.3.
Therefore, the LLVM extensions are also available to both tools and can be used in the exact

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 60 of 100

www.medina-project.eu

same way as the other components of the code property graph library. The translations are
designed in a way to be fully compatible with the other existing programming languages.

4.2.1.1.2 Related requirements

The relevant requirements from D5.2 [3] are listed below and a brief description of how they
are implemented is given.

Note that these requirements are not mandatory for this tool since it is a novel research concept,
whose integration into the framework needs to be implemented in future work.

Requirement id TEGT.S.05

Short title Verify security requirements

Description The developed tool must be able to verify security requirements and raise
warnings/errors with respect to secure coding practices and secure
information and data flows.

Implementation
state

Partially implemented

The cpg library features a built-in analysis and query API which allows the user to assess security
risks and verify security requirements based on custom queries. This API is also usable for the
respective extensions. However, developing analyses and queries is not part of MEDINA.

Requirement id TEGT.S.07

Short title Support for common programming languages, libraries, cloud services

Description The developed tool should support common programming languages,
libraries and cloud services.

Implementation
state

Partially implemented

Numerous programming languages can be translated to LLVM-IR by their compile toolchains as
part of their compilation process. Similarly, libraries and closed-source binary files can be
transferred to LLVM-IR. This enables support for analysis of almost all major programming
languages and closed-source libraries, among others.

Requirement id TEGT.S.08

Short title Provision of malware, intrusion, and vulnerability detection tools

Description Tools for malware detection, intrusion detection, and vulnerability
scanning must be provided to assist CSPs with satisfying related
requirements of security standards or to verify the compliance with such
requirements.

Implementation
state

Partially implemented

The LLVM Extensions of the cpg can be used to represent all kinds of programs even if the source
code is unavailable for the analysis (by applying binary lifters). It is therefore capable of providing
a representation for vulnerability and malware search of various programs. However, the
analysis techniques are not developed within the scope of MEDINA.

Similar to the Cloud Property Graph, note that the common requirements (TEGT.C.X) are
currently not relevant for the LLVM extensions, since it is still a novel research concept, whose
integration into the framework needs to be designed and implemented in future work.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 61 of 100

www.medina-project.eu

4.2.1.2 Technical description

The following subsections describe the technical details of the LLVM extensions to the cpg.

4.2.1.2.1 Prototype Architecture

The LLVM extensions of the cpg are available as source code, and a jar file and can be used as a
software dependency. It is executed on source code and does not implement any server
components nor agents.

4.2.1.2.2 Description of components

The LLVM extensions of the cpg consist of a cpg language frontend parsing the LLVM-IR
instructions as well as a specific pass to improve the translation. It is developed as a single
subproject of the cpg library.

4.2.1.2.3 Technical specifications

The LLVM extensions of the cpg is written in Kotlin. As described above, it is integrated into the
cpg library to build a basic code property graph and thus uses some of its core functionalities. It
makes use of LLVM’s public C API which is offered through JNI by the JavaCPP Presets for LLVM
project39.

The user manual of the LLVM extension of the cpg can be found online as part of the open-
source software.

4.2.2 Delivery and usage

The following sections give a short overview of the delivery and usage of the LLVM Extensions
fo the CloudPG.

4.2.2.1 Package information

The artifact is available as a jar file.

4.2.2.2 Licensing information

The code is part of the code property graph library that is licensed under an Apache 2 license.

4.2.2.3 Download

The project is available as open-source software on GitHub40 as the subproject ‘cpg-language-
llvm’.

4.2.3 Advancements within MEDINA

A scientific paper about this approach has been published at the Information Security
Conference [28].

4.2.4 Limitations and future work

The translation of LLVM-IR to the cpg representation features all statements but require minor
development efforts to support all possible combinations of internal expressions. To identify
such combinations, further testing is required.

39 https://github.com/bytedeco/javacpp-presets/tree/master/llvm
40 https://github.com/Fraunhofer-AISEC/cpg

http://www.medina-project.eu/
https://github.com/bytedeco/javacpp-presets/tree/master/llvm
https://github.com/Fraunhofer-AISEC/cpg

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 62 of 100

www.medina-project.eu

Since the LLVM representation of some concepts differs between the programming languages,
other passes may be necessary to improve the coverage of such concepts for the programming
languages which are relevant for a certain target.

In addition, future work should identify suitable lifters to support binary analysis and whether
they can be applied to typical artifacts which exist in cloud deployments of software.

Last, future work should develop further queries and analysis capabilities on the cpg to assess
vulnerabilities or potentially malicious code in the artifacts.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 63 of 100

www.medina-project.eu

4.3 Codyze

Codyze is an open-source static application security testing tool. Its main goal is to verify if
application source code complies to security requirements. Security requirements are derived
from security requirement catalogues such as ENISA EUCS [1]. Security requirements are broken
down into checkable source code properties. Afterwards, Codyze verifies specified source code
properties and thereby can provide evidence and assessment results if a requirement is
sufficiently realized in software.

Codyze supports security by design. It can recognize potential security flaws violating compliance
to security standards like ENISA EUCS. It provides early feedback during the development
process and can ensure that less security flaws remain in a production-ready deployed cloud
service. It can also act as a quality gate within an CI/CD pipeline and prevent that cloud services
are deployed in production which don’t meet defined compliance requirements. It supplements
the MEDINA framework by ensuring that consumable cloud applications and services are
implemented securely.

4.3.1 Implementation

The following subsections provides functional and technical descriptions of Codyze.

4.3.1.1 Functional description

Codyze uses the MARK DSL [29] to specify checkable software properties. MARK can model
entities and define rules that must hold for the usage of an entity. Codyze evaluates MARK rules
against provided source code and attest if a rule is adhered to or not. Based on the evaluation
result from MARK rules, software properties required to fulfil security requirements are
validated.

Currently, Codyze analyses source code written in C/C++ and Java. MARK rules cover
cryptographic libraries Bouncy Castle for Java and Botan for C++ as well as transport encryption
based on Java’s secure socket extension (JSSE). Thus, source code can be checked if
cryptographic operations and transport encryption are properly implemented and thereby
attest state-of-the-art cryptography of sufficient strength.

In addition, Codyze inspects the source code repository of a software project. It assesses
whether good development practices are followed during development. In particular, it checks
which developers committed source code to the repository and whether these additions are
signed. This information is checked against a list of authorized developers and signatures. The
corresponding assessment result attests that only authorized accounts and personnel made
changes in accordance with requirements like EUCS CCM-05.

As Codyze analyses source code and repositories, it is not integrated into the cloud platform
itself. It is a tool used by CSPs to validate the source code of applications and services prior to
deployment and general availability in the cloud. Therefore, Codyze must be integrated into the
CSP’s development, continuous integration, and continuous deployment pipeline. Once
integrated, Codyze can check submitted code while it is being developed. Configured as a
breaking check point in a CI/CD pipeline, it can prevent the roll out of software not meeting
security requirements.

Codyze submits results from its analysis to the Orchestrator. It uses the MEDINA data model to
send evidence. Afterwards, Codyze posts its assessment results referencing the previously
submitted evidence.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 64 of 100

www.medina-project.eu

In addition, Codyze creates a report in the SARIF format [30]. SARIF is an OASIS standard that
specifies a format to encode information and findings from static code analysis into an
exchangeable format. This report is saved during a CI/CD pipeline and can be reviewed
afterwards to identify problems and fix them. Thereby, code repository platforms with
integrated CI/CD functionality such as GitHub41 can automatically process SARIF reports and
represent the respective information integrated on their platform. Developers can use this
information to fix problems in their source code.

4.3.1.1.1 Fitting into overall MEDINA Architecture

Codyze integrates itself into the overall MEDINA architecture as an application-level evidence
collection and security assessment tool (see Figure 1 in section 2). Codyze assesses source code
of cloud application and ensures compliance to security requirements catalogues like ENISA
EUCS within applications. It submits assessment results to the Orchestrator for further
processing. In addition, it stores the evidence used to derive an assessment result with the
Orchestrator to verify provenance.

4.3.1.1.2 Component card

Table 14. Component card for Codyze

Component
Name

Codyze

Main
functionalities

The component provides the following functionalities:

• Static code analysis

• Validation of program specifications

• Validation of good development processes

Sub-
components
Description

MARK is a domain specific language to specify verifiable properties that source
code must adhere to. It can for example restrict possible data values and their
flow, or specify interactions between objects.

The CPG library is used for the internal source code representation. It
represents source code as a multigraph based on the concept of code property
graphs.

The Codyze library provides the implementation for the analysis engine. It
initiates the parsing of source code with the CPG library and performs the
interpretation of MARK rules. It performs the necessary analysis steps to
extract properties from source code that are checked against the
requirements specified in MARK rules. The analysis results are collected for
further processing by Codyze for MEDINA.

Main logical
Interfaces

Interface name Description Interface technology

CLI Codyze provides a command line
interface. It can be used to call
Codyze to analyse a set of files
and produce results. It is suitable
for example for a CI/CD pipeline.

stdin/stdout

MARK MARK depends on Eclipse Xtext
and reuses the UI elements of

UI of Eclipse

41 https://docs.github.com/en/code-security/code-scanning/integrating-with-code-scanning

http://www.medina-project.eu/
https://docs.github.com/en/code-security/code-scanning/integrating-with-code-scanning

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 65 of 100

www.medina-project.eu

Eclipse and Xtext. Writing MARK
requires an Eclipse IDE.

Requirements
Mapping

List of requirements covered by this component (see D5.2 [3]):
TEGT.C.01-02, TEGT.S.02-04, 06-07, TEGT.08.

Interaction
with other

components

Interfacing Component Interface Description

Orchestrator Send assessment results

Relevant
sequence
diagram/s

Current TRL 42 Based on existing open-source Codyze library: TRL 4.

Target TRL 43 Based on existing open-source Codyze library: TRL 5.

License Apache 2.0

WP and task WP3, Task 3.3

MEDINA
Workflows

WF2 “Preparation of MEDINA Components”, and
WF5 “EUCS Compliance Assessment” (see D5.4 [5])

4.3.1.1.3 Related requirements

The relevant requirements from D5.2 [3] are listed below and a brief description of how they
are implemented is given.

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e., in
(high)-frequency intervals.

Implementation
state

Fully implemented

42 TRL value before validation
43 TRL value after validation

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 66 of 100

www.medina-project.eu

Codyze is integrated into the CI/CD pipeline at CSPs. It is executed based on the frequency of
committed code changes.

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description The developed tools must provide collected evidence to a security
assessment tool via its offered APIs.

Implementation
state

Fully implemented

Codyze submits all evidence to the Orchestrator. As Codyze provides its own assessment results,
evidence is submitted for reference in the resulting assessment result.

Requirement id TEGT.S.03

Short title Implement information and data flow analysis

Description The developed tool must be able to perform information and data flow
analysis on a cloud application.

Implementation
state

Fully implemented

Codyze can perform information and source code analysis; the extended analysis for contextual
information of cloud workloads has been addressed in the Cloud Property Graph tool which is
closely related to Codyze. For example, it can analyse infrastructure configurations and CI/CD
information of respective configuration files to check where a certain piece of code is deployed
in a cloud service.

Requirement id TEGT.S.04

Short title Support expression of security requirements

Description The developed tool must be able to support the expression of security
requirements to be checked on application code. Requirements come for
example from WP2.

Implementation
state

Fully implemented

While Codyze can verify security requirements, defined in the MARK DSL, it is not yet able to
verify MEDINA-related requirements, e.g., written in Rego. Instead, requirements are mapped
to MARK rules such that validation of MARK rules indicates compliance to requirements.

Requirement id TEGT.S.05

Short title Verify security requirements

Description The developed tool must be able to verify security requirements and raise
warnings/errors with respect to secure coding practices and secure
information and data flows.

Implementation
state

Fully implemented

Codyze is currently able to generate warnings for identified non-compliances. It remains to
integrate these warnings in MEDINA, e.g., in a user interface. The current rule set needs to be
extended.

Requirement id TEGT.S.06

Short title Retrieve source code of cloud applications

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 67 of 100

www.medina-project.eu

Description The developed tool should be able to retrieve (semi-)automatically the
source code of cloud applications requiring analysis.

Implementation
state

Fully implemented

Source code is provided as part of the CI/CD pipeline. The fulfilment of this requirement will be
validated during field tries with partners.

Requirement id TEGT.S.07

Short title Support for common programming languages, libraries, cloud services

Description The developed tool should support common programming languages,
libraries and cloud services.

Implementation
state

Fully implemented

4.3.1.2 Technical description

The following subsections describe the technical details of Codyze.

4.3.1.2.1 Prototype architecture

Codyze consists of an executable binary distribution and runs stand-alone. It is also available as
a container image. Codyze is executed on the source code of cloud application and services.
Therefore, there are no server components or agents. Figure 10 depicts Codyze architecture.

Codyze for MEDINA provides a command line interface. This is the main interface to run Codyze
automatically in a CI/CD pipeline. In this mode, Codyze generates a report that contains
problematic source code locations where security requirements are not met. In addition, this
mode will return an error code when security requirements are not met and can thus terminate
CI/CD pipelines. This behaviour ensures that Codyze prevents the roll out of cloud applications
and services that do not comply to security requirements as required by catalogues like ENISA
EUCS.

Figure 10. Codyze architecture

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 68 of 100

www.medina-project.eu

Internally, Codyze uses the cpg library. This library implements a code property graph. This graph
is a multigraph representing source code structures in a graph representation. On this graph
model of the source code, Codyze can perform the source code evaluation.

The evaluation is specified in MARK. MARK files are provided to Codyze either as part of Codyze
or as a path to MARK files on the command line. These MARK files are parsed by Codyze and
define the necessary evaluation steps to validate the compliance to security requirements.

The results of the evaluation are provided to developers as SARIF reports. In addition, findings
are submitted to the Orchestrator of the MEDINA framework in the specified data format.

4.3.1.2.2 Description of components

Codyze for MEDINA makes use of the following components:

MARK

MARK is a domain specific language to specify verifiable properties that source code must
adhere to. It can, for example, restrict possible data values and their flow, or specify interactions
between objects. A corresponding software library built on top of Xtext44 provides the language
grammar and parser functionality. In addition, a generated Eclipse plugin provides MARK specific
editing support in Eclipse IDE.

CPG

CPG is a library implementing a code representation based on the concept of a code property
graph [31]. It is responsible for parsing source code and providing a graph-based code
representation suitable for querying code properties.

Codyze library

Codyze library provides the analysis engine for Codyze. It uses the CPG to parse source code. In
addition, it uses the MARK library to parse MARK files. The Codyze library implements the
analysis steps to interpret MARK rules and identify rule violations in source code. Assessed rules
generate a finding that either certifies compliance or documents a rule violation.

4.3.1.2.3 Technical specifications

Codyze is developed in Java and Kotlin. It uses the libraries CPG and MARK as dependencies. In
addition, Codyze ships with MARK rules that check compliance to strong, state-of-the-art
cryptography.

The integration of Codyze at the CSPs requires a platform for CI/CD. Codyze can be integrated
into CI/CD pipelines either by using the binary distribution or the container image as a step
during validation step of the pipeline.

Codyze should be configured as a static application security test. It should prevent successful
CI/CD pipeline completion if violations are discovered. It thus prevents the deployment of
artefacts into production that do not meet minimum compliance requirements.

In addition, Codyze generates a report in SARIF format. SARIF is a standardized description of
findings from static analysis tools. Its adoption is rising and many SAST tools now include support

44 https://www.eclipse.org/Xtext/

http://www.medina-project.eu/
https://www.eclipse.org/Xtext/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 69 of 100

www.medina-project.eu

for SARIF. This is also reflected in platforms for source code management and CI/CD integration.
Platforms like GitHub support the evaluation of SARIF reports and include results within the UI
of their platform. Developers can identify problematic results on these platforms for example as
code annotation in merge requests.

Please note that the user manual and installation instructions of Codyze can be found in
Appendix C: Codyze - Installation instructions and User manual.

4.3.2 Delivery and usage

The following sections give a short overview of the delivery and usage of Codyze. Please note
that additional instructions can be found in Appendix C: Codyze - Installation instructions and
User manual.

4.3.2.1 Package information

Codyze is packaged as a binary distribution in a ZIP archive. In addition, the MEDINA public GitLab
repository45 contains a Dockerfile to build a container image from source.

4.3.2.2 Licensing information

Codyze for MEDINA and its components are licensed under the open-source Apache License 2.0.

4.3.2.3 Download

Codyze for MEDINA is available from the public MEDINA GitLab repository45.

The source code for the Codyze library is available from its GitHub repository46 and the MARK
source code is available from its GitHub repository47.

4.3.3 Advancements within MEDINA

Codyze has been successfully adopted for MEDINA. The original Codyze library has been
extended to support the analysis of source code commonly seen in cloud service
implementations. The analysis engine within Codyze has been improved.

Secondly, Codyze has been integrated into the MEDINA architecture. It supports the MEDINA
data model. Findings from Codyze are submitted as evidence and assessment results with the
Orchestrator. Thus, results from the analysis of Codyze can be reviewed within the MEDINA
framework.

Thirdly, new MARK specifications have been written that model common cloud service
functionality. These models have been used to define MARK rules that support compliance to
EUCS requirements. The mapping between rules and requirements has been implemented.
Currently, the recently developed MARK specifications cover transport encryption using TLS in
support of EUCS control CKM-02 “Encryption of Data in motion” and cryptographic operations
for secure data storage in support of EUCS control CKM-03 “Encryption of Data at Rest”.

Finally, Codyze has been extended to inspect the corresponding source code repositories for the
analysed source code. Thereby, Codyze can validate whether good development practices are

45 https://git.code.tecnalia.com/medina/public/codyze
46 https://github.com/Fraunhofer-AISEC/codyze
47 https://github.com/Fraunhofer-AISEC/codyze-mark-eclipse-plugin

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/codyze
https://github.com/Fraunhofer-AISEC/codyze
https://github.com/Fraunhofer-AISEC/codyze-mark-eclipse-plugin

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 70 of 100

www.medina-project.eu

followed. In particular, this extension to Codyze confirms that only authorized accounts and
personnel made changes to the source code of cloud services in support of the EUCS control
CCM-05 “Performing and Logging Changes”.

4.3.4 Limitations and future work

Codyze analyses source code and its usefulness is therefore limited by the inputs it gets: Since
there is no reliable source for knowing which code exists and should be deployed, it is also not
possible to verify within Codyze if all relevant code has been analysed. Therefore, we assume
that Codyze is applied to all relevant code.

Another limitation of Codyze is the use of MARK as a specification language. Source code
properties need to be modelled and rules need to be specified. The resulting MARK specification
is to some extend specific for a programming language and modelled software library. Hence,
Codyze can analyse and assess only source code for which specifications exist. Moreover,
specifications need to be updated to keep up to date with changing requirements and updated
software libraries.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 71 of 100

www.medina-project.eu

5 Assessment of Organisational Measures

Assessment of organisational measures is handled by the MEDINA component named AMOE
(Assessment and Management of Organisational Evidence), which is designed to extract
evidence from policy documents. Furthermore, it allows to set and submit assessment results
to the MEDINA framework.

5.1 Implementation

The following subsections provides functional and technical descriptions of AMOE.

5.1.1 Functional description

AMOE is a proof-of-concept prototype for assessment and management of organisational
evidence. It is designed to extract evidence based on organisational metrics, targeted to specific
parts of policy documents. After extraction, the evidence can be inspected in the GUI of the tool.
Users can then decide on the compliance status of a metric. Once the user is satisfied with the
assessment, the result and evidence can be forwarded to the Orchestrator. While extracting the
evidence is fully automated, the final decision is made by the user.

To improve AMOE, different evidence extraction methods have been researched, the main one
is depicted in Figure 11. After uploading a policy document, via GUI or API, it goes through the
various stages of the extraction pipeline. There are two stages, the first is the pre-processing,
and the second the actual evidence extraction.

Pre-processing

The PDF document is transformed into a HTML with poppler utils’48 pdftohtml. While it is
processed, common errors for section headings are fixed. The result is a structured document
that eases the filtering process. In the last stage of the pre-processing, information such as table
of contents, or parts of the header or footer are removed. The whole process depends heavily
on the quality of the PDF, which is reflected in the results.

Figure 11. Main architecture for AMOE (keyword-based extraction method)

48 Library for pdf transformation/rendering: https://poppler.freedesktop.org

http://www.medina-project.eu/
https://poppler.freedesktop.org/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 72 of 100

www.medina-project.eu

Evidence extraction

After the preparation of the document, a subprocess is started for every organisational metric.
First, the search space is reduced by filtering the document for relevant sections/paragraphs.
This is done using the keywords defined in the metric and the section headings marked in the
pre-processing. Second, the metric question as well as the filtered text is fed into the pre-trained
question answering model. Third, extracted answer/evidence is marked in the HTML document
and the evidence is stored.

In the case a target value is defined for an organisational metric, AMOE derives an assessment
hint. This hint is using the extracted evidence and compares it with the defined target value. As
some metrics are phrased as an open question, not all have a target value defined. The main
goal of AMOE is to aid the user, not perform blind assessment. Therefore, the results need to be
verified by a human.

At this stage, the data is available for a user (i.e., compliance manager) to inspect the result via
the GUI or API and set the final assessment result. Once set, the assessment result can be sent
to the Orchestrator.

5.1.1.1 Fitting into overall MEDINA Architecture

AMOE provides the functionality to add assessment results of organisational
requirements/metrics to the MEDINA framework. It works with organisational metrics from the
Catalogue of Controls and Metrics and accesses the predefined target values from the
Orchestrator API (metric configuration). Alternatively, the metrics can be read from a local file.
Once an uploaded file is processed and the evidence is processed and confirmed by a user, it
can be forwarded to the Orchestrator and further according to the evidence pipeline defined.

5.1.1.2 Component card

Table 15. Component card for the Assessment and Management of Organisational Evidence

Component
Name

Assessment and Management of Organisational Evidence (AMOE)

Main
functionalities

The component provides the following functionalities:

• Gathering and processing organizational evidences

• Providing evidences to the Clouditor for assessment

Sub-
components
Description

Organizational evidence is collected by applying NLP and organisational
metrics to an uploaded document. The processing part transforms this
evidence in the form of technical evidence. This transformed evidence then is
provided to the Security Assessment of Clouditor which can handle such
technical evidence.

Main logical
Interfaces

Interface name Description Interface technology

UI GUI to upload documents,
Retrieve evidence,
Set assessment results, and
Submit/forward assessment
results

webservice

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 73 of 100

www.medina-project.eu

API Upload documents,
Retrieve evidence,
Set assessment results, and
Submit/forward assessment
results

REST

Requirements
Mapping

List of requirements covered by this component (see D5.2 [3]):
OEGM.01, OEGM.02, OEGM.03, OEGM.04, OEGM.05.

Interaction
with other

components

Interfacing Component Interface Description

Orchestrator Send collected evidences + assessment results
Retrieve metric configurations

Catalogue of Controls
and Metrics

Retrieve metrics and requirements as needed

Relevant
sequence
diagram/s

Current TRL 49 TRL 3

Target TRL 50 TRL 4

Programming
language

Python

License Apache 2.0

WP and task WP3: T3.4

MEDINA
Workflows

WF2 “Preparation of MEDINA Components”,
WF3 “EUCS deployment on ToC”, and

49 TRL value before validation
50 TRL value after validation

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 74 of 100

www.medina-project.eu

WF5 “EUCS Compliance Assessment” (see D5.4 [5])

5.1.1.3 Related requirements

The relevant requirements from Deliverable D5.2 [3] are listed below with a brief description of
how they are implemented.

Requirement id OEGM.01

Short title Continuous collection of organizational evidence

Description The developed tool using NLP must be able to collect organizational
evidence.

Status Fully implemented

Evidence is automatically extracted after a file has been uploaded.

Requirement id OEGM.02

Short title Provision to defined interfaces

Description The developed tool using NLP must provide collected evidence to the
central evidence collection component (T3.1) via its offered APIs.

Status Fully implemented

The users of the component can forward an assessment result (and evidence as needed by the
API) to the Orchestrator. This can be triggered by the UI or API once a compliance status has
been set for a metric or extracted evidence.

Requirement id OEGM.03

Short title Usability for auditors

Description The evidence management component should provide easy-to-use
functionalities for auditors to search through relevant evidence. The
assessment is handled manually though the UI. The assessment can be
adjusted via API (should be checked/verified by a human beforehand).

Status Fully implemented

AMOE provides the extracted results in an interactive UI. Evidence is highlighted in the extracted
answer as well as in the processed document. Furthermore, it extracts the page number where
the evidence was found so one can double check the information in the original uploaded
document. The computed assessment hints are designed to help users in reaching their
decisions. As they might be false, the final decision on an assessment is done by the user.

Requirement id OEGM.04

Short title Minimum evidence storage

Description The evidence management component must be able to store and provide
evidence at least back to the last assessment (if needed).

Status Fully implemented

The uploaded and extracted data is stored until it is manually deleted. It can be deleted via the
GUI. Log information can be deleted by an administrator with access to the database.

Requirement id OEGM.05

Short title Evidence Assessment results

Description The assessment results of evidence assessments must be submitted to the
evidence Orchestrator via the API it provides.

Status Fully implemented

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 75 of 100

www.medina-project.eu

The assessment results can be forwarded to the Orchestrator using the API or GUI. See also Req.
OEGM.02

5.1.2 Technical description

The following subsections describe the technical details of AMOE.

5.1.2.1 Prototype Architecture

Figure 12 depicts the AMOE architecture. The prototype core is the webservice based on the
Quart Python library51. The API and GUI are served by this central component. For the interaction
with the rest of the MEDINA framework, there is a dedicated subcomponent (MEDINA
component API, see Figure 12) incorporating the auto-generated Python clients to the APIs
based on their OpenAPI specifications.

The session management of the webservice uses a separately deployed Redis instance. The
evidence and log information are stored in the separately deployed MongoDB instance using
the dedicated functions.

Not directly part of the prototype, but core part of the evidence extraction research is the quality
check functions and separately deployed Inception52 instance. Inception can be used to annotate
the data needed for the quality measurements.

Figure 12. AMOE prototype architecture

5.1.2.2 Description of components

AMOE consists of a main webservice serving the GUI and the API. There are some parts that
could be used independently of the main webservice. Figure 12 shows the main components of
AMOE:

Webservice

This is the core component redirecting the data flow to the relevant subcomponents. It serves
the GUI and API, and verifies authentication via the Keycloak53 instance from MEDINA.

51 https://pypi.org/project/quart/
52 Annotation tool for NLP: https://inception-project.github.io/
53 https://www.keycloak.org/

http://www.medina-project.eu/
https://pypi.org/project/quart/
https://inception-project.github.io/
https://www.keycloak.org/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 76 of 100

www.medina-project.eu

MEDINA component API

This subcomponent is used to access the different components from the MEDINA framework. It
is used to retrieve requirements and metrics from the Catalogue of Controls and Metrics and
the metric configuration from the Orchestrator. Furthermore, it is used for submitting the
assessment results and extracted evidence.

DB utils

This subcomponent is used to store and access evidence results as well as local assessment
results. It is also used to log relevant information such as by whom and when a document has
been uploaded or an assessment result has been changed.

GUI

The graphical user interface serves to upload documents as well as to access the processed
evidence. It enables the user to search, filter and manage the organisational evidence.

API

The API enables data access for other applications such as the Company Compliance Dashboard.
It can be used to perform the most essential functions of the GUI. These include uploading a
document, retrieving the processed evidence, setting assessment results, and submitting the
assessment results to the Orchestrator.

Pre-processing

This subcomponent is triggered in a background process once a document has been uploaded.
It performs the necessary transformations to enable the evidence extraction.

Evidence extraction

This subcomponent is triggered after the pre-processing pipeline is done. It works as described
in section 5.1.1.

5.1.2.3 Technical specifications

The AMOE tool is written in Python 3.x. It uses various Python libraries as well as the pdftohtml
functionality from poppler utils54. The webservice is built on Quart55, the evidence extraction is
based on transformers56, PyTorch57 and the roberta-base-squad258 model from huggingface.

The component is using MongoDB59 and Redis60 to store the data. Evidence and logs are stored
in the MongoDB. Redis is used in par with the quart-session library.

54 https://poppler.freedesktop.org/
55 https://pypi.org/project/quart/
56 https://github.com/huggingface/transformers
57 https://pytorch.org/
58 https://huggingface.co/deepset/roberta-base-squad2
59 https://www.mongodb.com/
60 https://redis.io/

http://www.medina-project.eu/
https://poppler.freedesktop.org/
https://pypi.org/project/quart/
https://github.com/huggingface/transformers
https://pytorch.org/
https://huggingface.co/deepset/roberta-base-squad2
https://www.mongodb.com/
https://redis.io/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 77 of 100

www.medina-project.eu

5.2 Delivery and Usage

The following sections give a short overview of the delivery and usage of the tool.

Please note that the User Manual can be found in Appendix E: AMOE User Manual.

5.2.1 Package

AMOE can be deployed as a Docker container. Table 16 shows an overview of the repository
folders and files.

Table 16. Overview of AMOE's source code package contents

Folder Description

clouditor_evidence_client_legacy/ Contains the generated Python client for the
evidence API of Clouditor based on their openapi file.

clouditor_orchestrator_client_legacy/ Contains the generated Python client for the
Orchestrator API of Clouditor based on their openapi
file.

inception_kubernetes/ Contains the kubernetes files to deploy an instance

of the annotation tool inception.

jenkins/ Contains the Jenkins pipeline code.

kubernetes/ Contains the kubernetes files for the deployment of
AMOE.

metric_data/ Contains the local version of the metrics.

paragraph_extraction/ Contains the code for the pre-processing pipeline.

qa/ Contains the code for evidence extraction using the
question answering model as well as code to
compute quality scores.

static/ Contains the stylesheets and images for the
webservice.

templates/ Contains the HTML templates for the webservice.

utils/ Contains code for utility functions of the webservice
such as use of other MEDINA component’s API,
evidence extraction and database management.

/ The root folder contains the main webservice and
configuration as well as the Dockerfile.

5.2.2 Installation

Clone the AMOE repository. Set up a MongoDB and a Redis instance (see kubernetes files in the
repository).

Set the following fields in the config.py:

MONGODB_URL

KEYCLOAK_URL + authentication settings

CATALOGUE_API_URL

ORCHESTRATOR_API_URL

Run hypercorn app:app -b 0.0.0.0:8000 to deploy the service locally, or deploy with
kubernetes.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 78 of 100

www.medina-project.eu

5.2.3 User Manual

AMOE user manual can be found in Appendix E: AMOE User Manual.

5.2.4 Licensing

The component is planned to be licenced under Apache 2.0.

5.2.5 Download

The component code can be downloaded from the MEDINA public git repository61.

5.3 Advancements within MEDINA

The AMOE component has been developed from scratch for MEDINA by Fabasoft to cover
evidence extraction for organisational requirements in the light of Task 3.4 62. The advancements
can be grouped into two parts – data management and the application itself.

Organisational metrics and annotation

Similar to the technical metrics, organisational metrics have been developed in cooperation with
the domain experts of Bosch. For a subset of the organisational metrics, the relevant evidence
has been annotated using the tool Inception.

Pre-processing pipeline

To enable evidence extraction on PDF documents, we developed a pre-processing stage, where
the document is transformed into a HTML file. The information is reduced to what is deemed
useful (e.g., removal of header and footer of the page; skip table of contents). Furthermore, only
text that is deemed relevant is selected.

Evidence extraction

AMOE enables evidence extraction based on the organisational metrics. This works with
standard NLP techniques and the use of a pre-trained question answering model.

UI development

To provide the information and functionality to a user, the webservice has been developed.

API development

To provide the information and functionality to a different client (e.g., the Company Compliance
Dashboard (CCD), see D6.3 [32], Appendix D – Workflows of Use Case 2), the API has been
developed.

Quality checks

To get an impression of how well the prototype is working and to be able to develop / research
for better extraction methods, quality checks have been implemented.

61 https://git.code.tecnalia.com/medina/public/amoe
62 Development started late in the project as Fabasoft adopted this task from another partner. AMOE is
foreseen as a Proof of Concept (PoC) in MEDINA.

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/amoe

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 79 of 100

www.medina-project.eu

Currently, there are four basic approaches implemented for evidence extraction. The first one
(keyword based) is described in the functional description in section 5.1.1 (Evidence extraction)
above. The other approaches are quite similar; however, the order of the results differ. As they
are still under development, the description is kept to a higher level in this paragraph. The main
difference with the keyword-based approach is that the same metric question is evaluated in
every paragraph instead of once per filtered document text. The results are ordered in various
ways, e.g., based on a similarity score (cosine similarity) between each paragraph and the
keywords. The top result is selected to be extracted as evidence. The keyword-based approach
performs best, therefore it is used in the deployment of the prototype.

Test cases have been constructed to determine the quality of the approach. Each test case is
using a policy document and a set of organisational metrics for which the evidence has been
annotated on the document. The annotations were edited using the Inception tool (see also
section 5.1.2.1). The test case policy document is used for empirical and numerical analysis of
the evidence extraction. In the rest of the section, details and results of the quality checks (score)
and the two test cases are described.

Fabasoft test case

Fabasoft created a specific document containing dummy policies for test purposes, as the
internal could not be shared with the consortium. These policies are contained in a single
document further referenced as “Fabasoft dummy policy document”.

Bosch test case

Bosch has shared two policy documents, one of which contains more details and is therefore
used for the experiments. The document used is further referenced as “Bosch IoT policy
document”.

Results

Current results for the Fabasoft dummy policy document (Fabasoft test case):

• Keyword based approach: 19 / 28 = 0.68

• Score based approach: 13 / 28 = 0.46

• Similarity based approach: 7 / 28 = 0.25

• Similarity + score based approach: 13 / 28 = 0.46

Although, the main focus in research was on the metrics and policies by Fabasoft, here are the
current results for the Bosch IoT policy document (Bosch test case):

• Keyword based approach: 10 / 50 = 0.20

• Score based approach: 6 / 50 = 0.12

• Similarity based approach: 8 / 50 = 0.16

• Similarity + score based approach: 9 / 50 = 0.18

28 organisational metrics have been annotated for the Fabasoft test case and 50 for the Bosch
test case. The score is the ratio of the number of correctly retrieved text samples to the total

number of the respectively annotated text passages (𝑠𝑐𝑜𝑟𝑒 =
#correctly retrieved evidence

#total annotated evidence
).

Some of the results can be explained by the difference of expertise between the annotators and
the metric developer. However, we think the results can be improved by improving on the

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 80 of 100

www.medina-project.eu

extraction pipeline, and performing curation on the annotated data and metrics. The metric
questions and especially the linked keywords need to be revised.

5.4 Limitations and future work

The following sections describe current and future limitations of the AMOE proof-of-concept
prototype.

Current limitations that can be overcome

In Task 3.4, the AMOE prototype is subject to limitations of the dataset (quantity and quality).
Given that no suitable publicly available datasets were found, data needs to be constructed and
adapted to the needs of the project. This is addressed by the creation of specifically designed
organizational metrics designed on the basis of policies provided by Bosch and Fabasoft. For
good results this requires time and expertise to map the relevant information in the policy text
to concrete metrics that are specialized for extraction of this organisational information. These
provided metrics and documents are the main input for the prototype and are used for building
the evidence extraction pipeline as well as its evaluation measures. The organisational metrics
can be revised and extended to increase the available dataset. Thus, we are able to get a broader
picture on how well the prototype works in practice as well as whether some improvements to
the evidence extraction pipeline are fruitful the way they are intended.

The quality of the current extraction results varies from sample to sample. However, with further
research and improvement of the evidence extraction methods, this can be overcome up to a
certain point. Confidence in the results of the extraction pipeline is measured by calculating how
much of the annotated data (ground truth) can be correctly extracted. This score can be used
to validate added improvements to the extraction pipeline.

Generic limitations that will not be overcome (due to technology, specific requirements, etc.)

As the data for this task is rather limited, it was decided to use a pre-trained model. This model
has been trained for question answering in a different domain, so it is not specific to the
terminology of cloud service provider’s policies. Empiric analysis has shown that the model
provides reasonable answers for the given task, however, we suspect that the results could be
improved with the roberta-base-squad2 model, given enough data. As we do not want to overfit
on the little data acquired, we refrain from performing this step, to retain the generic output.

As the development and test environment by the MEDINA project do only include limited
resources (no GPU, limited RAM and CPU), the processing of the policy documents takes quite
some time. This could be partly overcome (in a future setup, not MEDINA) by using e.g., GPU for
the question answering (it has been verified in a local test environment). However, even with
the use of GPUs this is not an instant process.

The AMOE component deals at the moment only with policy data in PDF. This is because it is
hard to obtain enough generic evidence deemed organisational, without developing a solution
that is too specific for a single cloud service provider. To gain a tool with high quality results for
multiple providers, we focus on this task.

The evidence extraction process is limited to the organisational metrics. The used questions
should be defined to retrieve a concrete answer / value to measure. No binary answers are
possible with the chosen model settings and the model only selects a single answer. This could
be extended in future work, for the moment it was deemed to be not in the scope as complexity
increases and focus is on concrete evidence extraction.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 81 of 100

www.medina-project.eu

There will be no fully automatic assessment; due to no guarantee that the assessment would be
correct, thus the prototype is designed to aid the CAB. Results might be biased up to a certain
point due to construction of the examples from Bosch and Fabasoft. Shortcomings in this regard
could be mitigated by using same metric on different policy documents, as then either the metric
or the extraction method needs to be adapted.

For this proof-of-concept component, no log files or screenshots of evidence will be covered,
the focus is on policy documents. Given the structure of the dataset and the focus on building a
prototype that works; the organisational metrics are specific to policy documents and no other
“raw” evidence sources. Future work could extend the prototype to work with other document
types as well as forms of evidence. However as most of other document types used to write
policies can be converted to PDF anyway this is not considered for now.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 82 of 100

www.medina-project.eu

6 Conclusions

This document presents a final technical report about the design, architecture, and
implementation states of MEDINA evidence gathering components. It details the individual
components’ functions, internal structure, technical description and the description of their
subcomponents. Information about their limitations and future planned work is also presented.

The components presented in this document include three tools supporting the security
assessment of cloud infrastructure (Clouditor, Wazuh, and Vulnerability Assessment Tools (VAT),
along with corresponding Wazuh and VAT Evidence Collector), a pair of tools for assessing the
security and compliance of cloud application’s source code (Codyze and CloudPG, along with its
LLVM Extensions), and a component for the assessment of organisational measures based on
analysis of CSP’s documentation (Assessment and Management of Organisational Evidence,
AMOE).

At the end of their development, the described components satisfy all of their functional
requirements (for additional info see Appendix A: MEDINA Requirements Implementation
Overview) elicited in scope of WP5 and presented in D5.2 [3]. The components are also fully
integrated with other parts of the MEDINA framework.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 83 of 100

www.medina-project.eu

7 References

[1] ENISA, “EUCS – Cloud Services Scheme,” Draft version provided by ENISA (August 2022) -
not intended for being used outside the context of MEDINA, 2022.

[2] MEDINA Consortium, “D3.3 Tools and techniques for the management of trustworthy
evidence - v3,” 2023.

[3] MEDINA Consortium, “D5.2 MEDINA requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy - v2,” 2022.

[4] MEDINA Consortium, “D3.5 Tools and techniques for collecting evidence of tehcnical and
organisational measures - v2,” 2022.

[5] MEDINA Consortium, “D5.4: MEDINA integrated solution-v2,” 2023.

[6] MEDINA Consortium, “D2.5 Specification of the Cloud Security Certification Language -
v3,” 2023.

[7] MEDINA Consortium, “D2.2 Continuously certifiable technical and organizational
measures and catalogue of cloud security metrics-v2,” 2023.

[8] MEDINA Consortium, “D4.3 Tools and techniques for the management and evaluation of
cloud security certifications-v3,” 2023.

[9] Wazuh Inc., “Wazuh,” [Online]. Available: https://wazuh.com/. [Accessed April 2023].

[10] Cisco, “ClamAV,” [Online]. Available: https://www.clamav.net/. [Accessed April 2023].

[11] Chronicle Security, “VirusTotal,” [Online]. Available: https://www.virustotal.com/.
[Accessed April 2023].

[12] “w3af,” [Online]. Available: http://w3af.org/. [Accessed April 2023].

[13] OWASP Foundation, “OWASP Zed Attack Proxy (ZAP),” [Online]. Available:
https://owasp.org/www-project-zap/. [Accessed April 2023].

[14] “Nmap,” [Online]. Available: https://nmap.org/. [Accessed April 2023].

[15] Docker, Inc., “Docker,” [Online]. Available: https://www.docker.com/. [Accessed April
2023].

[16] Rapid7, “Metasploit,” [Online]. Available: https://www.metasploit.com/. [Accessed April
2023].

[17] VMware, Inc., “RabbitMQ,” [Online]. Available: https://www.rabbitmq.com/. [Accessed
April 2023].

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 84 of 100

www.medina-project.eu

[18] MongoDB, Inc., “MongoDB,” [Online]. Available: https://www.mongodb.com/. [Accessed
April 2023].

[19] OpenStack, “OpenStack Swift (Github repository),” [Online]. Available:
https://github.com/openstack/swift. [Accessed April 2023].

[20] Google LLC, “Angular,” [Online]. Available: https://angular.io/. [Accessed April 2023].

[21] HashiCorp, Inc., “Vagrant,” [Online]. Available: https://www.vagrantup.com/. [Accessed
April 2023].

[22] Red Hat, Inc., “Ansible,” [Online]. Available: https://www.ansible.com/. [Accessed April
2023].

[23] Faraday Security, “Faraday (Github repository),” [Online]. Available:
https://github.com/infobyte/faraday. [Accessed April 2023].

[24] CYBERWISER.eu consortium, “CYBERWISER.eu,” [Online]. Available:
https://www.cyberwiser.eu/. [Accessed April 2023].

[25] I. Kunz, K. Weiss, A. Schneider and C. Banse, “Privacy Property Graph: Towards Automated
Privacy Threat Modeling via Static Graph-based Analysis,” in Proceedings on Privacy
Enhancing Technologies, Lausanne, 2023.

[26] M. Deng, K. Wuyts, R. Scandariato, B. Preneel and W. Joosen, “A privacy threat analysis
framework: supporting the elicitation and fulfillment of privacy requirements,”
Requirements Engineering, vol. 16, pp. 3-32, 2011.

[27] C. Banse, I. Kunz, A. Schneider and K. Weiss, “Cloud Property Graph: Connecting Cloud
Security Assessments with Static Code Analysis,” in 14th IEEE International Conference on
Cloud Computing (CLOUD), 2021.

[28] A. Küchler and C. Banse, “Representing LLVM-IR in a Code Property Graph,” in Information
Security (ISC), 2022.

[29] Fraunhofer AISEC, “MARK (Modeling Language for Cryptography Requirements and
Guidelines) GitHub page,” [Online]. Available: https://github.com/Fraunhofer-
AISEC/codyze-mark-eclipse-plugin. [Accessed April 2023].

[30] OASIS SARIF TC, “Static Analysis Results Interchange Format (SARIF) Version 2.1.0,” 27
March 2020. [Online]. Available: https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-
v2.1.0-os.html. [Accessed April 2023].

[31] F. Yamaguchi, N. Golde, D. Arp and K. Rieck, “Modeling and Discovering Vulnerabilities with
Code Property Graphs,” in 2014 IEEE Symposium on Security and Privacy.

[32] MEDINA Consortium, “D6.3 Use cases development and validation-prototypes-v1,” 2022.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 85 of 100

www.medina-project.eu

8 Appendix A: MEDINA Requirements Implementation Overview

Table 17 below presents an overview of requirements and their fulfilment with the currently
implemented tools presented in this document. The requirements were elicited in WP5 and are
detailed in D5.2 [3]. For the common requirements, implementation status is given for all the
related components, while tool-specific requirements are presented in groups according to their
respective components, such as they are also structured in D5.2. The implementation status has
three possible values represented in the table by colours:

• Green: fully implemented

• Orange: partially implemented

• Red: not implemented

This table is updated and presented in all versions of this report for easier comparison and
progress tracking. Note that some requirements were added, moved between categories,
and/or their titles changed since the initial version of this deliverable.

Table 17. Overview of requirements satisfaction according to current implementation of the tools
presented in this deliverable

Requirement ID Short title Implementation status

Common requirements for technical evidence
gathering

Clouditor Wazuh VAT Codyze

TEGT.C.01 Continuous collection

TEGT.C.02 Provision to defined interfaces

Clouditor (Gathering evidence from cloud interfaces)

TEGT.S.01 Collect evidence from cloud interfaces

EAT.02 Continuous evidence assessment

Clouditor (Security assessment)

EAT.01 Evidence assessment target

EAT.03 Evidence assessment results

Clouditor (Evidence orchestration)

ECO.01 Provision of Interfaces

ECO.02 Conformity to selected assurance level

ECO.03 Secure Transmission to evidence storage

ECO.04 Transmission of evidence checksums

Clouditor (Gathering evidence from CSP-Native Services)

TEGT.S.09 Collect evidence from CSP-native services

EAT.04 Assess CSP-Native Evidence

Wazuh (Gathering evidence from computing resources)

TEGT.S.08 Provision of malware, intrusion, and vulnerability detection tools

VAT (Gathering evidence from computing resources)

TEGT.S.08 Provision of malware, intrusion, and vulnerability detection tools

CloudPG (Gathering evidence from application source code)

TEGT.S.02 Collect evidence from source code via CPG

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 86 of 100

www.medina-project.eu

Requirement ID Short title Implementation status

TEGT.S.03 Implement information and data flow analysis

TEGT.S.10 Connect infrastructure- and application-level security analyses

TEGT.S.07 Support for common programming languages, libraries, cloud
services

Codyze (Gathering evidence from application source code)

TEGT.S.03 Implement information and data flow analysis

TEGT.S.04 Support expression of security requirements

TEGT.S.05 Verify security requirements

TEGT.S.06 Retrieve source code of cloud applications

TEGT.S.07 Support for common programming languages, libraries, cloud
services

TEGT.S.08 Provision of malware, intrusion, and vulnerability detection tools

Assessment and Management of Organisational Evidence (AMOE)

OEGM.01 Continuous collection of organizational evidence

OEGM.02 Provision to defined interfaces

OEGM.03 Usability for auditors

OEGM.04 Minimum evidence storage

OEGM.05 Evidence Assessment results

Table 18 presents the basic statistic of requirement coverage by each component. In total, there
are 35 requirements (if the common requirements are counted separately – once for each
component) related to the presented components. 33 (94%) of them are currently marked as
fully implemented, 0 (0%) as partly implemented, and 2 (6%) as not implemented.

Table 18. Requirements satisfied by each tool

Tool
Number of

requirements
Fully

implemented
Partially

implemented
Not

implemented

Clouditor 12 11 0 1

Wazuh 3 3 0 0

VAT 3 3 0 0

CloudPG 4 4 0 0

Codyze 8 7 0 1

AMOE 5 5 0 0

However, if we take into consideration that one of the requirements (TEGT.S.08), which is not
covered by Codyze, is actually covered by VAT (see section 3.3.1.1.3) and that the requirement
ECO.02 is out of scope (since MEDINA focuses on the assurance level high only) (see section
3.1.1.1.3), we can conclude that all the relevant 33 (100%) requirements are covered.

In addition, the LLVM Extensions of the Code Property Graph, as a new tool, partially cover three
requirements: TEGT.S.05, TEGT.S.07 and TEGT.S.08. Since this tool is a novel research concept
and its integration into the MEDINA framework is future work beyond the scope of the project,
the number of requirements they cover are not counted towards the number of all requirements

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 87 of 100

www.medina-project.eu

covered, as presented in Table 18. Furthermore, these three partially covered requirements are
fully covered by other tools (Wazuh, VAT and Codyze).

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 88 of 100

www.medina-project.eu

9 Appendix B: Clouditor - Readme, Installation instructions and
User manual

9.1 README

Clouditor Community Edition

Introduction

Clouditor is a tool which supports continuous cloud assurance. Its main goal is to continuously
evaluate if a cloud-based application (built using, e.g., Amazon Web Services (AWS) or Microsoft
Azure) is configured in a secure way and thus complies with security requirements defined by,
e.g., Cloud Computing Compliance Controls Catalogue (C5) issued by the German Office for
Information Security (BSI) or the Cloud Control Matrix (CCM) published by the Cloud Security
Alliance (CSA).

Features

Clouditor currently supports over 60 checks for Amazon Web Services (AWS), Microsoft Azure
and OpenStack. Results of these checks are evaluated against security requirements of the BSI
C5 and CSA CCM.

Key features are:

• automated compliance rules for AWS and MS Azure,

• granular report of detected non-compliant configurations,

• quick and adaptive integration with existing service through automated service
discovery,

• descriptive development of custom rules using Cloud Compliance Language (CCL)
to support individual evaluation scenarios,

• integration of custom security requirements and mapping to rules.

Build

Install necessary protobuf tools.

go install google.golang.org/protobuf/cmd/protoc-gen-go \
google.golang.org/grpc/cmd/protoc-gen-go-grpc \
github.com/grpc-ecosystem/grpc-gateway/v2/protoc-gen-grpc-gateway \
github.com/google/gnostic/cmd/protoc-gen-openapi

Also make sure that $HOME/go/bin is on your $PATH and build:

go generate ./...
go build -o ./engine cmd/engine/engine.go

Usage

To test, start the engine with an in-memory DB

./engine --db-in-memory

Alternatively, be sure to start a Postgres DB:

docker run -e POSTGRES_HOST_AUTH_METHOD=trust -d -p 5432:5432 postgres

http://www.medina-project.eu/
https://xlabdoo.sharepoint.com/sites/Research/Dokumenti%20v%20skupni%20rabi/Projects/MEDINA/10_Workpackages/wp3/D3.6%20(due%20April%202023)/clouditor-engine-azure/src/main/resources/rules/azure/compute/vm-data-encryption.md

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 89 of 100

www.medina-project.eu

Clouditor CLI

The Go components contain a basic CLI command called cl. It can be installed using go install
cmd/cli/cl.go. Make sure that your ~/go/bin is within your $PATH. Afterwards the binary can
be used to connect to a Clouditor instance.

cl login <host:grpcPort>

Command Completion

The CLI offers command completion for most shells using the cl completion command. Specific
instructions to install the shell completions can be accessed using cl completion --help.

9.2 Installation instructions

The full up-to-date installation instructions can be found in the README at the Clouditor Github
repository11.

To build Clouditor, the Gradle build tool63 is used. To enable an auto-discovery for AWS and/or
Azure the credentials must be stored in the home folder.

Since Protobuf is used, the corresponding packages must also be installed (the installation
command can be found in the README):

• google.golang.org/protobuf/cmd/protoc-gen-go

• google.golang.org/grpc/cmd/protoc-gen-go-grpc

• github.com/grpc-ecosystem/grpc-gateway/v2/protoc-gen-grpc-gateway

• github.com/googleapis/gnostic/apps/protoc-gen-openapi

The Clouditor features its own CLI for which ~/go/bin must be within the $PATH environment
variable.

To build the prototype make sure that $HOME/go/bin is within your $PATH and run the
following commands:

• go generate ./...

• go build ./…

The engine can be started by using an in-memory DB as well as a Postgres DB. To start the engine
with an in-memory DB, use ./engine –db-in-memory if starting with a separate Postgres DB use
./engine. Start the Postgres DB.

For development, an overview for the installation instructions is given in the following:

• Build Clouditor with Gradle or alternatively via a docker image

• Build Go components (Protobuf tools needed for compiling the Protobuf files)

• Start the Clouditor with in-memory DB or a Postgres DB

• Install and use the CLI for running the Clouditor at runtime

63 https://github.com/clouditor/clouditor/blob/main/README.md

http://www.medina-project.eu/
https://github.com/clouditor/clouditor/blob/main/README.md

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 90 of 100

www.medina-project.eu

9.3 User Manual

The Clouditor components can be used with CLI commands. The help is shown by running cl –
help:

Each command can have additional subcommands which are explained by the corresponding
help, e.g., cl assessment-result –help.

Please note that before using the Clouditor CLI it is necessary to login to Clouditor: cl login
<host:grpcPort>.

user@user:~$ cl --help
The Clouditor CLI

Usage:
 cl [command]

Available Commands:
assessment-result Assessment result commands
cloud Target cloud services commands
completion Generate completion script
evidence Evidence commands
help Help about any command
login Log in to Clouditor
metric Metric commands
requirement Requirement commands
resource Resource commands
service Service commands
tool Tool commands

Flags:
 -h, --help help for cl
 -s, --session-directory string the directory where the session will be saved and
loaded from (default "/home/user/.clouditor/")

Use "cl [command] --help" for more information about a command.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 91 of 100

www.medina-project.eu

10 Appendix C: Codyze - Installation instructions and User manual

10.1 Installation instructions

The latest installation instructions for Codyze for MEDINA are described in the README available
in the public MEDINA repository64. In addition, the latest installation instructions for each
component are available in their respective GitHub repositories and on the main Codyze
website65.

Codyze for MEDINA is built with Gradle. The project repository contains the Gradle wrapper. To
build Codyze for MEDINA two build steps are required. First, the REST API for the Orchestrator
needs to be built. It is generated from the OpenAPI specifications distributed by the
Orchestrator. The build commands are:

• ./gradlew[.bat] generateAll

• ./gradlew[.bat] installDist

After the build, the Codyze for MEDINA executable is located at {project-

dir}/build/install/codyze/. In this directory one can find three directories:

• bin/ contains a shell Windows batch script to run Codyze

• lib/ contains all library files

• mark/ contains the MARK files included in Codyze

The start scripts in bin/ will print a command help when executed. The command help contains
short descriptions of each command argument and parameter.

The binary distribution of Codyze for MEDINA as ZIP archive has the same structure. In fact,
Gradle is used to build the binary distribution as archive by calling

• ./gradlew[.bat] assembleDist

The resulting archive can be found in {project-dir}/build/distributions/.

The components used by Codyze for MEDINA are consumed as library dependency and
automatically retrieved when Codyze for MEDINA is built from source. In case the components
need to be built from source, their respective code repositories contain up to date information
on the build instruction, prerequisites, and procedure.

Finally, the MARK plugin for Eclipse IDE is provided by an Eclipse update site. The installation of
this plugin is described on the Codyze website.

10.2 User Manual

The user manual for Codyze for MEDINA is available as README in the public MEDINA
repository64. In addition, the Codyze library and MARK are documented at the Codyze website65
and at their respective GitHub repositories66,67.

64 https://git.code.tecnalia.com/medina/public/codyze
65 https://www.codyze.io/
66 https://github.com/Fraunhofer-AISEC/codyze
67 https://github.com/Fraunhofer-AISEC/codyze-mark-eclipse-plugin

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/codyze
https://www.codyze.io/
https://github.com/Fraunhofer-AISEC/codyze
https://github.com/Fraunhofer-AISEC/codyze-mark-eclipse-plugin

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 92 of 100

www.medina-project.eu

11 Appendix D: Cloud Property Graph - Installation instructions
and User manual

11.1 Installation instructions

Note that the installation instructions may change with the advancement of the tool, so consider
the installation details in the README file on the GitHub repository68. The following instructions
and the following manual are partly copied from this file:

1. Clone the git repository git@github.com:clouditor/cloud-property-

graph.git

2. Set the JAVA_HOME variable to Java 11
3. Install jep69
4. For usage of experimental language, e.g., go

a. Checkout Fraunhofer AISEC - Code Property Graph and build by using the
property -Pexperimental: ./gradlew build -Pexperimental

b. The libcpgo.so must be placed somewhere in the java.library.path70.
i. Under Linux in /lib/. sudo cp ./cpg-

library/src/main/golang/libcpgo.so /lib/

ii. And Mac in ~/Library/Java/Extensions.
5. To build, the graph classes need to be built from the Ontology definitions by calling

./build-ontology.sh. Then build using ./gradlew installDist.

11.2 User Manual

Start neo4j using docker run -d --env NEO4J_AUTH=neo4j/password -p7474:7474
-p7687:7687 neo4j, or docker run -d --env NEO4J_AUTH=neo4j/password -

p7474:7474 -p7687:7687 neo4j/neo4j-arm64-experimental:4.3.2-arm64 on
ARM systems.

Run cloudpg/build/install/cloudpg/bin/cloudpg. This will print a help message with
any additional needed parameters. The root path is required, and the program can be called as
follows: cloudpg/build/install/cloudpg/bin/cloudpg --root=/x/testprogramm
folder1/ folder2/ folder 3/

68 https://github.com/clouditor/cloud-property-graph/blob/main/README.md
69 Follow the instructions at https://github.com/Fraunhofer-AISEC/cpg#python
70 For further information see: https://github.com/Fraunhofer-AISEC/cpg#usage-of-experimental-
languages

http://www.medina-project.eu/
https://github.com/clouditor/cloud-property-graph/blob/main/README.md
https://github.com/Fraunhofer-AISEC/cpg#python
https://github.com/Fraunhofer-AISEC/cpg#usage-of-experimental-languages
https://github.com/Fraunhofer-AISEC/cpg#usage-of-experimental-languages

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 93 of 100

www.medina-project.eu

12 Appendix E: AMOE User Manual

To use the AMOE GUI, start by clicking on the "Upload new file” button. A file upload dialog box
will then appear, as shown in Figure 13.

Figure 13. AMOE file upload dialog

Select a policy PDF document to upload and the cloud service (id) that should be connected to.
Then click on “Upload”.

Figure 14. AMOE landing page after file upload

The evidence extraction process is started in the background. It can take some time until every
organisational metric has been processed. The process can be stopped by clicking on the
turquoise “stop” button. Files and their linked evidence can be deleted by clicking on the red
“Delete” button.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 94 of 100

www.medina-project.eu

Figure 15 depicts the progress of the background evidence extraction process. On hovering, the
details are shown.

Figure 15. AMOE evidence extraction progress

Figure 16 shows the status overview. This is displayed for every file after the evidence extraction
process has finished. The details are shown by hovering with the mouse. Green indicates the
number of assessment results set to compliant, red the number set to not compliant and grey
marks where no status has been set (undefined).

Figure 16. AMOE assessment status overview per document

To view the evidence results of an uploaded file, click on a row of the respective table or the
filename of the list, as depicted in Figure 14. The overview, as depicted in Figure 17, opens. This
overview contains meta data of the uploaded file, filter, and search options. In case an
assessment result has been set, it can be submitted to the Orchestrator directly from this view.
Otherwise, click on a row to get to the detailed view for the extracted evidence.

Figure 18 depicts the detailed view of the extracted evidence. The linked requirement is shown
on the top. This is followed by the metric meta data, extracted answer, assessment hint and
options to set the assessment result and comment.

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 95 of 100

www.medina-project.eu

Figure 17. AMOE overview of extracted evidence and meta data linked to the uploaded file

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 96 of 100

www.medina-project.eu

Figure 18. AMOE view of organisational evidence

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 97 of 100

www.medina-project.eu

Figure 19 shows the processed HTML version of the document. The extracted evidence is
highlighted in green.

Figure 19. Show processed evidence (HTML view)

http://www.medina-project.eu/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 98 of 100

www.medina-project.eu

13 Appendix F: Wazuh and VAT Evidence Collector - Readme and
installation instructions

13.1 Readme

The latest installation and configuration instructions can be found in the README in the public
MEDINA repository71.

Dependant components: Wazuh, ClamAV, VAT

Wazuh and VAT Evidence Collector generates evidence using information acquired from Wazuh
and Vulnerability Assessment Tool APIs. These components should be installed and configurated
in accordance with instructions given in the relevant repositories.

Wazuh Agents also require the ClamAV tool to be installed on their machines (to successfully
cover all the requirements).

Required component versions:

• Wazuh: “v4.1.5”,

• ClamAV: “latest”,

• VAT: “latest.

See “wazuh-deploy”72 for further details on how to set up Wazuh & ClamAV.73

See “vat-deploy”74 for relevant information regarding VAT installation.

Wazuh evidence collector

Wazuh evidence collector uses Wazuh's API75 to access information about information and
configurations of manager and system agents. As an additional measure to ensure correct
configuration of ClamAV76 (if installed on machine) we also make use of Elasticsearch's API 77to
directly access collected logs. Elastic stack is one of the Wazuh's required components (usually
installed on the same machine as the Wazuh server, but can be standalone as well).

VAT evidence collector

VAT evidence collector uses the VAT API to create w3af78 & OWASP79 scans and retrieve their
results. These are later processed and forwarded to Clouditor (Assessment Interface).

71 https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
72 https://git.code.tecnalia.com/medina/public/wazuh-deploy
73 Note that the “wazuh-deploy” repository is deprecated and its information regarding Wazuh-VAT
Evidence Collector configuration could be incomplete. However, information regarding Wazuh
configuration is still up-to-date.
74 https://git.code.tecnalia.com/medina/public/vat-deploy
75 https://documentation.wazuh.com/current/user-manual/api/reference.html
76 https://www.clamav.net/
77 https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html
78 http://w3af.org/
79 https://owasp.org/

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
https://git.code.tecnalia.com/medina/public/wazuh-deploy
https://git.code.tecnalia.com/medina/public/vat-deploy
https://documentation.wazuh.com/current/user-manual/api/reference.html
https://www.clamav.net/
https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html
http://w3af.org/
https://owasp.org/

D3.6 – Tools and techniques for collecting evidence
of technical and organisational measures – v3 Version 1.0 – Final. Date: 05.05.2023

© MEDINA Consortium Contract No. GA 952633 Page 99 of 100

www.medina-project.eu

13.2 Installation instructions & use

Using docker

1. Set up your Wazuh & VAT development environment. Use the “Wazuh Deploy” repository80
to create and deploy Vagrant box with all the required components81.

2. Clone this repository.

3. Build Docker image:

         ```shell 
    $ make build 

    ``` 

4. Run the image:

    ```shell 

    $ make run 

    ``` 

Note: See the “Environment variables” section for more information about configuration of this
component and it's interaction with Wazuh, Clouditor, etc.

Local environment

1. Set up your Wazuh & VAT development environment. Use “Wazuh Deploy” repository80 to
create and deploy Vagrant box with all required components81.

2. Clone this repository.

3. Install dependencies:

    ```shell 

    $ pip install -r requirements.txt 

    ``` 

4. Set environment variables:

    ```shell 

    $ source .env 

    ``` 

5. a) Install Redis server locally:

    ```shell 

    $ sudo apt-get install redis-server 

    ``` 

 Note: To stop Redis server use /etc/init.d/redis-server stop

 b) Run Redis server in Docker container:

    ```shell 

    $ docker run --name my-redis-server -p 6379:6379 -d redis 

    ``` 

 In this case also comment-out server start command in ‘entrypoint.sh’:

    ```shell 

 

80 https://git.code.tecnalia.com/medina/public/wazuh-deploy 
81 Note: The Wazuh Deploy repository is not up to date! Use only for development 

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/wazuh-deploy


D3.6 – Tools and techniques for collecting evidence  
of technical and organisational measures – v3  Version 1.0 – Final. Date: 05.05.2023 

 

© MEDINA Consortium   Contract No. GA 952633 Page 100 of 100 

www.medina-project.eu   

    #redis-server & 

    ``` 

6. Run ‘entrypoint.sh’:

    ```shell 

    $ ./entrypoint.sh 

    ``` 

Note: This repository consists of multiple Python modules. When running Python code manually,
the use of -m flag might be necessary.

http://www.medina-project.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document Structure
	1.3 Updates from D3.5

	2 Evidence Management Tools High-level Architecture
	3 Security Assessment of Cloud Infrastructure
	3.1 Clouditor-Based Components
	3.1.1 Implementation
	3.1.1.1 Functional description
	3.1.1.1.1 Fitting into overall MEDINA Architecture
	3.1.1.1.2 Component cards
	3.1.1.1.3 Related requirements, common for all Clouditor’s components

	3.1.1.2 Technical description
	3.1.1.2.1 Prototype architecture
	3.1.1.2.2 Description of components
	3.1.1.2.3 Technical specifications

	3.1.2 Delivery and usage
	3.1.2.1 Package information
	3.1.2.2 Licensing information
	3.1.2.3 Download

	3.1.3 Advancements within MEDINA
	3.1.4 Limitations and future work

	3.2 Wazuh
	3.2.1 Implementation
	3.2.1.1 Functional description
	3.2.1.1.1 Fitting into overall MEDINA Architecture
	3.2.1.1.2 Component cards
	3.2.1.1.3 Related requirements

	3.2.1.2 Technical description
	3.2.1.2.1 Prototype architecture
	3.2.1.2.2 Description of components
	3.2.1.2.3 Technical specifications

	3.2.2 Delivery and usage
	3.2.2.1 Package information
	3.2.2.2 Installation instructions
	3.2.2.3 User Manual
	3.2.2.4 Licensing information
	3.2.2.5 Download

	3.2.3 Advancements within MEDINA
	3.2.4 Limitations and future work

	3.3 Vulnerability Assessment Tools
	3.3.1 Implementation
	3.3.1.1 Functional description
	3.3.1.1.1 Fitting into overall MEDINA Architecture
	3.3.1.1.2 Component card
	3.3.1.1.3 Related requirements

	3.3.1.2 Technical description
	3.3.1.2.1 Prototype architecture
	3.3.1.2.2 Description of components
	3.3.1.2.3 Technical specifications

	3.3.2 Delivery and usage
	3.3.2.1 Package information
	3.3.2.2 Installation instructions
	3.3.2.3 User Manual
	3.3.2.4 Licensing information
	3.3.2.5 Download

	3.3.3 Advancements within MEDINA
	3.3.4 Limitations and future work

	4 Security Assessment of Cloud Applications
	4.1 Cloud Property Graph
	4.1.1 Implementation
	4.1.1.1 Functional description
	4.1.1.1.1 Fitting into overall MEDINA Architecture
	4.1.1.1.2 Related requirements

	4.1.1.2 Technical description
	4.1.1.2.1 Prototype Architecture
	4.1.1.2.2 Description of components
	4.1.1.2.3 Technical specifications

	4.1.2 Delivery and usage
	4.1.2.1 Package
	4.1.2.2 Licensing
	4.1.2.3 Download

	4.1.3 Advancements within MEDINA
	4.1.4 Limitations and future work

	4.2 LLVM Extensions of the Code Property Graph
	4.2.1 Implementation
	4.2.1.1 Functional description
	4.2.1.1.1 Fitting into overall MEDINA Architecture
	4.2.1.1.2 Related requirements

	4.2.1.2 Technical description
	4.2.1.2.1 Prototype Architecture
	4.2.1.2.2 Description of components
	4.2.1.2.3 Technical specifications

	4.2.2 Delivery and usage
	4.2.2.1 Package information
	4.2.2.2 Licensing information
	4.2.2.3 Download

	4.2.3 Advancements within MEDINA
	4.2.4 Limitations and future work

	4.3 Codyze
	4.3.1 Implementation
	4.3.1.1 Functional description
	4.3.1.1.1 Fitting into overall MEDINA Architecture
	4.3.1.1.2 Component card
	4.3.1.1.3 Related requirements

	4.3.1.2 Technical description
	4.3.1.2.1 Prototype architecture
	4.3.1.2.2 Description of components
	4.3.1.2.3 Technical specifications

	4.3.2 Delivery and usage
	4.3.2.1 Package information
	4.3.2.2 Licensing information
	4.3.2.3 Download

	4.3.3 Advancements within MEDINA
	4.3.4 Limitations and future work

	5 Assessment of Organisational Measures
	5.1 Implementation
	5.1.1 Functional description
	5.1.1.1 Fitting into overall MEDINA Architecture
	5.1.1.2 Component card
	5.1.1.3 Related requirements

	5.1.2 Technical description
	5.1.2.1 Prototype Architecture
	5.1.2.2 Description of components
	5.1.2.3 Technical specifications

	5.2 Delivery and Usage
	5.2.1 Package
	5.2.2 Installation
	5.2.3 User Manual
	5.2.4 Licensing
	5.2.5 Download

	5.3 Advancements within MEDINA
	5.4 Limitations and future work

	6 Conclusions
	7 References
	8 Appendix A: MEDINA Requirements Implementation Overview
	9 Appendix B: Clouditor - Readme, Installation instructions and User manual
	9.1 README
	9.2 Installation instructions
	9.3 User Manual

	10 Appendix C: Codyze - Installation instructions and User manual
	10.1 Installation instructions
	10.2 User Manual

	11 Appendix D: Cloud Property Graph - Installation instructions and User manual
	11.1 Installation instructions
	11.2 User Manual

	12 Appendix E: AMOE User Manual
	13 Appendix F: Wazuh and VAT Evidence Collector - Readme and installation instructions
	13.1 Readme
	13.2 Installation instructions & use

