
 

 

 

 

 

 

 

 

 

 

 

 

Deliverable D4.3 

Tools and Techniques for the Management and 
Evaluation of Cloud Security Certifications – v3 

 

 

 

 

 

 

 

 

 

Editor(s): Immanuel Kunz 

Responsible Partner: Fraunhofer Institute for Applied and Integrated Security AISEC 

Status-Version: Final – v1.0 

Date: 30.04.2023 

Distribution level (CO, PU): PU 

  



D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 2 of 115 

www.medina-project.eu   

Project Number: 952633 

Project Title: MEDINA 

 

 

Title of Deliverable: 
Tools and Techniques for the Management and 
Evaluation of Cloud Security Certifications – v3 

Due Date of Delivery to the EC 30.04.2023 

 

 
Workpackage responsible for the 
Deliverable: 

WP4 – Continuous Life-Cycle Management of Cloud 
Security Certifications 

Editor(s): Immanuel Kunz (FhG) 

Contributor(s): 

Hrvoje Ratkajec, Damjan Murn (XLAB) 
Cristina Regueiro (TECNALIA) 
Niki Klaus (NIXU) 
Jesus Luna Garcia (Bosch) 

Reviewer(s): 
Claudia Zago (HPE) 
Cristina Martínez (TECNALIA) 

Approved by: All partners 

Recommended/mandatory 
readers: 

WP3, WP5, WP6 

 

 
Abstract: This deliverable contains contributions towards the 

automation of certification evaluation and management 
steps, as well as risk assessments and possible 
mitigations regarding the protection of evidence and 
certificate management. 
It is the third and final version of the first WP4 
deliverable. It is the result of work on the tasks T4.1, T4.2, 
and T4.3 until month 30 of the project. 

Keyword List: Certificate Evaluation, Certificate Management, 
Distributed Ledger Technologies, Smart Contracts  

Licensing information: This work is licensed under Creative Commons 
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) 
http://creativecommons.org/licenses/by-sa/3.0/  

Disclaimer This document reflects only the authors’ views and 
neither Agency nor the Commission are responsible for 
any use that may be made of the information contained 
therein. 

 
  

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 3 of 115 

www.medina-project.eu   

Document Description 

Version Date 
Modifications Introduced 

Modification Reason Modified by 

v0.1 06.12.2022 Initial TOC and contents Immanuel Kunz (FhG) 

v0.2 10.04.2023 First draft version  Immanuel Kunz (FhG) 
Hrvoje Ratkajec, Damjan Murn 
(XLAB) 
Cristina Regueiro (TECNALIA) 

v0.3 11.04.2023 Version ready for internal 
review 

Immanuel Kunz (FhG) 
Hrvoje Ratkajec, Damjan Murn 
(XLAB) 
Cristina Regueiro (TECNALIA) 

v0.4 26.04.2023 Addressed all comments 
received in the internal review 

Immanuel Kunz (FhG) 
Hrvoje Ratkajec, Damjan Murn 
(XLAB) 
Cristina Regueiro (TECNALIA) 

v1.0 30.04.2023 Ready for submission Cristina Martínez (TECNALIA) 

  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 4 of 115 

www.medina-project.eu   

Table of Contents 

Table of Contents .......................................................................................................................... 4 

Terms and abbreviations ............................................................................................................. 10 

Executive Summary ..................................................................................................................... 12 

1 Introduction ........................................................................................................................... 13 

1.1 About this deliverable .................................................................................................... 13 

1.2 Document structure ....................................................................................................... 14 

1.3 Updates from D4.2 ......................................................................................................... 14 

2 Background and Related Work .............................................................................................. 16 

2.1 Evaluating Cloud Security Certifications ........................................................................ 16 

2.2 Operational Effectiveness .............................................................................................. 17 

2.3 Target of Evaluation ....................................................................................................... 18 

2.4 Digital Audit Trails .......................................................................................................... 18 

2.5 Hashes ............................................................................................................................ 18 

2.5.1 What is a Hash? ................................................................................................. 19 

2.5.2 Properties of a Good Hash Algorithm ............................................................... 19 

2.5.3 Are hashes completely irreversible? ................................................................. 20 

2.6 The Cloud Security Certification Life-Cycle .................................................................... 21 

3 Architecture ........................................................................................................................... 24 

3.1 Design Goals ................................................................................................................... 24 

3.2 Architecture Overview and Data Flow Model ................................................................ 24 

3.3 Authorization and Filtering ............................................................................................. 25 

4 Establishment of a Digital Audit Trail in MEDINA .................................................................. 26 

4.1 Risk Assessment ............................................................................................................. 26 

4.1.1 Assumptions ...................................................................................................... 26 

4.1.2 Asset Classification Scheme ............................................................................... 26 

4.1.3 Potential Users .................................................................................................. 26 

4.1.4 Protection Goals ................................................................................................ 27 

4.1.5 Potential Attackers ............................................................................................ 28 

4.1.6 Potential Attacks................................................................................................ 29 

4.1.7 Likelihood of Exploitation .................................................................................. 30 

4.1.8 Impact ................................................................................................................ 31 

4.1.9 Risk Calculation .................................................................................................. 31 

4.1.10 Security Requirements ...................................................................................... 32 

4.2 Solutions for Audit Trails ................................................................................................ 32 

4.2.1 Quorum Energy consumption ........................................................................... 33 

4.2.2 Quorum performance and scalability ................................................................ 34 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 5 of 115 

www.medina-project.eu   

4.3 Guarantee of Data Integrity: Hash Functions ................................................................. 34 

4.3.1 Blockchain .......................................................................................................... 34 

4.3.2 Evidence (and Assessment Result) Integrity ..................................................... 35 

4.4 Verifying Evidence and Assessment Results .................................................................. 37 

4.4.1 Calculation of Hashes in the Orchestrator ......................................................... 38 

4.4.2 Calculation of Hashes in the MEDINA Evidence Trustworthiness Management 
System ............................................................................................................... 40 

4.4.3 Calculation of Hashes in an Additional Service ................................................. 42 

4.4.1 Discussion with auditors .................................................................................... 43 

4.5 Advancements within MEDINA ...................................................................................... 44 

4.6 Limitations and Future Work .......................................................................................... 44 

5 Continuous Evaluation of Cloud Security Certification in MEDINA ....................................... 45 

5.1 Approach and Design ..................................................................................................... 45 

5.1.1 Certification Evaluation Methodology .............................................................. 45 

5.2 Implementation .............................................................................................................. 49 

5.2.1 Functional Description ....................................................................................... 49 

5.2.2 Technical Description ........................................................................................ 52 

5.3 Delivery and Usage ......................................................................................................... 54 

5.3.1 Package Information.......................................................................................... 54 

5.3.2 Installation Instructions ..................................................................................... 54 

5.3.3 User Manual ...................................................................................................... 55 

5.3.4 Licensing Information ........................................................................................ 55 

5.3.5 Download .......................................................................................................... 55 

5.4 Advancements within MEDINA ...................................................................................... 55 

5.5 Limitations and Future Work .......................................................................................... 56 

6 Automation of the Cloud Security Certification Life-Cycle in MEDINA .................................. 58 

6.1 Risks and Mitigations in the MEDINA Certification Management ................................. 58 

6.1.1 Potential Risks ................................................................................................... 58 

6.1.2 Discussion of Smart Contracts as a Possible Mitigation .................................... 59 

6.2 Life-Cycle Manager ......................................................................................................... 61 

6.2.1 Certificate States ............................................................................................... 61 

6.2.2 Automating Certification Decisions ................................................................... 63 

6.2.3 Implementation ................................................................................................. 65 

6.2.4 Delivery and usage ............................................................................................ 69 

6.2.1 Advancements within MEDINA ......................................................................... 70 

6.2.2 Limitations and future work .............................................................................. 70 

6.3 Self-Sovereign Identity (SSI) Framework ........................................................................ 70 

6.3.1 Implementation ................................................................................................. 70 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 6 of 115 

www.medina-project.eu   

6.3.2 Delivery and usage ............................................................................................ 82 

6.3.1 Advancements within MEDINA ......................................................................... 83 

6.3.2 Limitations and future work .............................................................................. 83 

6.4 Risk Mitigation ................................................................................................................ 84 

6.5 Future Work ................................................................................................................... 84 

6.5.1 Criteria for Certifying Tools in the context of the EU Cybersecurity Act ........... 84 

6.5.2 Outlook: Compositional Certification in MEDINA ............................................. 84 

7 Conclusions ............................................................................................................................ 88 

8 References ............................................................................................................................. 89 

9 Appendix A: Current Leading Hash Algorithms ...................................................................... 94 

10 Appendix B: Alternatives to Blockchain for Audit Trails ........................................................ 97 

10.1 Blockchain vs Traditional databases ............................................................................... 97 

10.2 Blockchain vs Replicated databases ............................................................................... 98 

11 Appendix C: Blockchain Technologies .................................................................................... 99 

11.1 Consensus Algorithms .................................................................................................... 99 

11.2 Private vs Public ............................................................................................................ 100 

11.3 Technical comparison ................................................................................................... 100 

12 Appendix D: SSI-API Definition ............................................................................................. 104 

13 Appendix E: SSI-Webapp Manual ......................................................................................... 106 

13.1 General usage ............................................................................................................... 106 

13.2 Handling invitations ...................................................................................................... 107 

13.3 Managing DID, data models and owned schemas ....................................................... 110 

13.4 Issuing credentials ........................................................................................................ 112 

13.5 Proof exchange ............................................................................................................. 113 

 

  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 7 of 115 

www.medina-project.eu   

 List of Tables 

TABLE 1. OVERVIEW OF DELIVERABLE UPDATES WITH RESPECT TO D4.2 .................................................... 14 
TABLE 2. OVERVIEW OF TYPES OF DATA AND THEIR SENSITIVITY LEVELS ..................................................... 26 
TABLE 3. OVERVIEW OF THE DIFFERENT USERS IN MEDINA .................................................................... 27 
TABLE 4. OVERVIEW OF MAIN POTENTIAL THREATS FROM DIFFERENT ATTACKERS ....................................... 28 
TABLE 5. OVERVIEW OF MAIN MOTIVATIONS FOR DIFFERENT ATTACKERS ................................................... 29 
TABLE 6. DESCRIPTION OF THE MAIN POTENTIAL ATTACKS IN MEDINA .................................................... 29 
TABLE 7. LIKELIHOOD OF DIFFERENT ATTACKS TO HAPPEN ....................................................................... 31 
TABLE 8. OVERVIEW OF EFFECT AND IMPACT OF THE POTENTIAL ATTACKS ................................................. 31 
TABLE 9. OVERVIEW OF THE RISK OF THE POTENTIAL ATTACKS ................................................................. 31 
TABLE 10. OVERVIEW OF THE MOST SUITABLE BLOCKCHAIN TECHNOLOGIES FEATURES FOR MEDINA AUDIT TRAIL

 ............................................................................................................................................. 33 
TABLE 11. COMPARISON OF REQUIREMENT FULFILMENT VALUE DEPENDING ON NON-CONFORMITY OF INDIVIDUAL 

ASSESSMENT RESULTS CALCULATED WITH DIFFERENT AGGREGATION METHODS ................................... 47 
TABLE 12. OVERVIEW OF THE CCE BACK-END REPOSITORY CONTENTS ...................................................... 54 
TABLE 13. OVERVIEW OF THE CCE WEB UI REPOSITORY CONTENTS.......................................................... 54 
TABLE 14. CERTIFICATE MAINTENANCE DECISIONS DEFINED IN THE EUCS [19] .......................................... 63 
TABLE 15: SHA-2 AND SHA-3 COMPARISON ....................................................................................... 95 
  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 8 of 115 

www.medina-project.eu   

List of Figures 

FIGURE 1. HASH FUNCTIONALITY ........................................................................................................ 19 
FIGURE 2. CERTIFICATE LIFE CYCLE PROPOSED BY CIMATO ET AL. [20] ...................................................... 21 
FIGURE 3. CERTIFICATE STATE-CHANGE MODEL BY ANISETTI ET AL. [23] .................................................. 22 
FIGURE 4. OVERALL ARCHITECTURE OF WP4 COMPONENTS AND CONNECTION TO WP3 COMPONENTS ......... 25 
FIGURE 5. ENTROPY INCREMENT IN THE HASH ....................................................................................... 37 
FIGURE 6. AUTOMATIC VERIFICATION FROM THE ORCHESTRATOR USING THE TRUSTWORTHINESS SYSTEM API 39 
FIGURE 7. MANUAL VERIFICATION FROM THE ORCHESTRATOR USING THE MEDINA EVIDENCE 

TRUSTWORTHINESS MANAGEMENT SYSTEM GUI .......................................................................... 39 
FIGURE 8. MANUAL VERIFICATION USING THE ORCHESTRATOR AND TRUSTWORTHINESS SYSTEM GUI ........... 40 
FIGURE 9. MANUAL VERIFICATION VIA THE EVIDENCE STORAGE AND MEDINA EVIDENCE TRUSTWORTHINESS 

MANAGEMENT SYSTEM GUI ..................................................................................................... 41 
FIGURE 10. AUTOMATIC VERIFICATION USING AN INTERMEDIATE ADDITIONAL SERVICE ................................ 42 
FIGURE 11. AUTOMATIC VERIFICATION USING AN ADDITIONAL SERVICE AS ENTRY POINT .............................. 43 
FIGURE 12. POSSIBLE OPTIONS FOR AGGREGATION OF ASSESSMENT RESULTS INTO COMPLIANCE LEVELS OF 

REQUIREMENTS ....................................................................................................................... 46 
FIGURE 13. CONTINUOUS CERTIFICATION EVALUATION: DIAGRAM OF INTERACTION WITH RELATED COMPONENTS

 ............................................................................................................................................. 50 
FIGURE 14. SEQUENCE DIAGRAM OF THE CONTINUOUS CERTIFICATION EVALUATION COMPONENT ............... 51 
FIGURE 15. SCREENSHOT OF THE CCE WEB UI...................................................................................... 53 
FIGURE 16. AN EXCERPT OF AN EXAMPLE EVALUATION TREE REPRESENTING (NON-)CONFORMITIES OF 

STANDARDISATION HIERARCHY ELEMENTS .................................................................................... 57 
FIGURE 17. A STATE MACHINE MODEL OF THE EUCS PHASES (SOURCE: MEDINA’S OWN CONTRIBUTION) ..... 62 
FIGURE 18. SEQUENCE DIAGRAM OF THE LCM COMPONENT ................................................................... 68 
FIGURE 19. MEDINA CERTIFICATE DATA MODEL .................................................................................. 71 
FIGURE 20. MEDINA SSI-BASED VERIFIABLE CLOUD SECURITY CERTIFICATION FUNCTIONAL ARCHITECTURE .... 72 
FIGURE 21. OVERALL MEDINA ARCHITECTURE (SOURCE: D5.2 [5]) ....................................................... 74 
FIGURE 22. SEQUENCE DIAGRAM OF THE SSI FRAMEWORK .................................................................... 76 
FIGURE 23. MEDINA SSI BASED VERIFIABLE CLOUD SECURITY CERTIFICATION TECHNICAL ARCHITECTURE ....... 78 
FIGURE 24. MEDINA SSI-API OVERVIEW ........................................................................................... 80 
FIGURE 25. MEDINA SSI-WEBAPP: CONNECTION PAGE VISUALIZED IN AN IPHONE SE AND IN A DESKTOP 

BROWSER ............................................................................................................................... 82 
FIGURE 26. MEDINA SSI-API: GET A CERTIFICATE FROM ITS CERTIFICATE_ID ........................................ 104 
FIGURE 27. MEDINA SSI-API: DELETE A CERTIFICATE FROM ITS CERTIFICATE_ID .................................. 104 
FIGURE 28. MEDINA SSI-API: GET ALL CERTIFICATES ........................................................................ 104 
FIGURE 29. MEDINA SSI-API: POST A CERTIFICATE .......................................................................... 105 
FIGURE 30. MEDINA SSI-API: UPDATE A CERTIFICATE ..................................................................... 105 
FIGURE 31. MEDINA SSI-WEBAPP: CONNECTION PAGE WHILE THE USER IS CONNECTED TO THE ISSUER PROVIDER

 ........................................................................................................................................... 106 
FIGURE 32. MEDINA SSI-WEBAPP: WEB PAGE SHOWING THE STATUS OF THE CURRENT CONNECTION ........ 106 
FIGURE 33. MEDINA SSI-WEBAPP: CONNECTION PAGE SHOWING THE CONFIGURATION OF THE CURRENT 

CONNECTION ......................................................................................................................... 107 
FIGURE 34. MEDINA SSI-WEBAPP: INVITATION TAB SHOWING THE INVITATIONS SENT OR RECEIVED BY THE 

CURRENT USER ...................................................................................................................... 107 
FIGURE 35. MEDINA SSI-WEBAPP: INVITATION TAB LISTING A NEW INVITATION TO BE SHARED. ................ 108 
FIGURE 36. MEDINA SSI-WEBAPP: DIALOG TO SHARE A CONNECTION INVITATION. ................................. 108 
FIGURE 37. MEDINA SSI-WEBAPP: DIALOG USED TO ACCEPT A CONNECTION INVITATION. FORM USED TO 

MANUALLY INTRODUCE THE INVITATION. .................................................................................... 109 
FIGURE 38. MEDINA SSI-WEBAPP: DIALOG USED TO ACCEPT A CONNECTION INVITATION. SCANNING MODE

 ........................................................................................................................................... 109 

http://www.medina-project.eu/
file:///C:/Users/106369/Fabasoft%20Cloud%20Austria/Organization%20Folder/Work%20Packages/WP4/D4.3/Final/MEDINA_D4.3_Tools_and_Techniques_for_the_Management_and_Evaluation_of_Cloud_Security_Certifications-v3_v1.0.docx%23_Toc133948929
file:///C:/Users/106369/Fabasoft%20Cloud%20Austria/Organization%20Folder/Work%20Packages/WP4/D4.3/Final/MEDINA_D4.3_Tools_and_Techniques_for_the_Management_and_Evaluation_of_Cloud_Security_Certifications-v3_v1.0.docx%23_Toc133948929


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 9 of 115 

www.medina-project.eu   

FIGURE 39. MEDINA SSI-WEBAPP: NEW INVITATION MARKED AS COMPLETED. ...................................... 110 
FIGURE 40. MEDINA SSI-WEBAPP: DID TAB SHOWING THE DIDS OF THE CURRENT USER. ........................ 110 
FIGURE 41. MEDINA SSI-WEBAPP: “DATA MODELS” TAB LISTING THE DETAILS OF ALL THE DATA MODELS. .. 111 
FIGURE 42. MEDINA SSI-WEBAPP: CREATION OF A NEW DATA MODELS. ............................................... 111 
FIGURE 43. MEDINA SSI-WEBAPP: DIALOG WHICH ALLOWS THE USER TO CLAIM THE OWNERSHIP OF A DATA 

MODEL. ................................................................................................................................ 112 
FIGURE 44. MEDINA SSI-WEBAPP: “OWNED SCHEMA” TAB LISTING AFTER CLAIMING OWNERSHIP OF THE 

“USER_PROFILE” SCHEMA ....................................................................................................... 112 
FIGURE 45. MEDINA SSI-WEBAPP: CREDENTIAL SENDING DIALOG WITH THE CREDENTIALS PROVIDED TO 

“MEDINA SSI TECNALIA HOLDER1” FOR THE “USERPROF” SCHEMA. ............................................ 113 
FIGURE 46. MEDINA SSI-WEBAPP: “CREDENTIALS” TAB SHOWING THE CREDENTIALS OF “MEDINA SSI 

TECNALIA HOLDER1”. ............................................................................................................. 113 
FIGURE 47. MEDINA SSI-WEBAPP: DIALOG USED TO CLAIM A CREDENTIAL PRESENTATION. ...................... 114 
FIGURE 48. MEDINA SSI-WEBAPP: PRESENTATION TAB SEEN BY THE PROVER ACCOUNT. ......................... 114 
FIGURE 49. MEDINA SSI-WEBAPP: DIALOG USED BY A PROVER TO MANUALLY CHOOSE THE CREDENTIAL NEEDED 

TO ANSWER TO THE PRESENTATION REQUEST .............................................................................. 115 
FIGURE 50. MEDINA SSI-WEBAPP: “PRESENTATIONS” TAB SHOWING THE CREDENTIALS PRESENTED TO 

“MEDINA SSI TECNALIA VERIFIER” ......................................................................................... 115 
  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 10 of 115 

www.medina-project.eu   

Terms and abbreviations 

API Application Programming Interface 

BFT Byzantine Fault Tolerance 

CAB Conformity Assessment Body 

CCE Continuous Certification Evaluation 

CIA Confidentiality, Integrity, and Availability 

CFT Crash Fault Tolerance 

CNL Controlled Natural Language 

CSC Cloud Service Customer 

CSP Cloud Service Provider 

DID Decentralized Identifiers 

DLT Distributed Ledger Technologies 

DoS Denial of Service 

EBSI European Blockchain Services Infrastructure 

EC European Commission 

EUCS European Cybersecurity Certification Scheme for Cloud Services 

GA Grant Agreement to the project  

GPL General Public License 

gRPC Google Remote Procedure Call 

HTTP Hypertext Transfer Protocol 

IPFS Interplanetary File System 

KPI Key Performance Indicator 

HW Hardware 

IaaS Infrastructure as a Service 

IBFT Istanbul Byzantine Fault Tolerance 

IoT Internet of Things 

LCM Life-Cycle Manager 

LGPL Lesser General Public License 

MitM Man in the Middle 

MIP Moving Intervals Process 

NIST National Institute of Standards and Technology 

NLC2CNL Natural Language To Controlled Natural Language 

NSA National Security Agency 

PaaS Platform as a Service 

PBFT Practical Byzantine Fault Tolerance 

PET Privacy-Enhancing Technologies 

PoET Proof of Elapsed Time 

PoA Proof of Authority 

PoS Proof-of-Stake 

PoW Proof-of-Work 

QBFT Quorum Byzantine Fault Tolerant 

OWASP Open Web Application Security Project 

QHP Quantitative Hierarchy Process 

QPT Quantitative Policy Trees 

QR Quick Response 

RACE Research and Development in Advanced Communications Technologies in 
Europe 

RAOF Risk Assessment and Optimisation Framework 

REO Requirement&Obligations 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 11 of 115 

www.medina-project.eu   

RIPE RACE Integrity Primitives Evaluation 

RIPEMD RIPE Message Digest 

SaaS Software as a Service 

SHA Secure Hash Algorithm 

SLA Service Level Agreement 

SLO Service Level Objective 

secSLA Secure Service Level Agreement 

SPoF Single Point of Failure 

SSI Self-Sovereign Identities 

SSL Secure Sockets Layer 

SW Software 

TOC Target Of Certification 

ToE Target of Evaluation 

TOM Technical and Organizational Measure 

TPS Transactions Per Second 

TSL Transport Layer Security 

UI User Interface 

VPN Virtual Protocol Network 

WP Work Package 

XML Extensible Markup Language 

ZKP Zero-Knowledge Proof 
 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 12 of 115 

www.medina-project.eu   

Executive Summary 

This document presents the third and final iteration of tools and techniques for the management 
and evaluation of cloud security certifications developed in WP4 “Continuous Life-Cycle 
Management of Cloud Security Certifications”. Evaluating, managing, and protecting certificates 
and their underlying evidence are challenging tasks, which do, however, have potential for 
automation. This deliverable addresses these challenges in three parts.  

First, an approach is developed to ensure the integrity of evidence and assessment results 
(section 4). This includes a risk analysis for the evidence and assessment results that underly the 
state changes of each certificate and the evaluation of possible mitigations, including blockchain 
and blockchain-like technologies that have emerged recently. 

Second, an approach and technical prototype for the evaluation of assessment results is 
presented (section 5). Assessment results are created in WP3 “Tools to gather evidence for high-
assurance cybersecurity certification” and are forwarded to this Continuous Certification 
Evaluation component. Here, they are aggregated in a continuous manner, building a tree 
structure of the certification that is both machine-readable and easily understandable for 
humans, e.g., auditors. 

Third, an approach and implementation for a certificate Life-Cycle Manager is presented (section 
6). This component implements a state machine that reflects the EUCS-defined certificate states. 
Its approach includes an evaluation of different technological approaches to implement and 
secure certificates, including smart contracts, and a discussion of different approaches to 
automate certificate state changes. This section also presents an approach to integrate Self-
Sovereign Identities into the life-cycle management for the issuance of secure, transparent, and 
trustworthy security certificates to improve the sovereignty of the CSP. 

We describe background concepts and related work in section 2 and present the overall 
architecture of the WP4 components in section 3. This deliverable is related to WP3, since it 
directly processes the results of the components developed in WP3. The overall objective and 
integration of the components described here in the MEDINA Framework are further described 
in WP5 “MEDINA Framework Integration”. 

This deliverable presents the third version of the WP4 components – except of the Risk 
Assessment and Optimisation Framework component which is described in deliverable D4.5 [1].  

    

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 13 of 115 

www.medina-project.eu   

1 Introduction 

MEDINA features several innovations that together enable continuous certification of cloud 
services. These include a common abstraction and language for requirements and metrics,  
including an ontology (see D2.5 [2]), as well as the continuous gathering and assessment of 
evidence (see D3.3 [3]). In WP4, we address the final aggregation and evaluation of the 
assessment results to derive a concrete decision on the state of a certificate. 

Normally, manual audits are conducted by external auditors to verify a set of pre-defined 
requirements at a point in time. Consequently, the decision of issuing a certificate is made by 
humans considering various sources of evidence, like documentation, data samples, and 
interviews. Auditors will therefore not only evaluate specific pieces of evidence, but also the 
gathered evidence as a whole. This process allows for some amount of consideration by the 
auditors who can evaluate the fulfilment of requirements depending on the context. 

Translating this process to a technical implementation has advantages and disadvantages: On 
the one hand, an automated certification process can provide continuous auditing, improved 
traceability of decisions, and a more standardized, comparable process. On the other hand, an 
automated certification process has a rigid focus on evidence that can be gathered technically, 
e.g., configurations of cloud resources, and on the set of metrics that is available. Consequently, 
while human auditors may weigh different kinds of evidence considering the service context, an 
automated implementation needs clearly defined requirements and decision criteria 
independently of the service context. 

Furthermore, certificates need to be managed continuously. In the traditional certification 
process, where audits are not conducted on a continuous basis, a certificate can simply be 
published, for instance in a public registry, and updated when needed. In the continuous model, 
however, any new evidence gathered can have a major impact on the state of the certificate. 
Therefore, its state also needs to be continuously evaluated, and its publication needs to be 
managed, which entails risks if done automatically. 

Finally, the results generated by such components, as well as their logic, also need to be 
protected against intentional and unintentional threats. For instance, certificate state changes 
need to be traceable to establish trust in this automated process. 

1.1 About this deliverable  

The deliverable at hand describes MEDINA’s contribution towards the continuous evaluation of 
security assessments of cloud services. These contributions include an approach for 
continuously aggregating assessment results, as well as deriving a decision about the certificate 
state.  

The proposed approach for continuous aggregation of assessment results represents a 
certification as a tree-like structure that is evaluated based on its leaves -the assessment results. 
Thereafter, the risk assessment component processes the results qualitatively to consider 
service-specific criteria, like especially impactful resources (described in D4.5 [1]). Finally, the 
life-cycle management component reflects the state of a certificate as a traceable state 
machine. It makes state change decisions based on risk assessment deviation reports. To protect 
its correct execution, different technologies, like smart contracts, are considered and evaluated. 

The deliverable furthermore includes the research results for the protection of evidence and 
assessment results, whose implementation is described in D3.3 [3]. This includes the 
identification of risks for these artefacts, and an evaluation of possible mitigative technologies. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 14 of 115 

www.medina-project.eu   

These contributions aim at yielding the above-mentioned advantages, e.g., improved 
traceability and automation, while at the same time addressing potential risks and challenges of 
certificate managing and protecting. 

1.2 Document structure 

The deliverable is structured as follows. Section 2 describes background concepts and other 
work related to the following sections. In section 3, the overall architecture and goals of the 
developed components are described. Next, the risks that evidence and assessment results are 
exposed to are analysed in section 4, laying the groundwork for the implementation of a 
MEDINA Evidence Trustworthiness Management System. Thereafter, section 5 presents the 
MEDINA approach to evaluate assessment results, aggregating them into a certification tree. 
Section 6 then presents the approach and implementation of the Life-cycle management and 
the SSI Framework components. Section 7 concludes the deliverable. 

1.3 Updates from D4.2 

This deliverable presents the third and final iteration of work done in WP4. This deliverable 
evolves from D4.2 [4], so much of its content is common to that included in the previous 
document, with the ultimate goal of providing a self-contained deliverable that facilitates the 
reader´s understanding. For simpler tracking of progress and updates with regards to the 
previous deliverable version (D4.2), Table 1 shows a brief overview of the changes and additions 
to each of the document sections. 

Table 1. Overview of deliverable updates with respect to D4.2 

Section Change 

2 Minor changes to this section that was present in D4.2. The background section 
on hashes in the old section 5.3 of D4.2 has been moved to section 2.5. 

3 Section 3.3, which describes the implementation of authorization and filtering 
functionalities in WP4, has been included.  

4 The audit trail analysis now includes considerations about energy consumption 
as well as performance and scalability (section 4.2). Also, it provides a workflow 
for the automatic validation of hashed evidence and assessment results. 

5 The Continuous Certification Evaluation component has been improved in its 
technical implementation as well as its methodology. While on the technical 
level, it has been improved with bug fixes and API updates, the methodology 
now also comprises a concept for an improved overview of assessed metrics by 
integrating information from the CNL Editor. 

6 The Life-Cycle Manager has been mainly improved in its implementation and 
integration; the technical description has been updated accordingly. The  

The SSI Framework now includes an extended description and an analysis of 
using Zero-Knowledge Proofs in the context of MEDINA’s certificate 
management. 

Appendix A Appendix already present in D4.2 as Appendix C. 

Appendix B Appendix already present in D4.2 as Appendix A. 

Appendix C Appendix already present in D4.2 as Appendix B. 

Appendix D SSI-API detailed in section 6.3.2.3 has been moved to this Appendix. 

Appendix E SSI User Manual detailed in section 6.3.3.3 has been moved to this Appendix. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 15 of 115 

www.medina-project.eu   

We have also added a new subsection, called “Component card”, in the “Implementation” 
section of each component’s description. It includes a schematic table with the main 
functionalities of the component, subcomponents, sequence diagrams, interfaces, etc., 
providing the structural and behavioural description of the component itself. The template and 
contents of this table have been inherited from deliverable D5.2 [5]. 

Finally, the components have integrated feedback from the first validation phase. In particular, 
the CCE frontend has implemented authorization functionalities to filter the presentation of 
evaluation results based on the user’s permissions. 

 

  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 16 of 115 

www.medina-project.eu   

2 Background and Related Work 

This section explains background concepts and related literature that build the foundation for 
the work described in the rest of the deliverable. The description contains much information in 
common with D4.2 [4] with the final aim of providing a self-contained section that facilitates the 
reader's understanding. 

2.1 Evaluating Cloud Security Certifications 

Evaluation of security compliance in MEDINA starts with the gathering of evidence in WP3 
components. Security assessment components assess this evidence based on the target values 
as configured for the specific requirement and provide their output (assessment results with the 
state of fulfilment of a specific metric for a specific monitored resource) to the Continuous 
Certification Evaluation component. If the assessment result value represents the lowest-level 
information about the certification state, the role of the Continuous Certification Evaluation 
component is to combine the received assessment results into information about the fulfilment 
of higher-level certification objects: requirements, controls, control groups, and the selected 
certificate scheme in its entirety. This information does not directly determine the eligibility of 
the cloud service for a certificate, but serves as input for other components, the Risk Assessment 
and Optimisation Framework (described in D4.5 [1]) and the Certificate Life-cycle Management 
(see sections 2.6 and 6), as well as make it easier for users (CSPs and auditors) to view the status 
of the certificate. 

To assist in the design of the Continuous Certification Evaluation component, previous research 
on similar problems was consulted. Luna et al. [6] presented two methods (based on 
Quantitative Policy Trees (QPT) [7] and Quantitative Hierarchy Process (QHP) [8]) for 
quantitatively assessing whether (and to what extent) a CSP fulfils the security requirements 
expressed by a customer, and the general level of security offered by a CSP. Their method is 
based on cloud security Service Level Agreements (secSLAs), which consist of various Service 
Level Objectives (SLOs) that map to one or more measurable metrics. Cloud Service Customers 
(CSCs) express their security needs by defining thresholds for the values of metrics and weights 
(importance) of the individual SLOs (QPT) or all levels of the SLA hierarchy (QHP). The CSPs' 
secSLAs are evaluated with respect to the customer's security requirements to output a ranking 
of CSPs according to their level of fulfilment of these requirements. 

Modic et al. [9] improved the computational efficiency of the previously presented QHP method 
and developed a high-performance technique, Moving Intervals Process (MIP), which, beside 
checking the fulfilment and potential under-provisioning of CSC's requirements, also rates CSPs 
based on how much the customer's requests can be over-provisioned by the cloud service. Like 
QHP, MIP also uses calculations based on weighted arithmetic mean to aggregate values of SLOs 
to all levels of the secSLA hierarchy. According to the level of fulfilment of a customer's 
requirement, MIP assigns values to SLOs on the interval [0,2] where values less than 1 represent 
under-provisioning, 1 is assigned where the CSP exactly meets the requirement, and values 
greater than 1 represent over-provisioning. Because some of the values on the same hierarchy 
level can be greater than 1 and others less, the aggregated value can result in apparent over-
provisioning (>1) even though some child values do not even meet the customer's requirement. 
The authors suggested a correction to the scores to eliminate this masquerading effect. Both of 
the mentioned methodologies for cloud security evaluation were (developed and) used in the 
EU FP7 project SPECS [10]. 

Maroc and Zhang [11] proposed a cloud security evaluation approach that additionally features 
a risk-driven selection of evaluation criteria and considers multiple factors in weighting of 
criteria: user's preferences, criteria interdependencies, the type of cloud service (IaaS / PaaS / 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 17 of 115 

www.medina-project.eu   

SaaS) that determines the user's level of control, as well as relations between threats and 
vulnerabilities, their risk (likelihood and impact), and security controls. 

In MEDINA, the Continuous Certification Evaluation component does not give the final 
evaluation of the security and certificate state, but its output is combined with a separate risk 
assessment framework that considers values of assets and their potential risks. For this reason, 
the Continuous Certification Evaluation does not deal with the additional risk-driven parameters 
as proposed in [11], but focuses on effectively aggregating the information received by 
assessment results. 

As mentioned, the problem addressed in [6] and [9] was to rank CSPs according to the CSC's 
needs. The problem addressed in MEDINA is slightly different, as here the CSP's compliance is 
determined with a specific standardization (level). In the typical case, all controls and 
requirements of a standard need to be fulfilled for the cloud service to be (or to remain) 
certified, although a minor non-conformity occurring for a limited amount of time does not 
invalidate the certificate. For this reason, it can be useful (for user's review as well as further risk 
calculation) to observe the level of fulfilment at all layers in the standard's hierarchy, not only 
the binary information about (non-)conformity. 

The methodology used in the Continuous Certification Evaluation component is thus based on 
building the evaluation tree with assessment results in its leaves, aggregated according to the 
standard's hierarchy. The aggregation is done with weighted arithmetic means, following the 
approaches mentioned above. The approach from [9] can be simplified though as assessment 
results in MEDINA only include binary values (1 meaning conformity and 0 meaning 
inconformity), which means that there is no over-provisioning, and the masquerading effect 
does not apply. Additionally, since the goal is to also present intermediate fulfilment values in 
all levels of the aggregation tree (not only at its root for the entire certification fulfilment), 
thresholds should be set to determine the fulfilment in individual tree nodes (controls, control 
groups, etc.). These thresholds and the aggregation weights of the nodes can be set by the CSP 
or the auditor (e.g., based on the importance of evaluated resources or controls). The evaluation 
tree can be easily simplified to an AND tree by setting the thresholds in all nodes to 1, meaning 
that all the assessment results must indicate fulfilment for the evaluation to be positive, 
irrespective of the assigned weights (as long as they are positive). The design of the Continuous 
Certification Evaluation component is further explained in section 4. 

2.2 Operational Effectiveness 

Beside the calculation of the current state of the evaluation tree nodes, the Continuous 
Certification Evaluation component also provides information about the evaluation history 
supported by metrics of operational effectiveness. These are metrics that measure, in various 
ways, how well a particular requirement or control was established (fulfilled) in a certain period 
of time. If a control is unfulfilled for a small amount of time, this is typically not a big issue for 
the entire certificate state. On the other hand, if the problem has not been mitigated for a long 
time, the certificate may be revoked. The amount of time that the CSP needs to correct the issue 
in question or how often the control is non-compliant are examples of operational effectiveness 
measures that can be important for evaluating the overall certification eligibility. Stephanow 
and Banse [12] introduce four universal metrics for continuous test-based certification 
evaluation techniques. The metrics discussed are: Basic-Result-Counter (counting the number 
of passes and fails for a test), Fail-Pass-Sequence-Counter (a fail-pass sequence meaning one or 
several consecutive test fails followed by at least one pass), Fail-Pass-Sequence-Duration 
(measuring the time between a first failed test in a sequence and the next passed test), and 
Cumulative-Fail-Pass-Seq-Duration (returning the sum of all fail-pass sequences’ durations). 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 18 of 115 

www.medina-project.eu   

2.3 Target of Evaluation 

The Target of Evaluation (ToE) binds a cloud service to a certification framework (or catalogue). 
The introduction of this concept was necessary to support multiple cloud services and 
certification frameworks: previously, only one service could be monitored and certified, while 
now there is an n:m relation between the two concepts. A ToE is created and managed in the 
Orchestrator and then propagated to the other components. 

2.4 Digital Audit Trails 

MEDINA framework includes digital audit trails as security mechanisms to improve the integrity, 
traceability and availability of the most relevant information considered in MEDINA (evidence 
and assessment results). Digital audit trails are detailed and chronological records of important 
information that are usually used to verify and track all related processes (updates). 

Nowadays, audit logs provide a useful service, allowing auditing processes, secure information 
storage, tracking of changes made to recorded data (audit trail) and discrepancies, anomalies, 
and malicious activities detection. However, current audit log implementations can be 
vulnerable to different types of attacks, which enable adversaries to tamper data and audit logs. 
Thus, integrity could be compromised. In addition, audit logs are usually under the control of a 
central authority which controls and manages information records. 

To counter the aforementioned attacks, Blockchain technology has started to be considered as 
a technology for auditing purposes. One promise that Blockchain technology makes is to move 
trust from a central authority to a distributed network. Also, Blockchain creates an immutable 
record of transactions, so an immutable audit data storage that is not governed by a central 
authority can be provided.  

In general terms, Blockchain is a Distributed Ledger Technology (DLT) create over a distributed 
and decentralized network of peer nodes which maintain a copy of the ledger. For this purpose, 
they apply transactions that have been previously validated by a consensus protocol and 
grouped into blocks with a cryptographic hash that bind each block to the preceding block. This 
way, given the last block, the previous ones cannot be modified without altering subsequent 
blocks (i.e., data is practically resistant to modification). Another key aspect of these data 
structures is that transactions are digitally signed so the origin of a piece of data can always be 
traced back to its creator. Additionally, Blockchain eliminates the need for a central control 
authority to manage transactions or keep records. The main features for Blockchain technology 
are: 

• Decentralization: There is no central authority and no central data storage. 

• Trustlessness: Blockchain does not require trust in a central authority or any single 
participant. 

• Transparency and traceability: all transactions in a Blockchain are visible and verifiable. 

• Immutability: transactions and blocks added to the Blockchain are practically impossible 
to manipulate. 

These features are beneficial for audit trail systems like the one included in the MEDINA 
framework. 

2.5 Hashes 

In MEDINA, hashes are used within the MEDINA Evidence Trustworthiness Management System 
in two ways:  

• They are a fundamental part of the Blockchain technology. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 19 of 115 

www.medina-project.eu   

• They have been considered a secure way for guaranteeing information integrity without 
breaking the privacy required for sensitive information (such as evidence and 
assessment results). 

2.5.1 What is a Hash? 

A cryptographic hash function is a mathematical algorithm that transforms any incoming data 
into a series of output characters. A hash is the result of a hash function whose primary purpose 
is to encode data to form a unique string of characters regardless of the amount of data initially 
entered into the function [13]. In other words, any input data always generates the same output 
hash, while any minimum change in the input results in a completely different output hash, as 
shown in Figure 1.  

 

Figure 1. Hash functionality 

The first data input results in a unique hash. In the second entry, a small modification has been 
made to the text. This, although minimal, completely alters the result of the hash. This proves 
that the hashes will be unique in any case, thus ensuring that no malicious actor will be able to 
easily crack the hashes. Although this is not impossible to achieve, a hacker could spend 
hundreds of years processing data to do so. It is these two observations that give us security to 
use this method in various sensitive areas. Digital certificates, unique signatures of sensitive or 
secret documents, digital identification and key storage are some typical use cases.  

To understand this better, consider a simple, everyday example: baking a cake. Each of the 
ingredients of the cake would be the equivalent to the data input. The process of preparing and 
baking the cake would be the process of encoding the data (ingredients) by the function. In the 
end, we obtain a cake with unique and unrepeatable characteristics given by the ingredients of 
the cake. While the opposite process (bringing the cake to its initial state of ingredients), is 
practically impossible to perform. 

The first hash function dates back to 1961. At that time, Wesley Peterson created the Cyclic 
Redundancy Check function [14]. It was created to check the correctness of data transmitted 
over networks (such as the Internet) and digital storage systems. Easy to implement and very 
fast, it gained acceptance and is today an industry standard. With the evolution of informatics 
and computers, these systems became more and more specialized. 

2.5.2 Properties of a Good Hash Algorithm 

Desirable features for a good hashing algorithm are summarized in the following [15] [16]: 

• Easy to compute: Hash algorithms are very efficient and do not require much computing 
power to run. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 20 of 115 

www.medina-project.eu   

• Determinism: a hash algorithm must be deterministic, in other words, it must always 
give an output of identical size, regardless of the size of the input data. This means that, 
if a single sentence is encoded, the resulting output hash must be the same size as when 
encoding an entire book. 

• Irreversibility: a strong hash algorithm is one that is pre-image resistant, meaning that 
it is not feasible to invert a hash value to recover the original input data (“one-way 
functions”). The only way to obtain the input data is by brute-forcing all possible inputs. 

• Collision resistance: A collision happens if two unique samples of input data result in 
identical output hashes. In other words, the concern is that someone could create a 
malicious file with an artificial hash value that matches a genuine (secure) file and pass 
it off as real because the output hash would match. Therefore, a good and reliable hash 
algorithm is one that is resistant to these collisions. 

• Avalanche effect: any change made to the input data, no matter how small, will result 
in a massive change in the output hash. Essentially, a small change (such as adding a 
comma) becomes something much larger, hence the term "avalanche effect". 

• Hash speed: hash algorithms should run at a reasonable speed. This property, however, 
is a bit more subjective. Faster is not always better because the speed should depend 
on how the hash algorithm will be used: sometimes, a faster hash algorithm is desired 
(for website connections, for example), and other times it is better to use a slower one 
that takes longer to execute, e.g., for password hashing to prevent brute-forcing. 

Please, note that we describe several existing hash functions in Appendix A: Current Leading 
Hash Algorithms, concluding that SHA-2 is considered the hash function with best trade-off 
between security and performance. 

2.5.3 Are hashes completely irreversible? 

Hash functions aim to be irreversible and therefore the result of applying a hash function to 
specific data should avoid re-identification. Despite this, the determinism feature that is implicit 
in hashing processes increases the probability of identifying the original data from the hash. 

For example, let´s consider a phone number of 9 digits (9 bytes, 72 bits) of which a 64-bit hash 
is calculated [17]. The phone number space is larger than the hash space. If all possible hashes 
were calculated for all 72-bit combinations, inevitably the entire hash space would be covered, 
and several collisions would occur as the hash function would have to "compress" the 72 bits of 
the number into the 64 bits of the hash. However, with a deeper analysis, the 9 digits are 
numerical, which means 1000 millions of combinations. It seems a very large number, but 
translating it into bits, the amount of data has been reduced from 72 bits to approximately 30 
bits. That is, much less than the initial 72 and already below 64 bits of the size of the hash.  

If dealing with Spanish cell phone numbers, for example, they will start with either 6 or 7. 
Therefore, since the first number is fixed, there are only 200 million combinations 
(approximately 28 bits). But there are not 200 million subscribers in Spain. The number of 
current mobile lines is actually less than 60 million (26 bits). In fact, the operator with the highest 
number of mobile lines is less than 20 million (20 bits of information). Consequently, the number 
of combinations decreases enormously, and the real information contained in the original 72 
bits data is only around 20 bits of information. 

Given that a desktop computer can calculate more than 1 million hashes per second, a dictionary 
can be created for all possible hashes of a given operator's phones in less than 20 seconds, 
practically in real time. In other words, the information referenced by the hash can be reversed 
and security will be broken. In this example, the amount of information was small, but even for 
much larger message spaces, with more information, it is possible to retrieve the information 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 21 of 115 

www.medina-project.eu   

referenced by the hash within an acceptable time even for much larger message spaces, with 
more information thanks to techniques known as Rainbow Tables [18] that allow the reversal of 
the hashes (reversibility). 

When input data has an implicit order, less real information it contains and the set of possible 
messages (message space) is greatly reduced, which facilitates message reversibility (re-
identification). Therefore, it is necessary to distinguish between the data in a message (72 bits 
in the example) and the information contained in the data (20 bits in the example). 

The degree of order (or disorder), of a data is known as entropy. The higher the entropy, the 
more information a data set will contain. The smaller the message space, and the lower the 
entropy, the lower the risk of collision in hashing, but re-identification will be more likely. 
Conversely, the higher the entropy, the greater the chance of a collision, but the risk of re-
identification will be much lower. 

Therefore, the measure of the amount of information, which is quite different from the number 
of bits that is being used to record a message, is one of the most important analyses that needs 
to be performed whenever a message is to be protected. 

2.6 The Cloud Security Certification Life-Cycle 

Increasing the degree of automation in certificate management requires first modelling and then 
implementing the possible certificate states. The EUCS [19] defines several such states: 
Renewed, Continued, Updated, New Certificate, Withdrawn, and Suspended. An issuance or 
state change follows a review by the CAB. In the literature, different (semi-)automated life-cycle 
models can be found for cloud security certifications, defining different states and state change 
procedures. 

Cimato et al. [20] first proposed a complete certification model for cloud systems, addressing 
the problem of certifying a dynamically provisioned system in a continuous way. They develop 
a meta-model with different modules, including a certificate module which proposes a simple 
certificate life-cycle as shown in Figure 2: it includes the states Valid, Revoked, Renewed, and 
Invalid. However, they do not detail how the certification transitions are decided [21]. 

 

Figure 2. Certificate Life Cycle proposed by Cimato et al. [20] 

A further proposal by Ardagna et al. [21] describes a certification process that comprises the 
phases Monitor, Analyze, Plan, and Execute. After one iteration of these phases, the process 
generates a certificate along with supporting evidence. Further evidence is then collected 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 22 of 115 

www.medina-project.eu   

continuously to verify the validity of the certificate. Note that non-compliances are corrected 
automatically to ensure the validity of the certificate. This model therefore goes beyond the 
focus of MEDINA which does not enforce certification requirements, but aims at collecting 
various evidence from different sources, aggregating them, and deriving a sophisticated 
certification decision. 

Kunz and Stephanow [22] define a process model for the continuous certification of cloud 
services based on two main requirements. First, the target of certification (TOC) may change 
frequently, so a frequent re-discovery of the TOC needs to be done. This requirement is 
addressed in MEDINA in WP3. Second, the certificate state may change any time based on the 
results of the certification techniques and needs to be reported. They also discuss the 
implications of automatically reporting certificate updates. Furthermore, they note that several 
degrees of automation can be targeted in between the traditional, manual process, and the 
completely automated one. They define three high-level phases for the traditional, manual 
process which are derived from several certification standards: Initialization, Audit, and 
Certification, which are repeated in cycles. Their proposal adds a Scoping phase to define the 
scope of the service to be audited which includes the discovery of existing cloud resources. 

Anisetti et al. [23] propose a semi-automated certification scheme that includes the following 
phases: Not Issued, Issued, Suspended, Expired, and Revoked. In addition, they define transition 
conditions as shown in Figure 3, which presents a finite state automaton. Existing approaches of 
(semi-)automated certification usually start with an initialisation phase that sets up the 
necessary tooling, e.g., discovery mechanisms, smart contracts, etc., and aim at verifying the 
certificate’s current state thereafter automatically—or changing it if it doesn’t comply with the 
pre-defined conditions. 

 

Figure 3. Certificate State-Change Model by Anisetti et al. [23] 

In this deliverable, the state model for security certificates is based on the states and change 
criteria defined in the EUCS [19] and is implemented in a finite state automaton similar to the 
one described in [23].  

Proposals in other EU projects: AssureMoss 

The AssureMOSS1 (Assurance and certification in secure Multi-party Open Software and 
Services) project develops methods and tools that support the secure development of open 
software throughout its entire life-cycle. Work package 5 of AssureMOSS includes the 
development of a risk assessment method as well as the automatic re-certification based on the 
risk assessment results [24]. In the certification model and certification life-cycle proposed, 
there are overlaps with the proposals described in section 6.2.1. For example, the AssureMOSS 
methods aim at covering different certification frameworks, including the EUCS, and 
differentiate between an initial “baseline certification” and following “delta certifications”, 
where the initial audit is confirmed by a human auditor and can be confirmed automatically 

 
1 https://assuremoss.eu  

http://www.medina-project.eu/
https://assuremoss.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 23 of 115 

www.medina-project.eu   

thereafter. This confirms the assumptions made in MEDINA: The configuration of tools, as well 
as certain parameters and thresholds need to be acknowledged by an auditor before they can 
be trusted. Also, the authors differentiate between “minor changes” and “major changes” in the 
system which conform to the minor and major deviations defined in the EUCS and used in this 
deliverable as well.  

Regarding the certification life-cycle, the project proposes a valid state, and different invalid 
states (expired, revoked, obsolete) where the validity may decrease over time. In this regard, 
MEDINA is more focused on the EUCS-defined states. The most challenging point in both 
proposals, however, is how certificate transition decisions should be made. Here, the deliverable 
at hand includes more sources of information than AssureMOSS, e.g., including the operational 
effectiveness measures. 

  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 24 of 115 

www.medina-project.eu   

3 Architecture 

This section describes the overall architecture of the WP4 components. First, the overall goals 
are explained. Then, the architecture is presented and described. More detailed descriptions of 
the components and data models are included in the following sections. 

3.1 Design Goals 

Overall, the goal of WP4 is to process the gathered, and pre-assessed evidence and consequently 
decide on the certificate state. To that end, several steps are necessary. First, the assessment 
results need to be aggregated according to their certification requirements. This step needs to 
be executed continuously since assessment results are generated continuously by the WP3 
components as well. Second, the result of this aggregation needs to be enriched using service-
specific information. This step is necessary because not all non-compliances are equally severe. 
Only after this step has been done, an informed decision on the existence of significant 
deviations can be made, and a translation to a state change can be derived. 

The components therefore need to process data, like assessment results, continuously. They 
should also be independently executable to allow for different deployment options. The Life-
Cycle Manager, for example, may be deployed by the CSP to manage different certificates. 
However, it can also be used by a certification body to manage the state of its customers’ 
certificates. While work package 4 aims at automating large parts of the certification evaluation 
process, the developed components should also present a useful means for internal and external 
auditors, for instance to investigate deviations. 

3.2 Architecture Overview and Data Flow Model 

Figure 4 shows an overview of the developed architecture which is described in the following.  

The entry point of the WP4 components is the interface between the Orchestrator (WP3) and 
the Continuous Certification Evaluation component (CCE). This data flow is designed as a stream 
of assessment results that are sent to the CCE (see section 5). The CCE in turn aggregates the 
assessment results to evaluate the overall certificate status on different levels of its hierarchies, 
e.g., its requirements and controls. The result of this evaluation is an impact-agnostic, tree-
based representation of the compliance state of the certificate. Only in the next component, the 
Risk Assessment and Optimisation Framework, are the results evaluated in more detail 
considering their individual context, possibly including threat and impact levels (see D4.5 [1]). 
This detailed risk assessment then allows to make an informed decision about the certificate 
state at the Life-Cycle Manager, which reports it to the SSI Framework (see section 6). 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 25 of 115 

www.medina-project.eu   

 

Figure 4. Overall Architecture of WP4 components and connection to WP3 components 

3.3 Authorization and Filtering 

The WP4 components implement functionalities to ensure that only authorized clients can 
access their APIs as specified in the authorization concept in D5.4 [25]. The relevant workflow 
defined in this context is Workflow 7 (“EUCS – Report on ToC Certificate”) which comprises the 
generation of a certification report about the target of certification (ToC). The roles that should 
have read access on the resources are the following: IT Security Governance, Security Analyst, 
Domain Governance, Product and Service Owner, Product (Security) Engineer, Chief Information 
Security Officer (CISO), as well as the Customer.  

Additionally, Auditors should have the capacity to also modify data within the workflow, since 
they can, e.g., create new certificates or revoke them. Note that the Life-Cycle Manager stores 
information about certificates in the Orchestrator database (see Figure 4) and thus relies on the 
Orchestrator’s functionalities for authorization. 

  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 26 of 115 

www.medina-project.eu   

4 Establishment of a Digital Audit Trail in MEDINA 

This section sets the theoretical and methodological background for establishing a digital audit 
trail in MEDINA with the goal of increasing the trustworthiness of the overall framework. Section 
4.1 first presents a risk assessment with regard to storing evidence and assessment results. 
Section 4.2 then discusses different measures to address these risks, focusing on Blockchain 
technologies. Section 4.3 then presents different hashing techniques since they are essential in 
storing information about evidence and assessment results. Finally, section 4.4 describes a 
workflow to verify the integrity of evidence and assessment results. 

4.1 Risk Assessment 

The purpose of this risk assessment is to identify threats and vulnerabilities, and to identify 
different ways to mitigate the resulting risks. The risks are assessed following a standard 
methodology (see e.g., Torr [26], or the NIST guidelines [27]). First, we state assumptions 
regarding the MEDINA framework. Then we identify the assets to be protected, their protection 
goals, as well as the users of the system. We continue by defining the attacker model and then 
model possible attack vectors. Risks are then assessed based on the likelihood of an attack and 
their potential impact. Finally, we discuss the possible mitigations.  

4.1.1 Assumptions 

It is important to highlight some assumptions to be considered for this risk analysis. In this case, 
all MEDINA tools are considered trustworthy, i.e., they are not considered potential sources of 
threats or vulnerabilities. Furthermore, human factors are not considered in this analysis, e.g., 
social engineering-based attacks. 

4.1.2 Asset Classification Scheme 

The first step in a risk assessment process is to identify and define all valuable assets in scope. 
This risk analysis is focused on critical data, or other data whose exposure would have a major 
impact on the MEDINA framework operation.  

Table 2. Overview of types of data and their sensitivity levels 

Type of data Description Level of sensitivity 

Evidence (for more details, 
see trustworthy evidence 
data model [3]) 

• id 

• toolId 

• resourceId 

• cspid 

• measurementResult 

• timestamp 

• The field 
measurementResult has a 
high level of sensitivity.  

• The rest of the fields has a 
low level of sensitivity. 

Assessment Results • Id 

• metricId 

• assessmentResult 

• complianceResult 

• associatedEvidencesId 

• timestamp 

• The fields 
assessmentResult and 
complianceResult have a 
high level of sensitivity.  

• The rest of the fields have 
a low level of sensitivity. 

4.1.3 Potential Users 

Next, it is recommended to identify and describe who is going to operate or access the assets 
identified in section 4.1.2 as critical data. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 27 of 115 

www.medina-project.eu   

Table 3. Overview of the different users in MEDINA 

User Data Access Level Number of users Organization 

Orchestrator • Evidence 

• Assessment Results 

Full (Read 
and Write) 

One instance per 
organization 

Internal 
organization 

Organization 
employees 

• Evidence 

• Assessment Results 

Read only Undetermined Internal 
Organization 

Auditors • Evidence 

• Assessment Results 

Read only Undetermined CAB 

4.1.4 Protection Goals 

Information assurance is an approach of managing risks related to the use, processing, storage, 
and transmission of information or data. The three main protection goals are confidentiality, 
integrity, and availability (CIA). Additionally, authenticity, authorization and non-repudiation can 
be considered. 

Confidentiality: Confidentiality is the property that guarantees information is not made 
available or disclosed to unauthorized individuals. Assets gathered in section 4.1.2 represent 
sensitive information that should be kept private from all unauthorised users; confidential 
information must only be accessed by authorized users. In MEDINA, confidentiality is a must, 
since evidence and assessment results contain sensitive information about the security posture 
of the audited service provider. 

Integrity: Integrity is the property of safeguarding the accuracy and consistency of assets; it 
means that information cannot be altered or tampered with, ensuring the data correctness, and 
protecting against unauthorized modification. In MEDINA, auditors need to trust the stored data 
regarding its integrity to provide corresponding certificates. For that reason, in MEDINA, 
integrity is a must. 

Availability: Availability is the property of being accessible and usable upon demand. Availability 
assumes that information systems, as well as the information itself, is available and operating 
as expected when needed or requested. In MEDINA, evidence and assessment results should be 
available for the proper Orchestrator operation as well as for auditors to verify them when 
needed. Consequently, although it is not a must in MEDINA, it is highly recommended to 
guarantee evidence and assessment results availability. 

Authenticity: Authenticity is the property that guarantees an entity is what it claims to be, 
proving that all parties involved in an action are who they claim to be. It is of great importance 
to ensure the genuineness of every asset, reducing instances of fraud by way of 
misrepresentation.  

MEDINA needs to authenticate all the information sources to certify who provided, modified or 
even deleted certain data related to evidence and/or assessment results. This way, auditors can 
be sure that trusted sources have operated the MEDINA framework and no impostor source has 
ever replaced legitimate sources. In MEDINA, authenticity is a must. However, due to the 
assumption based on trusting all the MEDINA tools, authenticity of evidence and assessment 
results is given. Anyway, some additional secure authentication mechanisms, such as mutual 
authentication between different MEDINA components, could be added so that anyone outside 
the MEDINA system could provide information. 

Authorization: Authorization is the property that determines access levels or user privileges 
related to system resources including information. It is related to the access control techniques, 
granting, or denying access to a specific resource depending on the user identity. Although 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 28 of 115 

www.medina-project.eu   

MEDINA is a tool developed and used by auditors, different access levels and user privileges 
have been defined for the different roles defined in the Authorization and Filtering concept in 
D5.4 [25]. 

Non-repudiation: Non-repudiation is the ability to prove an event or action has occurred as well 
as to identify its originating entities in order to resolve disputes about the occurrence or non-
occurrence of the event and who were the involved entities. In MEDINA, non-repudiation is 
relevant in two senses. On the one hand, sources providing data (evidence and/or assessment 
results) should not be able to deny their involvement in MEDINA; once they provide data, they 
cannot deny their data provision. However, due to the assumption based on trusting all the 
MEDINA tools, non-repudiation is already guaranteed. On the other hand, sources accessing 
data (evidence and/or assessment results) should neither be able to deny their involvement in 
MEDINA; once they access data, they cannot deny their involvement in MEDINA; once they 
access data, they cannot deny the have read the data. 

4.1.5 Potential Attackers 

It is important to develop a catalogue of potential attackers, in other words, threat sources. 
There are two main types of attackers: outsiders and insiders. 

In general, outsiders can be classified based on their professional level: organized attackers, 
hackers and amateurs. 

• Organized attackers (terrorists, nation states, and criminals). They are generally highly 
trained, highly funded, and are often backed by substantial scientific capabilities. In 
many cases, their highly sophisticated attacks are directed toward specific goals. 

• Hackers: they may be perceived as benign explorers, malicious intruders, or computer 
trespassers. In most cases, they are highly trained and could be sponsored by criminal 
organization or governments for financial gain or political purpose. 

• Amateurs: these are less-skilled hackers, also known as "script kiddies" who often use 
existing tools that can be found on the Internet. They are not as dangerous as the 
previous ones since they do not have the ability to create their own, adapted tools.  

In general, insiders are people from the own organization (or with a strong relation with the 
organization) who have skills, knowledge, resources, and access to the organization systems. 
Consequently, malicious insiders will have a deep knowledge of the MEDINA framework. 

It is recommended to identify threats to the MEDINA framework regarding the identified 
protection goals and attacker types, from security breaches to human errors. 

Table 4. Overview of main potential threats from different attackers 

Attacker Threat Action 

Outsiders • System intrusions  

• Identity theft 

Malicious insider • Browsing of personally identifiable information. 

• Unauthorized system access through escalation of privilege. 

• Accidental or ill-advised data modification/deletion. 

• Accidental or ill-advised actions taken by employees that result in 
unintended physical damage, system disruption, etc. 

Environmental • Natural or man-made disasters; HW failure, etc. 

Also, it is recommended to identify potential attackers’ motivations to determine the real risks.  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 29 of 115 

www.medina-project.eu   

Table 5. Overview of main motivations for different attackers 

Attacker Motivation 

Outsiders • Someone who wants to change data to ensure the certificate is not 
obtained by the organization. 

• Someone who wants to obtain sensitive information (e.g., for 
espionage). 

• Unhappy customers who want to damage the organization (discredit, 
loss of customers, etc.). 

• Intellectual challenge. 

• Social/political/economic incentive. 

Malicious insider • Someone who wants to change data to successfully obtain a certificate. 

• Unhappy workers who want to damage the organization (discredit, loss 
of customers, etc.). 

• Someone who makes a mistake modifying or deleting information 
(trusted employees accidentally misplacing information). 

Environmental • N/A 

4.1.6 Potential Attacks 

It is essential to assess which vulnerabilities and weaknesses could allow potential attacks 
breaching the MEDINA framework security.  

Table 6. Description of the main potential attacks in MEDINA 

Protection goal Potential attack Description 

Confidentiality • Eavesdrop on 
database 
connection 

• Eavesdrop on tool 
connection 

Secretly listen to the private communication 
between the gathering/assessment tools and the 
Orchestrator and between the Orchestrator and 
the database without consent to gather data (or 
metadata) information. It is usually related to a 
lack of encryption services.  

Gain read access to 
database 

Broken access control vulnerabilities exist when a 
user can access specific data that they are not 
supposed to be able to access. It is related to not 
enforcing any protection over sensitive data or by 
means of privilege scalation. 

Phishing Obtain authentication data by impersonating 
oneself as a trustworthy entity in order to gain 
access to private data. 

Integrity • MitM attack on 
database 
connection 

• MitM attack on 
tool connection 

The attacker secretly relays and alters the 
information in the communication between the 
gathering/assessment tools and the Orchestrator 
and between the Orchestrator and the database 
that believes that they are directly communicating 
with each other. 

Gain write access to 
database 

Broken access control vulnerabilities exist when 
users can access specific data that they are not 
supposed to be able to access. It is related to not 
enforcing any protection over sensitive data or by 
means of privilege escalation. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 30 of 115 

www.medina-project.eu   

Protection goal Potential attack Description 

Availability DoS attack to the 
database 

Flooding the database with traffic or sending it 
information that triggers a crash in order to shut 
down the system, making it inaccessible to its 
users. There is a special risk with centralized 
systems (Single point of failure). 

Internet access down Internet outage due to an external problem 
(natural disaster, etc.) 

Gain write access to 
database 

With write access to the database, an attacker can 
simply delete evidence and assessment results 
(see the integrity threat). 

Authenticity Phishing for private 
key (credentials) for 
database access theft 

Obtain authentication data by impersonating 
oneself as a trustworthy entity in order to gain 
access to private data. 

Poor private key 
(credentials) 
strength for 
database access 
 

Passwords used are weak. Attackers could guess 
the password of a user to gain access to the 
database. 

• MitM attack on 
database 
connection 

• MitM attack on 
tool connection 

The attacker secretly relays and alters the 
information in the communication between the 
gathering/assessment tools and the Orchestrator 
and between the Orchestrator and the database 
that believes that they are directly communicating 
with each other. 

Non-
repudiation 

Phishing for private 
key (credentials) for 
database access theft 

Obtain authentication data by impersonating 
oneself as a trustworthy entity in order to gain 
access to private data. 

Poor private key 
(credentials) strength 
for database access 

Passwords used are weak. Attackers could guess 
the password of a user to gain access to the 
database. 

• MitM attack on 
database 
connection 

• MitM attack on 
tool connection 

The attacker secretly relays and alters the 
information in the communication between the 
gathering/assessment tools and the Orchestrator 
and between the Orchestrator and the database 
who believe that they are directly communicating 
with each other. 

4.1.7 Likelihood of Exploitation 

The next step involves determining the likelihood of the potential attacks identified in section 
4.1.6 resulting in succeeding against our system. Likelihood is the probability that a vulnerability 
is exercised in an attack. It mainly depends on the attackers’ motivation and capacity, the nature 
of the vulnerability, and the existence of countermeasures. 

Probability can be ranked as: 

• High: the attacker is highly motivated and sufficiently capable; controls to prevent the 
vulnerability to being exercised are inefficient. 

• Medium: the attacker is motivated and capable, but controls are in place that may 
impede successful exercise of the vulnerability. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 31 of 115 

www.medina-project.eu   

• Low: the attacker lacks motivation and/or capability, or controls are in place to prevent 
or, at least, significantly impede the vulnerability for being exercised. 

Table 7. Likelihood of different attacks to happen 

Potential attack Likelihood 

Eavesdrop on database connection Medium 

Eavesdrop on tool connection Medium 

Gain read access to database High 

Phishing Medium 

MitM attack on database connection Medium 

MitM attack on tool connection Medium 

Gain write access to database High 

DoS attack to the database High 

Internet access down Low 

Phishing for private key (credentials) for database access theft Medium 

Poor private key (credentials) strength for database access High 

4.1.8 Impact 

The next step in a risk analysis is to perform a risk impact analysis to understand the 
consequences of an incident. The impact will be used together with the likelihood to calculate 
risks in the final step. 

• High impact: There is a strong need for corrective measures. 

• Moderate impact: Corrective actions are needed, and a plan must be developed to 
incorporate these actions within a reasonable period of time. 

• Low impact: It must be determined whether corrective actions are still required or 
decide to accept the risk. 

Table 8. Overview of effect and impact of the potential attacks 

Effect Impact 

Evidence/Assessment results will not be trustworthy High 

Evidence/Assessment results will not be available Moderate 

Audit will not be trustworthy High 

Organization discredit High 

Unfair competence High 

4.1.9 Risk Calculation 

The last step in a risk assessment is to combine the likelihood and the impact values to derive a 
risk value. Table 9 shows the risk value for the potential attacks identified in section 4.1.6.  

Table 9. Overview of the risk of the potential attacks 

Potential attack Likelihood Impact Risk 

Eavesdrop on database connection Medium Moderate Moderate 

Eavesdrop on tool connection Medium Moderate Moderate 

Gain read access to database High Moderate Moderate 

Phishing Medium Moderate Moderate 

MitM attack on database connection Medium High High 

MitM attack on tool connection Medium High High 

Gain write access to database High High Very High 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 32 of 115 

www.medina-project.eu   

Potential attack Likelihood Impact Risk 

DoS attack to the database High High Very High 

Internet access down Low High Moderate 

Phishing for private key (credentials) for 
database access theft 

Medium High High 

Poor private key (credentials) strength 
for database access 

High High Very High 

4.1.10 Security Requirements 

Based on the risk analysis, mitigation techniques are needed to reduce or even mitigate the 
identified risks. 

• A set of rules are required to be applied to limit access to sensitive data only to 
authorized people → User access control: identification & authorization. 

• Therefore, data should be kept private/confidential applying Privacy Enhancing 
Technologies (e.g., encryption, pseudonymization, anonymization, identity, and access 
management). 

• A set of rules is required to ensure the data is trustworthy and accurate. 

• A set of rules is required to prevent accidental disclosure of sensitive data. 

Taking these security requirements into consideration, a secure MEDINA Evidence 
Trustworthiness Management System for audit trail has been included in the MEDINA 
framework, as a way to provide accuracy and trustworthiness while avoiding sensitive data 
disclosure. 

4.2 Solutions for Audit Trails 

As presented in section 2.4, Blockchain technology has started to be considered as a suitable 
technology for auditing purposes due to some of its main features: decentralization, 
trustlessness, transparency, traceability, immutability, and integrity protection. However, other 
options, such as traditional databases or replicated databases can also be considered. Appendix 
B: Alternatives to Blockchain for Audit Trails includes a comparative analysis of Blockchain with 
traditional and replicated databases, concluding that Blockchain is suitable for audit trails. 
Moreover, Appendix C: Blockchain Technologies compares different Blockchain solutions 
concluding that a private Blockchain network is more suitable for the audit trails.  

Taking these two ideas into consideration, and the analysis of Blockchain-related technologies 
from Appendix C: Blockchain Technologies, the technologies whose features better fit MEDINA 
Evidence Trustworthiness Management System requirements are: Hyperledger Fabric [28] and 
Quorum [29] (traditional general purpose private Blockchains). 

Hyperledger Fabric aims to provide the basis for an extensible, modular, business-focused 
architecture that can be adopted by organizations in a variety of sectors. In contrast, Quorum is 
presented as an application-independent platform, with numerous differences and adaptations 
with respect to Ethereum but focusing on business needs. Therefore, although different in their 
initial approaches, both technologies aim to solve the problems associated with consortiums of 
professionals and organizations. 

Table 10 presents a comparison between Hyperledger Fabric [28] and Quorum [29], the most 
known private technologies.  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 33 of 115 

www.medina-project.eu   

Table 10. Overview of the most suitable Blockchain technologies features for MEDINA audit trail 

Feature Hyperledger Fabric Quorum 

Description  Modular Blockchain platform 
Distributed registration protocol 
for enterprises and Smart 
Contracts platform. 

Governance  Linux Foundation  J.P. Morgan (now, ConsenSys)  

Operation mode  Permissioned (private) Permissioned (private) 

Participation  Per organization Per node 

Permission level  
Fine grained (creation of users, 
deployment of Smart Contracts...)  

Simple (validating node or not)  

Message privacy  Yes  Yes  

Type of privacy  By communications channel By transaction 

Private 
communications 

Establishment at the beginning. 
Difficult to dissolve 

Indicated in each message. No 
fixed link 

Consensus  

- SOLO (ordering)  
- Kafka (ordering)  
- Simplified BFT (future)  
- Practical BFT (future)  

- Raft (no BFT)  
- Istambul BFT  
 

License  GPL / LGPL  GPL / LGPL  

Confirmation time  Instant  Instant  

TPS  450-900 (theoretical)  800 (theoretical)  

Transaction logs  Hash-linked blocks Hash-linked blocks 

As it can be deduced from the previous table, both technologies have similar features that can 
be useful. For that reason, and only considering the simplicity in network management, Quorum 
has been considered as the Blockchain network technology for the MEDINA Evidence 
Trustworthiness Management System. 

4.2.1 Quorum Energy consumption 

The Blockchain energy consumption mainly depends on the specific consensus algorithm 
considered for proving the legitimacy of the stored information. The most well-known 
consensus algorithm, used in Bitcoin, is the Proof of Work (PoW), based on executing some 
numerical computations that are easy to check but difficult to solve as guessing again and again 
is needed. This execution requires high computational power and, therefore, high energy. In 
these cases, every new node who joins the Blockchain network will increase the energy 
consumption without being able to avoid it. 

Fortunately, the Blockchain energy consumption issue has been recognized and several 
“greener” alternatives have been designed and implemented in other Blockchain networks. For 
example, Ethereum migrated from PoW to Proof of Stake (PoS) in September 2022, reducing its 
energy consumption by 99.988 % [30]. 

In the case of Quorum, several consensus algorithms are available: IBFT 2.0 (Istanbul Byzantine 
Fault Tolerant), QBFT (Quorum Byzantine Fault Tolerant) or Clique, which are Proof of Authority 
(PoA); Proof of Stake (PoS) and Ethash (Proof of Work, PoW). Proof of Authority (PoA) algorithms 
are recommended for improving the Blockchain energy consumption in scenarios such as the 
one in MEDINA, with permissioned participants. All these protocols reduce its complexity 
obtaining a more scalable, efficient and green Blockchain. Among the three available PoA 
algorithms, Clique is known to be more fault tolerant and more vulnerable to forks and chain 
reorganizations [31]. Between IBFT 2.0 and QBFT, the energy consumption is similar, as the 
information storage in Blockchain happens immediately, and near null. At the time of 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 34 of 115 

www.medina-project.eu   

implementation, IBFT 2.0 was the default consensus algorithm in Quorum, so that is the one 
considered, although a migration to QBFT will be considered. 

4.2.2 Quorum performance and scalability 

PoA algorithms can potentially handle hundreds of thousands of transactions per second as this 
type of consensus algorithms does not limit the scalability; for example, as commented, in IBFT 
2.0 blocks are immediately confirmed to be included into the Blockchain, so its performance is 
maximized (Quorum defines 150 transactions per second). On the contrary, the performance 
will be limited by the specific hardware considered. This means that the use of large data centres 
to deploy a Blockchain network would improve the performance and scalability of the 
Blockchain network.  

Anyway, the audit trail functionality in MEDINA requires mainly, two kinds of operations: 

• Writing operations of the evidence/assessment results information on the Blockchain. 
This will periodically happen when new evidence is gathered by any of the evidence 
gathering tools or when a new assessment result is obtained.  

• Reading operations of the information previously recorded on the Blockchain. This will 
happen on demand when an audit happens. 

Neither of these operations are specially demanding for the performance evaluation results 
shown in the literature for Quorum with ordinary processing capabilities [32] [33]. Reading 
operation are demonstrated to consume much lower time than writing operations, whose 
latency could be increased with the number of transactions (and the number of users). However, 
the results from the literature show suitable latency times for an audit system which does not 
need to register the evidence/assessment results in real-time but be available when an audit 
happens. 

4.3 Guarantee of Data Integrity: Hash Functions 

This section explains the two uses of hashes in MEDINA: for any Blockchain transaction and for 
guaranteeing evidence and assessment results integrity. 

4.3.1 Blockchain  

Hash functions are widely used within Blockchain technology because they are fast, efficient, 
computationally inexpensive, and unique. When Satoshi Nakamoto published his Bitcoin 
whitepaper [34], he explained why and how to use SHA-256 and RIPEMD-160 in Bitcoin. Since 
then, Blockchain technology has evolved a lot, but the basics remain the same: make use of 
strong cryptography and hashes to make the technology secure and private. 

The most important uses of hash functions in Blockchain are: 

Address creation (Address Wallet): The addresses of cryptocurrency wallets are a secure 
representation of the wallet's public keys which are usually very long. It is for this reason that 
Blockchains usually use hash functions to derive a shorter address. This process is used at various 
times to shorten the address and add an extra layer of security. For example, in Bitcoin, the 
process of creating a wallet address, uses the hash functions RIPEMD-160 and SHA-256. 

Mining Process: The mining process is another important stage of Blockchain technology where 
hash functions are used. For example, in Bitcoin, mining makes intensive use of SHA-256 hashes 
calculation in a distributed way in each of its nodes. Miners are responsible for calculating 
millions of hashes to create new Bitcoin blocks. The process is also used to verify transactions 
made on the network. While the process of calculating hashes is very fast, its intensive use 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 35 of 115 

www.medina-project.eu   

hinders the process drastically. This leads miners to use high computational power to solve 
Bitcoin puzzles.  

Smart Contracts: This is another area where hash functions are heavily used. Blockchains such 
as Bitcoin, Ethereum, NEO or TRON make use of Smart Contracts to power different applications. 
These applications are driven by a public contract between parties. A public contract has a 
unique hash that is given by what the contract says. If the contract is modified, the old contract 
is terminated and a new one is generated with a new hash. In this way the hash determines the 
correct contract to use within the decentralized application, facilitating its control.  

Another use of hashes in smart contracts is to guarantee the validity and authenticity of the 
contract. For example, a contract for the sale of a house with a payment made in 
cryptocurrencies. The definition of the contract and its hash are unalterable witnesses of sale 
made between two parties. 

As it can be deduced, each Blockchain technology uses specific hash functions by design. 

4.3.2 Evidence (and Assessment Result) Integrity 

The MEDINA Evidence Trustworthiness Management System is used for providing a guarantee 
of integrity of evidence and assessment results. However, this information is considered 
sensitive and should not be stored in a “public” storage such as Blockchain which does not allow 
future deletions. For this reason, information is not directly stored in Blockchain, instead, hashes 
for the different evidence and assessment results values are stored on the Blockchain, as they 
do not disclose any input data but can be useful for guaranteeing that information has not been 
altered. From section 4.1.2, the specific features to be protected with hashes as they are 
considered sensitive are measurementResult from the evidence and assessmentResult and 
complianceResult from the assessment result. 

The idea is that when evidence or assessment results are obtained, the Orchestrator, i.e., the 
MEDINA component in charge of storing evidence and assessment results on the Blockchain, 
automatically calculates the associated hash. By this way, the hash of the original information is 
recorded on the Blockchain and cannot be altered by design. SHA2-256 has been considered 
suitable for MEDINA as it is widely standardized, it is secure enough and with a good trade-off 
between security and performance. 

Later on, when an auditor needs to verify if a piece of evidence or assessment result has been 
modified, the current data value can be retrieved, the hash function can be applied, and the 
result can be compared with the hash value previously stored in the Blockchain, to ensure that 
the data has not been modified. 

As it has been stated in section 2.5.3, input data should have a high entropy in order to avoid 
revealing the input data. The entropy of the input data for hashing in MEDINA is: 

• measurementResult: This refers to the specific evidence gathered for fulfilling a specific 
EUCS security requirement. Although a piece of evidence follows a specific data model, 
as shown below, its entropy is quite high. There are some fields, such as timestamp or 
different ids (id, cloudServiceId, toolId) that could become “easily” deduced with some 
knowledge about the systems or dates (this information is not considered sensitive and 
could even become known). However, the raw field, which includes the evidence itself, 
does not follow any particular format or schema and has no specific size (any kind of 
evidence could be included), so its entropy is considered high by default. 

 
 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 36 of 115 

www.medina-project.eu   

Evidence: 
            type: object 
            properties: 
                id: 
                    type: string 
                    description: the ID in a uuid format 
                timestamp: 
                    type: string 
                    description: time of evidence creation 
                    format: date-time 
                cloudServiceId: 
                    type: string 
                    description: Reference to a service this evidence was gathered from 
                toolId: 
                    type: string 
                    description: Reference to the tool which provided the evidence 
                raw: 
                    type: string 
                    description: Contains the evidence in its original form without following a 
      defined schema, e.g. the raw JSON 
                resource: 
      type: resource (see MEDINA data model) 

 

• assessmentResult: This refers to the specific assessment result for a specific EUCS 
security requirement. As in the case of evidence, although an assessment result follows 
a specific data model, as shown below, its entropy is quite high. There are some fields, 
such as timestamp or different ids (id, metricId, evidenceId, cloudserviceId, resourceId) 
that could become “easily” deduced with some knowledge about the systems or dates 
(this information is not considered sensitive and could even become known). However, 
there are other fields, such as nonComplianceComments, which do not follow any 
particular format or schema and have no specific size (any kind of comment can be 
included), so their entropy is considered high by default. 
 

AssessmentResult: 
            type: object 
            properties: 
                id: 
                    type: string 
                    description: Assessment result id 
                timestamp: 
                    type: string 
                    description: Time of assessment 
                    format: date-time 
                metricId: 
                    type: string 
                    description: Reference to the metric the assessment was based on 
                metricConfiguration: 
                    type : metric Configuration (see MEDINA data model) 
                compliant: 
                    type: boolean 
                    description: 'Compliant case: true or false' 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 37 of 115 

www.medina-project.eu   

                evidenceId: 
                    type: string 
                    description: Reference to the assessed evidence 
                resourceId: 
                    type: string 
                    description: Reference to the resource of the assessed evidence 
                resourceTypes: 
                    type: array 
                    items: 
                        type: string 
                    description: Resource types 
                nonComplianceComments: 
                    type: string 
                    description: Some comments on the reason for non-compliance 
                cloudServiceId: 
                    type: string 
                    description: The cloud service which this assessment result belongs to 
            description: A result resource, representing the result after assessing the cloud                  
              resource with id resource_id. 

 

• complianceResult: This refers to the compliance field from the assessment result shown 
above. In this case, as it is a Boolean field, there are only two possible values: true or 
false. For this reason, the entropy is extremely low, and security could be “easily” 
broken. For this reason, entropy must be increased by adding a random 256 bits value 
to the compliance value, as shown in Figure 5. By this way, entropy is increased, and 
security is enhanced.  

 

Figure 5. Entropy increment in the hash 

In the case of the compliance result, the increment on its entropy by adding a random number 
is also done in the Orchestrator when the compliance hash is originally obtained. For this 
purpose, the Orchestrator should also store this specific random number together with the 
evidence/assessments/compliance results when created. 

4.4 Verifying Evidence and Assessment Results 

The starting point is that an audit is taking place (either internal or external audit). Some results 
(evidence, assessment results and compliance results) have been obtained from the audit 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 38 of 115 

www.medina-project.eu   

process and the objective for the auditors is to verify them with the evidence, assessment and 
compliance results hashes values recorded on the Blockchain so as to guarantee that they have 
not been tampered with.  

Evidence, assessment, and compliance results are not directly stored in the Blockchain, as they 
are considered sensitive information for the CSPs. Instead, their hashes are stored, avoiding data 
disclosure but ensuring data integrity as: 

• Each evidence/assessment result value is assigned a specific hash. Any slightest change 
in the evidence/assessment result value will result in a change in the hash. The 
compliance result value is a special case as its entropy is low and its value can be easily 
deduced from the hash. For this reason, as explained in section 4.3.2, a random number 
hash can be added to the input hash to increase its entropy and enhance the security. 
This is the value recorded on the trustworthiness system to avoid compliance result 
disclosure. 

• If the hash does not change, the evidence/assessment/compliance value has not been 
tampered; if the hash changes, the evidence/assessment/compliance value has been 
tampered (we do not know the specific change in the value, but we know that it has 
changed. By this way, current evidence/assessments/compliance results cannot be 
considered as valid. 

There are several ways auditors could make this verification through the MEDINA framework 
depending on the point the current evidence/assessment results hashes are obtained to be 
compared with those recorded on the Blockchain. This section analyses different options. 

4.4.1 Calculation of Hashes in the Orchestrator 

The auditors directly obtain the evidence/assessment/compliance results hashes from the 
Orchestrator (using its graphical interface) and compare them with the hashes recorded on the 
Blockchain. There are different options: 

• The Orchestrator, which has calculated the current evidence/assessment results hashes, 
can directly verify these values with those recorded on the Blockchain through the 
MEDINA Evidence Trustworthiness Management System API as shown in Figure 6. As a 
result, a TRUE or FALSE indication would be received in the Orchestrator and would be 
shown through the Orchestrator user interface. 

The main advantage is that the complete process is automatically done for the auditors: 
they only need to provide evidence/assessment result and the Orchestrator would 
automatically complete the whole process for them, resulting in a TRUE/FALSE result. 

The main disadvantage of this solution is that the Orchestrator would need to be 
modified to support the evidence/assessment result id indication and the verification 
result obtaining through its user interface. Additionally, the Orchestrator internal 
implementation would also need to include the hash obtaining and the checking 
evidence/assessment hash call to the MEDINA Evidence Trustworthiness Management 
System. However, the MEDINA Evidence Trustworthiness Management System would 
not need any update. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 39 of 115 

www.medina-project.eu   

 

Figure 6. Automatic verification from the Orchestrator using the Trustworthiness System API 

• The Orchestrator provides the current evidence/assessment results hashes to the 
auditors who, manually, look for the specific hash on the user interface of the MEDINA 
Evidence Trustworthiness Management System (https://kibana.medina.bclab.dev 
[internal use only - authentication required]) as shown in Figure 7. If it is found, the 
current_hash is correct, as it is very difficult to obtain the same hash from two different 
sets of data. A second option is that the auditors manually look for the hash recorded 
on the Blockchain associated to the specific evidence/assessment result id through the 
user interface of the MEDINA Evidence Trustworthiness Management System and, 
manually, compare it with the current_hash received from the Orchestrator. 

 

Figure 7. Manual verification from the Orchestrator using the MEDINA Evidence 
Trustworthiness Management System GUI 

http://www.medina-project.eu/
https://kibana.medina.bclab.dev/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 40 of 115 

www.medina-project.eu   

The main advantage of this solution is that the auditor itself performs the verification and 
does not need to trust the CSP (security increases). 

The main disadvantage is that the Orchestrator would need to be modified to support the 
evidence/assessment result id indication and the hash calculation. The MEDINA Evidence 
Trustworthiness Management System would not need any update. Another disadvantage 
is that this is a manual process for the auditors. 

In both cases, for the compliance result, the Orchestrator should obtain the current hash and 
add it the specific random value previously recorded in order to be able to correctly verify the 
compliance result integrity on the Blockchain through the MEDINA Evidence Trustworthiness 
Management System API or the user interface of the MEDINA Evidence Trustworthiness 
Management System as explained in Figure 6 and Figure 7. 

4.4.2 Calculation of Hashes in the MEDINA Evidence Trustworthiness 
Management System   

The auditors obtain the evidence/assessment values from the Orchestrator and use the MEDINA 
Evidence Trustworthiness Management System for the hashes collection and the verification in 
comparison with hashes recorded on the Blockchain. There are different options: 

• Once the current evidence/assessment results values are obtained from the 
Orchestrator, the auditors will use the MEDINA Evidence Trustworthiness Management 
System GUI for obtaining the associated current_hash values. They will then manually 
look for this specific value on the user interface of the MEDINA Evidence Trustworthiness 
Management System as shown in Figure 8. If the current_hash is found, the 
current_hash is correct, as it is very difficult to obtain the same hash from two different 
sets of data. 

 

Figure 8. Manual verification using the Orchestrator and Trustworthiness System GUI 

The main advantage of this solution is that the Orchestrator would not need to be 
updated, not extending its functionality, and maintaining the trustworthiness 
verification completely on the MEDINA Evidence Trustworthiness Management System. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 41 of 115 

www.medina-project.eu   

The main disadvantage is that the MEDINA Evidence Trustworthiness Management 
System would need to be updated to be able to obtain the current_hashes values. 
Furthermore, it could be risky to provide evidence/assessment result values to the 
MEDINA Evidence Trustworthiness Management System GUI, which is not locally 
deployed and is offered as a service from TECNALIA (sensitive data should not leave its 
local premises). Finally, it is a manual process for the auditors. 

• Instead of using the evidence/assessment results values from the Orchestrator, it could 
be possible to obtain them directly from the MEDINA evidence storage, which needs to 
be publicly accessible by the auditors. Once auditors obtain the values, they follow the 
same process as explained before, following the steps described in Figure 9. 

 

Figure 9. Manual verification via the evidence storage and MEDINA Evidence Trustworthiness 
Management System GUI 

The main advantage of this solution is that the Orchestrator is not involved, not extending 
its functionality, and maintaining the trustworthiness verification completely on the 
Trustworthiness System. 

The main disadvantage is that the MEDINA Evidence Trustworthiness Management 
System would need to be updated to be able to obtain the current_hashes values. 
Furthermore, it could be risky to provide evidence/assessment result values to the 
MEDINA Evidence Trustworthiness Management System GUI, which is not locally 
deployed and is offered as a service from TECNALIA (sensitive data should not leave its 
local premises). Besides, the evidence storage needs to be publicly accessible by auditors. 
Finally, it is a manual process for the auditors. 

In both cases, for the compliance result, the specific random value previously recorded for the 
increment on the compliance result hash entropy should be also provided in addition to the 
compliance result itself (directly from the evidence storage or from the Orchestrator). This is an 
additional risk as “sensitive” information is needed to be shared with the MEDINA Evidence 
Trustworthiness Management System, which is not locally deployed and is offered as a service 
from TECNALIA (sensitive data should not leave its local premises). 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 42 of 115 

www.medina-project.eu   

4.4.3 Calculation of Hashes in an Additional Service  

A new MEDINA component could be designed for the verification of evidence and assessment 
results in order to avoid modifications to the Orchestrator and/or the MEDINA Evidence 
Trustworthiness Management System. There are several options: 

• Once the current evidence/assessment results values are obtained from the 
Orchestrator or the evidence storage, the auditors will use an additional service for the 
verification process. This additional service would automatically obtain the 
current_hash values and verify them on the Blockchain through the MEDINA Evidence 
Trustworthiness Management System API. As a result, a TRUE/FALSE result would be 
shown to the auditors as shown in Figure 10.  

The main advantage is that the Orchestrator and the MEDINA Evidence Trustworthiness 
Management System do not need any update and there is no mix on functionalities. On 
the contrary, an additional service would be needed inside the MEDINA framework for 
the verification functionality (it could be also provided as a service from outside, but this 
would mean a risk due to the need of the sensitive data to leave the local premises). 

 

Figure 10. Automatic verification using an intermediate additional service 

• The additional service could be the entry point for the evidence/assessment result 
verification process, providing a user interface and the hash obtaining and hashes 
verification functionalities through the Orchestrator/Evidence storage and MEDINA 
Evidence Trustworthiness Management System API (see Figure 11).  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 43 of 115 

www.medina-project.eu   

 

Figure 11. Automatic verification using an additional service as entry point 

The main advantage is that the Orchestrator and the MEDINA Evidence Trustworthiness 
Management System do not need any update and there is no mix on functionalities. 
Besides, just one user interface will be used by the auditors. On the contrary, an 
additional service would be needed inside the MEDINA framework for the verification 
functionality (it could be also provided as a service from outside, but this would mean a 
risk due to the need of the sensitive data to leave the local premises). 

In both cases, for the compliance result, the specific random value previously recorded for the 
increment on the compliance result hash entropy should be also obtained in addition to the 
compliance result itself (directly from the evidence storage or from the Orchestrator). This 
enhanced-entropy hash will be calculated in this new intermediate service. 

4.4.1 Discussion with auditors 

MEDINA aims for maximum usability for auditors, so providing an automated mechanism for 
validation or verification of evidence and assessment results is recommended. However, 
auditors are also interested in maintaining a manual verification mechanism that allows them 
to be sure of the obtained results. 

The manual verification mechanism is already provided by the graphical interface of the 
MEDINA Evidence Trustworthiness Management System, in which auditors can directly look for 
specific evidence/assessment results hashes (and associated details). 

For the automatic verification of evidence and assessment results, the different alternatives 
explained above have been analysed: 

• Solutions described in section 4.4.1, in which the Orchestrator needs to calculate the 
hash for the correct validation, are not considered suitable as they mean modifications 
on the Orchestrator component. This functionality is not an inherent objective of the 
Orchestrator component and, consequently, should not be considered.  

• Although the use of the MEDINA Evidence Trustworthiness Management System  for the 
automatic hash verification as described in section 4.4.2 seems to be the best solution, 
it is a no recommended option. The MEDINA Evidence Trustworthiness Management 
System is a tool currently provided as a service (currently from TECNALIA but in a future 
potential exploitation, solutions such as the European Blockchain Services 
Infrastructure, EBSI, are considered suitable). This means that the information from 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 44 of 115 

www.medina-project.eu   

different MEDINA instances and, consequently, different CSPs will be stored together in 
a common Blockchain. Although access control policies are implemented in the MEDINA 
Evidence Trustworthiness Management System, it is not recommended to send (nor 
store) sensitive information (as it is the case of evidence and assessment results) to it 
for their hash calculation. Therefore, these alternatives are not considered suitable. 

• Solutions described in section 4.4.3, in which an additional service is needed for the 
hashes obtaining and comparison, seem to be the most suitable for MEDINA. Although 
two possibilities are available, the most use friendly solution is the one in which auditors 
only need to interact with the new additional verification service (see Figure 11. In this 
case, this additional service will automatically interact with the Orchestrator for 
obtaining the evidence/assessment results and calculating the corresponding hashes, 
and with the MEDINA Evidence Trustworthiness Management System for obtaining the 
previously recorded hashes to compare with.  

Summarizing, a new hashes verification service has been designed in MEDINA for a user-
friendly automatic evidence/assessment results validation with the MEDINA Evidence 
Trustworthiness Management System. More details ON this component are included in D3.3 
[35]. 

4.5 Advancements within MEDINA 

In this chapter, we have presented an extensive theoretical analysis required for the MEDINA 
Evidence Trustworthiness Management System, including existing risks, mitigative technologies, 
and with a special focus on Blockchain technologies and hashing algorithms needed as a 
guarantee of data integrity. Furthermore, different workflows for the evidence and assessment 
results verification have been analysed, identifying the most suitable for MEDINA. 

4.6 Limitations and Future Work  

One limitation is that secure storage alternatives considered in the analysis have been limited 
to traditional databases, replicated databases and Blockchain-based solutions. Although 
Blockchain is demonstrated to be suitable, there are concerns about its energy consumption, 
cost, and scalability, especially when considering private networks such as in MEDINA. 

Potential future work includes the analysis on how to extend the MEDINA Evidence 
Trustworthiness Management System functionality to the EBSI Blockchain infrastructure (or 
similar solutions). 

  

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 45 of 115 

www.medina-project.eu   

5 Continuous Evaluation of Cloud Security Certification in 
MEDINA 

This section describes the Continuous Certification Evaluation (CCE) component of MEDINA and 
the methodology used for its implementation. This component collects assessment results and 
builds an evaluation tree representing the aggregated assessment results on higher levels of the 
certification scheme to determine compliance with the different certification elements 
(requirements, controls, control groups, etc.). The component was entirely built in the scope of 
the MEDINA project.  

5.1 Approach and Design 

5.1.1 Certification Evaluation Methodology 

As explained in section 2.1, the method for aggregation of assessment results in the Continuous 
Certification Evaluation component follows the tree-like hierarchy of the various standardisation 
schemes, as shown on Figure 16. Values in the tree are evaluated bottom-up: from the leaves 
that represent assessment results to the root representing the complete certification scheme 
and thus indicating the fulfilment of the certificate. 

The general design of the component is modular and adaptable in terms of aggregation and tree 
building. The aggregation can be made with various methods, also by combining different 
methods at different levels of the tree. The tree skeleton can be built in advance if all the 
relevant resources and their mappings to requirements and metrics are known before gathering 
the evidence. Alternatively, the tree structure can be built while receiving assessment results 
and discovering the resources and the requirements that they must fulfil. 

The current proposal of the methodology which is closely related to the Risk Assessment and 
Optimisation Framework2  is described below. 

5.1.1.1 Building the Tree Structure 

The evaluation tree (see Figure 16) is logically composed of two parts: in the upper part, the 
structure is defined directly by the scheme being used, i.e., its control groups, controls, and 
requirements. There is a possibility that controls can be selected or unselected by the user if 
allowed by the standardisation scheme in use. The levels below the level of requirements are 
not directly defined by the standard but are important to determine the compliance values of 
elements higher in the hierarchy. The conformity to a requirement is determined by measuring 
one or more metrics related to this requirement, and there can be multiple resources on which 
the measurements are made. A single assessment result contains the information about 
whether a particular monitored resource conforms to the target value for a specific metric. To 
use the assessment results for computing the conformity values of requirements, three 
aggregation techniques are described below: 

a) directly aggregating assessment results into compliance values of requirements, 
b) combining assessment results of different resources into compliance values of metrics, 

and combining metrics into compliance values of requirements, 
c) combining assessment results of different metrics into compliance values of resources 

and combining resources into compliance values of requirements. 

The above-mentioned techniques are represented graphically in Figure 12. Technique a) is the 
simplest, avoiding the additional aggregation layer. The downside of this approach is the lack of 

 
2 Risk Assessment and Optimisation Framework is developed in the scope of WP4 and reported in D4.5 
[25] 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 46 of 115 

www.medina-project.eu   

visibility of the compliance levels of metrics or resources, i.e., the compliance levels of resources 
or metrics are not computed and cannot be examined by users. Also, aggregation weights of 
metrics and resources cannot be assigned individually but must be combined into a single value. 

 

Figure 12. Possible options for aggregation of assessment results into compliance levels of requirements 

The difference between options b) and c) is whether assessment results are aggregated into 
compliance values of metrics or into compliance values of resources, respectively. Technique b) 
calculates whether some metric is satisfied across all relevant resources, whereas option c) 
evaluates whether some resource is satisfying the related requirement considering all relevant 
metrics. The aggregated value at the requirement level will be the same in both options b) or c) 
in case when values of all metrics under the requirement in question have been measured for 
all relevant resources. When this is not the case (example shown in Figure 12 and described 
below), the requirement value computed using technique b) is affected greater by non-
conformities in assessment results of metrics, measured on fewer resources, while with 
technique c) assessment results of resources where fewer metrics are measured are regarded 
as more important (considering similar aggregation weights). 

Let us consider the example shown in Figure 12, where both metrics 1 and 2 are evaluated for 
resource 1, but only metric 1 is evaluated for resource 2 (no assessment result was obtained for 
metric 2 on resource 2). For this example, we assume that weights for all resources and all 
metrics are the same. In case all assessment results are positive, the requirement value is 1 for 
all methods. Table 11 shows a comparison of the calculated fulfilment value for a requirement 
when one of the assessment results is negative (the other two are assessed as positive) with 
different methods of aggregation. Method a) considers all three assessment results equally, thus 
the requirement value is 2 3⁄ , regardless of which single assessment result is negative. 

When metric 1 at resource 1 is evaluated negatively, both b) and c) methods return the same 
requirement value since (as evident from Figure 12) this assessment result is represented as half 
of metric 1 (b) and also as half of resource 1 (c). In case when metric 2 at resource 1 is evaluated 
negatively, method b) returns a requirement value of 0.5, while it is 0.75 with method c). 
Method b) penalizes this case harder because this is the single assessment result for metric 2 – 
one of the two metrics in the second tree level is evaluated with 0. Analogously, when metric 1 
for resource 2 is non-conformant, it is penalized harder with method c) since this is the only 
metric evaluated on resource 2. 

The last column in the table shows the c) method of aggregation where the aggregation results 
for different metrics are aggregated with the AND approach – each resource is assigned a 
Boolean fulfilment value: 1 if and only if all metrics for this resource are evaluated positively; 0 
otherwise. With this method, the requirement values for all cases in our example are 0.5 
because one of the two resources on the second tree level is evaluated negatively in each case. 
Metric aggregation using AND rule is further discussed below. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 47 of 115 

www.medina-project.eu   

Table 11. Comparison of requirement fulfilment value depending on non-conformity of individual 
assessment results calculated with different aggregation methods 

 a) b) c) c), AND metric 
aggregation 

M1 @ R1 negative 0.67 0.75 0.75 0.5 

M2 @ R1 negative 0.67 0.5 0.75 0.5 

M1 @ R2 negative 0.67 0.75 0.5 0.5 

If the evaluation tree is built using technique b), the users are able to see the conformity level 
by metrics and, if needed, they can examine the individual metrics to discover which resources 
under this metric are contributing to some non-conformity. Alternatively, with option c), users 
can see the conformity levels of their resources with all metrics linked to a requirement 
aggregated. They can examine the lowest tree level (metrics) to determine which metrics in that 
resource are problematic. Due to this, we believe that most users would find option c) more 
informative. 

As explained in section 5.1.1.2 below, the approach for the initial MEDINA proof-of-concept 
considers that all metrics for a particular resource need to be evaluated positively to regard the 
requirement fulfilled. Aggregation of the metrics level is thus made with simple AND rules and 
weighted aggregation does not apply at this level. On the other hand, configuration of different 
weights for resources can be desirable from the risk assessment perspective. With aggregation 
technique b), fulfilment values of metrics are calculated from multiple resources and are thus 
not Boolean values. If we are to apply AND aggregation on metrics, we could consider the 
metrics values positive or negative depending on thresholds. Regardless of thresholds though, 
the weights of resources used on the leaf-level would become irrelevant at the requirement and 
higher levels of the evaluation tree (Boolean fulfilment values are applied to requirements). 
With technique c), the assessment results are aggregated into resources’ compliance levels 
using AND, applying Boolean values to resources. The compliance values of resources can 
therefore be aggregated into requirements’ fulfilment levels using their respective weights. 

Following the considerations described above, technique c) was chosen for the implementation 
of the Continuous Certificate Evaluation component and is therefore considered in the following 
description of the tree-building process. As an example, a part of such evaluation tree is also 
shown in Figure 16. As mentioned, the component is implemented in an adaptable way, 
meaning that if additional requirements are found, refinements of the approach are possible 
and would not require significant effort. 

In the start-up phase of the component, the tree structure is built down to the level of 
requirements by obtaining the elements of the certification scheme and the mappings between 
the hierarchy levels from the Catalogue of Controls and Metrics3. The lower part of the tree is 
built part by part during the component’s operation.  

When receiving an assessment result for metric M and resource R, the component first checks 
whether such an assessment result is already present in the evaluation tree. In this case, its 
values (there can be multiple tree nodes corresponding to an assessment result when a single 
metric maps to several requirements) can simply be updated and propagated to the higher 
hierarchy levels through aggregation. If no nodes with metric M and resource R exist, they need 
to be added to the tree. Resource R is added as a child node to all requirements that metric M 
is associated with. For all such added nodes of resource R, metrics that are required for 
fulfilment of particular requirements are added as child nodes representing assessment results. 

 
3 Catalogue of Controls and Metrics is developed in the scope of WP2 and reported in D2.2 [69] 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 48 of 115 

www.medina-project.eu   

The values of these assessment result nodes remain undefined (except the assessment result 
received for metric M) until a matching assessment result is received. 

5.1.1.2 Aggregating the evaluation values 

While different aggregation methods can be used for calculating the compliance values in the 
evaluation tree, the main method proposed in the initial proof of concept is setting the value of 
a node with a weighted arithmetic sum of the child nodes’ values. The reason for choosing this 
approach is explained in section 2.1. As shown in Figure 16, each tree node (representing an 
element in the standardisation hierarchy) has two configurable parameters: weight w and 
threshold T, and its value V  is calculated using the weighted average of its child nodes: 

𝑉 =  
∑ 𝑉𝑖 𝑤𝑖

∑ 𝑤𝑖
 

where i runs across the child nodes. Since the weighted sum is divided by the sum of weights, 
node values (and, consequently, thresholds) always fall in the interval [0,1]. 

Thresholds simply mark the (un)conformity of a node by regarding nodes with 𝑉 ≥ 𝑇 as 
compliant. Thresholds are used mostly for visibility, i.e., to clearly display the nodes’ 
(un)conformities to the user and to trigger the additional risk assessment evaluation of non-
conformities. Another option would be to regard the values of the nodes in their aggregation on 
the parent level as totally (un)compliant (0 or 1) depending on their compliancy with respect to 
the threshold. This way, the weighted aggregations would not propagate further than one level 
in the tree. 

The evaluation tree can be easily simplified to an AND tree by setting all threshold values to 1. 

The leaf nodes (representing assessment results) are expected to have logical Boolean values 
(evaluated by the Security Assessment components with respect to the evidence’s compliance 
with the metric’s target value), meaning that their values can only be 0, 1, or undefined (in case 
where no assessment results have been obtained for a specific metric-resource pair). Undefined 
values are regarded as uncompliant (0). As already mentioned, MEDINA defines metrics related 
to a particular requirement of the standard as a set of constraints which all need to be fulfilled 
to regard the requirement as compliant. For this reason, aggregation on the first level of the 
evaluation tree (from assessment results to compliance values of resources for a specific 
requirement) is done using the AND approach – resource nodes are assigned a value of 1 only if 
all metrics for a requirement are satisfied (or 0 otherwise). 

Weights of individual elements can be assigned by the CSP (in collaboration with the auditor), 
possibly with inputs from the risk management framework according to the CSP’s risk appetite. 

If allowed by the specific standardisation scheme and chosen by the CSP (as well with inputs 
from the risk management), some elements of the scheme (nodes of evaluation tree) can be 
disregarded in the evaluation. In the example shown in Figure 16, one control of the standard is 
not selected and thus ignored in the aggregation to its parent node (control group). 

Above we presented different methods that can be used in the Certification Evaluation 
Component in order to support various standards and certification schemes. The approach 
implemented in the MEDINA CCE component follows the aggregation method presented above 
as c). At this point, CCE does not receive any weights or thresholds of individual nodes and thus 
treats all parts of the certification tree equally in the aggregation. The distinction between the 
importance of various requirements or controls is considered by the Risk Assessment and 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 49 of 115 

www.medina-project.eu   

Optimisation Framework when determining how critical an incompliance is to the overall 
certification state of a CSP. 

5.1.1.3 Operational Effectiveness 

The state of the evaluation tree is saved after any assessment result is received that causes the 
tree nodes to change their value. Operational effectiveness measures were also added based on 
the statistics calculated on the tree states saved in a selected time interval. The CCE component 
exposes a gRPC function (queried by the Life-Cycle Manager) that calculates the following 
operational effectiveness measures for each node of the evaluation tree (see also section 2.2): 

• Cumulative durations a node was evaluated as compliant and as non-compliant. 

• The ratio of time the node was evaluated as compliant (vs. non-compliant). 

• Minimal, maximal, and average Time-To-Fix (Fail-Pass-Sequence-Duration), meaning 
how long the CSP took to restore the compliance of a control after its failure. 

This information is then processed by the Life-Cycle Manager (described in section 6.2). 

5.2 Implementation 

This section describes the architecture of the CCE component and interaction with other 
components, and presents some details of the implementation. 

5.2.1 Functional Description 

The CCE component collects assessment results and builds an evaluation tree representing the 
aggregated assessment results on higher levels of the certification scheme to determine 
compliance with the different certification elements. 

5.2.1.1 Fitting into overall MEDINA Architecture 

The data flow from gathering of technical and organizational evidence to the certificate life-cycle 
management is represented in Figure 13, showing the Continuous Certification Evaluation (CCE) 
in relation to the other components. Assessment results originating in the Security Assessment 
component(s) are forwarded to the CCE component through the Orchestrator. A single 
assessment result object contains an assessed value related to a specific metric (whether it is 
fulfilled or not) for a specific resource of the CSP’s infrastructure. 

The CCE aggregates this information into an evaluation tree, which is stored (alongside its 
history) in the Certification evaluation storage database. The results are forwarded to the Risk 
Assessment and Optimisation Framework component to further evaluate them and report 
possible deviations to the Life-Cycle Manager. The Risk Assessment framework does not 
consume the entire tree, but only the bottom three levels of nodes (assessment results, 
resources, and requirements). As an additional metric in evaluating the final certificate state, 
the Life-Cycle Manager further inspects the operational effectiveness values obtained directly 
from the CCE. 

The Continuous Certification Evaluation component is also linked with the Catalogue of Controls 
and Metrics (developed in WP2) and the Orchestrator component. The Catalogue provides the 
structure of the used certification scheme (lists and mappings of metrics, requirements, 
controls, control groups…), needed to construct the evaluation tree. The Orchestrator is the 
source of all configurations related to the evaluated service (target of evaluation), including the 
chosen controls/requirements and a list of monitored resources subject to evaluation. 

 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 50 of 115 

www.medina-project.eu   

 

Figure 13. Continuous Certification Evaluation: diagram of interaction with related components 

5.2.1.2 Component card 

Component 
Name 

Continuous Certification Evaluation (CCE) 

Main 
functionalitie

s 

Evaluates the compliance level on all levels of the certification hierarchy 
(resources, requirements, controls, control groups, standard) based on the 
aggregation of assessment results and configuration (weights of individual 
tree nodes). 

Sub-
components  
Description 

• Backend: implements the logic of aggregating assessment results and 
building a certification tree 

• Frontend: visualizes the trees for a certain certification schema and cloud 
service respectively 

• Database: stores the certification trees 

Main logical 
Interfaces 

 

Interface name Description Interface technology 

Assessment 
Results 

Receive assessment results 
from the Orchestrator. 

REST / gRPC 

Certification 
evaluation 

Send evaluation results to 
storage and the RAOF. 

REST 

Statistics Provide statistical data 
(operational effectiveness 
data) about the fulfilment of 
requirements over time. 

REST 

Metric data Obtain detailed metric data 
from the CNL Editor 

REST 

Internal 
interfaces 

Internal interfaces for the 
storage and retrieval of 
certification trees, as well as 
further communication 

REST 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 51 of 115 

www.medina-project.eu   

between frontend, backend, 
and database 

 

Requirements 
Mapping 

List of requirements covered by this component (see D5.2 [5]): 
All CCCE.01 – CCCE.07 

Interaction 
with other 

components 

 

Interfacing Component Interface Description 

Orchestrator Receive assessment results from the 
Orchestrator 

Risk Assessment and 
Optimisation Framework 
(RAOF) 

Send certification trees to RAOF for risk 
assessment 

Life-Cycle Manager Provide operational effectiveness data to be 
included in the certification decision 

CNL Editor Obtain detailed metric data to be visualized in 
the frontend 

 

Relevant 
sequence 
diagram/s 

See Figure 14 

Current TRL4 TRL4 

Target TRL5   TRL5 

Programming 
language 

Java 

License Apache Licence 2.0 

WP and task WP4, Task 4.1 

MEDINA 
Workflow 

WF6 “EUCS – Maintenance of ToC certificate”, and  
WF7 “EUCS –Report on ToC Certificate” (see D5.4 [25]) 

 

 

Figure 14. Sequence diagram of the Continuous Certification Evaluation component 

 

 
4 TRL value before validation 
5 TRL value after validation 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 52 of 115 

www.medina-project.eu   

5.2.1.3 Requirements 

All the related requirements (fully defined in D5.2 [5]) have been addressed and are fulfilled in 
the third iteration of the CCE component: 

• CCCE.01: The evaluation component must be able to continuously evaluate incoming 
assessment results and integrate them into the overall certification evaluation 

• CCCE.02: The evaluation component must be able to evaluate continuously generated 
evidence and assessment results according to previously defined TOMs to calculate a 
degree of fulfilment. 

• CCCE.03: The evaluation component must be able to receive a selection of metrics 
needed to be satisfied for a particular requirement (as selected by the CSP) and consider 
it in the evaluation of requirements’ fulfilment values. 

• CCCE.04: The evaluation component must be able to aggregate the TOMs’ fulfilment 
degrees to calculate the degree of fulfilment for controls, control groups, and the entire 
certification scheme. 

• CCCE.05: The evaluation component should be able to evaluate continuously generated 
evidence according to previously defined TOMs to calculate a degree of fulfilment over 
time. 

• CCCE.06: The evaluation component should be able to evaluate continuously generated 
evidence to calculate a time-to-fix indicator. 

• CCCE.07: The evaluation component must provide APIs to the relevant WP3 
components to provide measurement results, as well as to the Risk Assessment and 
Optimisation Framework and the certificate life-cycle management component to 
exchange relevant data. 

5.2.2 Technical Description 

The following subsections describe the technical details of the Continuous Certification 
Evaluation component. 

5.2.2.1 Component Architecture 

The CCE comprises of the back-end component (core), a graphical user interface (web UI), and 
a database to store the different tree states. The back-end CCE keeps and calculates evaluation 
trees and takes care of the connections with other MEDINA components. The web UI entirely 
runs on the client side (in the user’s web browser) and, by interacting with the backend API, 
displays all needed information to the user. The web GUI is served by a simple Nginx server. 

In addition to the operational effectiveness, the CCE has been extended with a number of 
additional features, connectivity support, and UI since the first iteration of the component. 

5.2.2.2 Description of Components 

CCE back-end 

The CCE exposes HTTP and gRPC APIs with distinct features. The gRPC API is used for receiving 
the assessment results from the Orchestrator and serving the historical evaluation statistics 
(operational effectiveness metrics) to the Life-Cycle Manager. The HTTP API is used to obtain 
the current and historic evaluation states by the CCE’s web UI as well as the Life-Cycle Manager. 
The integrations are also implemented with the Risk Assessment and Organisation Framework 
(sending evaluation updates) and with the Catalogue of Controls and Metrics (receiving the 
certification framework schema). 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 53 of 115 

www.medina-project.eu   

The CCE includes a Certification Evaluation Storage database (implemented as a MongoDB 
instance) to store the evaluation state on every change. The history (as well as calculated 
operational effectiveness metrics) can be retrieved through the CCE’s APIs. 

CCE also includes support for multiple Targets of Evaluation (ToE). A ToE represents a cloud 
service being evaluated against a specified framework, set of controls, and another possible 
configuration. Thus, CCE holds current (and past) tree states for every ToE defined in the 
MEDINA framework. 

CCE web UI 

A web user interface for CCE is also implemented to enable a dynamic graphical overview of the 
current and past certification states. A screenshot of the interface is shown in Figure 15. The 
evaluation tree is displayed graphically, and the user can expand parts of it to focus on a chosen 
set of controls. The nodes evaluated as compliant are shown in green, whereas the non-
compliant ones are coloured red. If a user has access to states for multiple Targets of Evaluation, 
they can switch between the views with the drop-down menu on the top left, and review the 
history for each of them with the top-right button. 

 

Figure 15. Screenshot of the CCE web UI 

5.2.2.3 Technical Specifications 

The CI/CD pipeline was established for both the core CCE and the web UI components to be 
automatically built and deployed in the MEDINA Kubernetes test environment. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 54 of 115 

www.medina-project.eu   

The CCE back-end is built in Java using the Spring Boot framework, while the front-end is 
implemented in JavaScript and the Vue.js framework. The component is released open-source 
with the Apache 2.0 license. The source code is available on the MEDINA public repository: 

• CCE back-end (core): https://git.code.tecnalia.com/medina/public/continuous-
certification-evaluation  

• CCE front-end (web UI): https://git.code.tecnalia.com/medina/public/CCE-frontend  

5.3 Delivery and Usage 

The following subsections give a short overview of the delivery and usage of the CCE component.  

5.3.1 Package Information 

Table 12 presents the most important files and folders of the CCE (back-end) repository. 

Table 12. Overview of the CCE back-end repository contents 

File / folder Description 

kubernetes/ Contains Kubernetes definition files for automated deployment 
on the MEDINA Kubernetes dev & test clusters. 

lib/ Contains jar libraries for interaction with the Catalogue and the 
Orchestrator. 

src/main/proto/ Contains protocol buffer definition files (from which java classes 
for the gRPC API are built). 

src/main/java/si/xlab/cce/ Contains the java source code. 

Dockerfile Contains code for building the component’s Docker image. 

docker-compose.yml Contains code for easy deployment of all CCE components at 
once with Docker compose. 

README.md Contains details about installation requirements and 
instructions. 

LICENSE Contains a copy of the Apache 2.0 open-source license. 

Table 13 presents the most important files and folders of the CCE web UI repository. 

Table 13. Overview of the CCE web UI repository contents 

File / folder Description 

public/ Contains the index.html file. 

src/ Contains all the javascript (Vue) source code. 

package.json Contains machine-readable instructions for installing javascript 
dependencies. 

Dockerfile Contains code for building the component’s Docker image. 

README.md Contains details about installation requirements and 
instructions. 

LICENSE Contains a copy of the Apache 2.0 open-source license. 

5.3.2 Installation Instructions 

Both the CCE back-end and front-end services can be simply built and started as docker images. 
The configuration options for starting the containers are described in both repositories’ README 
files. The CCE back-end repository also contains a docker compose file to ease installation. 

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation
https://git.code.tecnalia.com/medina/public/cce-frontend


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 55 of 115 

www.medina-project.eu   

5.3.3 User Manual 

After starting CCE, the web server starts in the front-end docker container. After pointing the 
web browser to the address of this web server, the user is led to the web UI which can easily be 
navigated. The tree schema can be moved by dragging it with the mouse. The tree nodes can be 
clicked to display their details. Other functionalities are available through the visible buttons. 

5.3.4 Licensing Information 

The component is released open source with the Apache 2.0 license. 

5.3.5 Download 

The source code is available in the MEDINA public repository: 

• CCE back-end (core): https://git.code.tecnalia.com/medina/public/continuous-
certification-evaluation  

• CCE front-end (web UI): https://git.code.tecnalia.com/medina/public/cce-frontend 

• Java library for communication with the Catalogue of Controls and Metrics: 
https://git.code.tecnalia.com/medina/public/catalogue-client-java  

• Java library for communication with the Orchestrator: 
https://git.code.tecnalia.com/medina/public/orchestrator-client-java 

5.4 Advancements within MEDINA 

The Continuous Certification Evaluation component has been improved in its technical 
implementation as well as its methodology. While on the technical level, it has been improved 
with bug fixes and API updates, the methodology now also comprises a concept for an improved 
overview of assessed metrics by integrating information from the CNL Editor as explained in the 
following. 

The integration of the CCE with the NL2CNL Translator/CNL Editor would be beneficial for users 
of the MEDINA framework since through the CNL Editor they can add, change, or refine metrics 
associated with specific requirements and then observe their status (e.g., compliant/non-
compliant) in the CCE based on the evidence provided from the evidence gathering and security 
assessment tools. This would enable users to review in the CCE evaluation tree results not only 
from the default set of metrics contained within the Catalogue of Controls and Metrics, but also 
from metrics they added or modified through the CNL Editor, giving them in general more 
flexibility when working with the MEDINA framework.       

The CNL Editor is a component of the MEDINA framework that allows a user, with a web 
interface, to refine the obligations (policies) associated with a specific requirement by the 
NL2CNL Translator component. The associations are contained in an object called REO 
(Requirement&Obligation) which is an XML file. The obligations are shown as CNL statements 
and the CNL Editor gives the user the possibility to change the operator and/or the target value 
of a specific obligation or to delete obligations not valid or appropriate. A more detailed 
description of the NLC2CNL Translator/CNL Editor is provided in deliverable D2.5 [2]   

The process by which CCE obtains data from the Orchestrator and the Catalogue of Controls and 
Metrics to construct the evaluation tree is described in detail below:   

1. When the CCE starts to construct the evaluation tree for a particular Target of 
Evaluation (ToE), it first checks its database (Certification evaluation storage 
database) if it contains any existing results. If there are results, it updates the 

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation
https://git.code.tecnalia.com/medina/public/cce-frontend
https://git.code.tecnalia.com/medina/public/catalogue-client-java
https://git.code.tecnalia.com/medina/public/orchestrator-client-java


D4.3 – Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 56 of 115 

www.medina-project.eu   

evaluation tree. If the CCE is already running, it gets the updated ToE data from the 
Orchestrator.    

2. If there is no data in the database, it calls the Orchestrator API endpoint to get the 
ToE data, which contains CloudserviceID, CatalogueID, Assurance level and 
controlsInScope.  

3. After that, it makes several calls to the Orchestrator API for each ToE to initialize ToE, 
getting more data.   

4. Finally, it calls the Orchestrator again to get the Catalogue object - a security 
framework code (e.g., EUCS).   

5. After the calls to the Orchestrator, CCE makes several calls to the Catalogue to get the 
data for structuring the evaluation tree:  

a. Data to generate TreeUtils   
b. Data to generate the SecurityControlFrameworkDTO   
c. Data to get Control groups which is a list of all Categories (Control groups)   
d. Data to get Controls and create nodes – a connection between Controls and 

Categories   
e. Data to get Requirements and create nodes between Requirements and 

Controls   
f. Data to get Metrics and create nodes between Metrics and Requirements   

The operation to obtain the data from the CNL Editor is described in detail below. It seems best 
to execute the operation after the CCE obtains data from the Orchestrator and before it calls the 
Catalogue of Controls and Metrics (between points 4 and 5 in the previous process):  

1. CCE calls the CNL Editor API endpoint to retrieve all REOs related to a Cloud Service ID 
(parameters of the endpoint: /reo/filterby/cloudservice)  

2. Response is a JSON file with the list of REOs pertaining to that Cloud Service ID. For 
each REO, the field "dsaId" contains the UUID (e.g., DSA-62ae13eb-d2ef-4924-85d9-
ac12b83edb73) that is used in the next step.   

3. CCE then calls the CNL Editor API again using the UUID (parameters of the endpoint: 
/reo/get/{reoid}) to get the REO file in the .xml format which contains TOM Code 
and Obligations (Resource, Metrics, …)   

4. Response is the REO .xml file with TOM code and associated metrics.   
5. The CCE then parses the REO .xml file and adds the metrics from the .xml file to the 

evaluation tree.   

5.5 Limitations and Future Work 

The evaluation tree built by the CCE component is an enhanced representation of data coming 
from the evidence gathering and security assessment tools. The confidence of the CCE's outputs 
thus largely depends on the data provided by those components.  

The CCE can be efficiently used to review the state of gathered evidence at the chosen point in 
time, but a limitation is that no conclusions about the actual risk state or the certification status 
can be made solely based on the CCE outputs. Other components of the MEDINA solution (Risk 
Assessment and Optimisation Framework and Life-Cycle Manager) help users better understand 
the broader view of their certification state. 

http://www.medina-project.eu/


D4.3 – Tools and Techniques for the Management and Evaluation of Cloud Security Certifications – v3    Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633       Page 57 of 115 

www.medina-project.eu           

 

 

Figure 16. An excerpt of an example evaluation tree representing (non-)conformities of standardisation hierarchy elements 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 58 of 115 

www.medina-project.eu   

6 Automation of the Cloud Security Certification Life-Cycle in 
MEDINA 

After evaluating the assessment results, i.e., aggregating and weighing them (see section 4), a 
decision needs to be made about how these results should influence the state of the respective 
certificate. This management of certificates is done by the Life-Cycle Manager. Note that the 
Risk Assessment and Optimisation Framework component (related to Task 4.4) processes the 
results of the certification evaluation before forwarding them to the Life-cycle manager (see also 
deliverable 4.5 [1]). 

This section describes the MEDINA approach to manage the certificate life-cycle and consists of 
four main parts, i.e., a summary of risks associated to the automatic management of certificates 
(section 6.1), the description of the Life-Cycle Manager (section 6.2), the description of the SSI 
Framework (section 6.3), and a discussion of how these two components address the previously 
identified risks (section 6.4). 

6.1 Risks and Mitigations in the MEDINA Certification Management 

Certificate management ensures that certificates reflect the current security level of a cloud 
service by translating evaluation results into a certificate state, and possibly making that state 
public. There are various risks that threaten this activity, and different possibilities to counter 
these risks. 

6.1.1 Potential Risks 

In traditional certification approaches, issued certificates are published and often can be verified 
with the certification authority. In this case a (potential) customer may, e.g., use the certification 
body’s website to see if the auditee’s name is listed there.  

Reputation damage: One potential risk in certificate management concerns the auditee’s 
reputation which can significantly be impacted by the evaluation results, which an automated 
certification process continuously generates. If, for instance, a component or data flow is 
manipulated to modify the outcome of the evaluation of assessment results, a competitor may 
damage a cloud service provider’s reputation. At the same time, a malicious auditee may also 
try to manipulate the logic of this evaluation process to generate compliant results that 
ultimately result in the desired certificate state. The publication of a certificate’s state — or state 
change — therefore needs to be protected from intentional and unintentional interference. 

Denial of service: Also, certificate management needs to ensure that the current state of any 
certificate is available to be viewed (and verified) by stakeholders, e.g., in a public registry. If a 
certificate is not available, it is not possible to fully trust the claimed security of the respective 
auditee. Usually, however, the verification of a certificate is not time-critical, so a temporary 
non-availability of a certificate is neither very likely, nor is it very harmful. 

Loss of trust: A further, more abstract, risk is the loss of trust that is put into the certification 
process and its actors. The certificate’s value highly depends on that trust — an erroneous 
certificate state change could therefore also severely hurt the trust into the continuous 
certification process, and the certification, itself. 

Summarizing, the protection goals that are relevant are the following: 

• Confidentiality of evaluation details, such as non-compliances of specific resources (only 
the certificate state is public) 

• Integrity of the certificate state 

• Availability of the certificate 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 59 of 115 

www.medina-project.eu   

Attack vectors towards these goals and assets are therefore as follows: 

1. Modify the logic of the certificate management component: a malicious attacker may 
try to modify the certificate manager to generate non-compliant results, e.g., to hurt 
competitors. 

2. Forge a certificate: an attacker may try to create an illegitimate certificate that is trusted 
by potential customers. 

3. Delete a certificate: an attacker may try to delete an existing certificate, e.g., to hurt a 
competitor. 

4. Deny the retrieval of a certificate: using a denial-of-service attack, an attacker may try 
to prevent that the existence or state of the certificate can be retraced. 

5. Disclose sensitive certificate details: an attacker may disclose details about the state of 
a certificate, e.g., non-compliance details of a suspended certificate, possibly revealing 
vulnerabilities of the CSP. 

As described above, the impacts can include reputation damage to the auditee, but also 
reputation damage to the certification process, the certificate, and the certification authority. 

6.1.2 Discussion of Smart Contracts as a Possible Mitigation 

One possibility to protect the integrity of the certification management logic (attack vector 1) is 
to use smart contracts. Ante [36] defines smart contracts as “decentrally anchored scripts on 
blockchains or similar infrastructures that allow the transparent execution of predefined 
processes”. Historically, the term smart contract has not necessarily been associated with 
blockchains. For example, Röscheisen et al. [37] described a smart contract already in 1998 as a 
“digital representation of an agreement between two or more parties” that has “a structured 
[…] interface, code that implements behaviour, state (e.g. the validity status, the number of times 
a right was exercised, etc.), and a set of textual descriptions”. 

In the documentation of Ethereum, the most popular platform for the deployment of 
blockchain-based smart contracts, a smart contract is defined as “a collection of code (its 
functions) and data (its state) that resides at a specific address on the Ethereum blockchain”6. 
Most cryptocurrencies, e.g., Bitcoin, use a blockchain to store transactions between accounts. 
To make the execution of smart contracts possible, Ethereum also stores code and data on the 
blockchain to enable the execution of the Ethereum Virtual Machine. 

It is furthermore important to note that there is a difference between a smart contract and a 
legal contract: a smart contract, e.g., anchored on a public blockchain, does not necessarily 
represent a legally binding document7.  

The goal of using smart contracts is usually the elimination of trusted third parties. One reason 
is that trusted third parties may sometimes not be fully trusted by all stakeholders. Also, they 
incur additional cost and overhead into a transaction. For example, certification audits may 
consume many person days to prepare documentation, conduct interviews, create reports, etc. 
The most prominent examples of avoiding trusted third parties are cryptocurrencies, like Bitcoin 
and Ethereum, which aim at eliminating the need for financial institutions to manage a currency 
and accounts. 

In the traditional certification process, trust is mainly established via the trusted certification 
authority – a reputable third party that has no interest in issuing an undeserved certificate. In 

 
6 https://ethereum.org/en/developers/docs/smart-contracts/  
7 Note that the authors are no legal experts, but analyse the possibility of using smart contracts merely 
from a technical perspective. 

http://www.medina-project.eu/
https://ethereum.org/en/developers/docs/smart-contracts/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 60 of 115 

www.medina-project.eu   

the continuous process, in contrast, trust needs to be established through a reliable design and 
technical implementation that guarantee the correct management of certificates. 

In the following, some inherent risks of using smart contracts are described. 

• A risk of using smart contracts is that they could be deployed including bugs and 
vulnerabilities, which may only be discovered after their deployment. While various 
approaches have been proposed to validate a smart contract’s purpose and to eliminate 
bugs before their deployment, this risk can never be fully eliminated. 

• Also, the environmental impact of blockchain technologies should be considered. 
Storing a large number of transactions can, depending on the algorithm, result in high 
amounts of energy consumption. 

• A further considerable disadvantage of smart contracts is that there is no possibility for 
remediation or consideration if the contract fails. Traditional contracts often include a 
severability clause which may define that the purpose of the contract is still effective 
even though a part of it emerges to be unenforceable. This way, the general purpose of 
the contract can be upheld. In smart contracts, in contrast, there is no room for 
interpretation or consideration. In the context of certification, this means that in case a 
part of the contract becomes, e.g., outdated, illegal, or unenforceable, there is no 
possibility to change its scope or logic. 

The topic of using smart contracts for different purposes has also been discussed in the 
literature. Some works have investigated, for example, how to transform business processes to 
smart contract-based processes that eliminate intermediaries and work more efficiently, e.g., 
proposing frameworks [38] and compilation processes [39]. 

Few works actually investigate the challenges that occur and that have to be solved to port 
business processes to the blockchain. For example, Carminati et al. [40] identify challenges for 
the application of smart contracts for inter-organizational business processes. As such, their 
results are largely applicable to cloud certification as well, which is a business process between 
several organizations, possibly including a CAB, an auditee, and one or more cloud vendors. 

They identify five challenges which are discussed in the context of certification in the following: 

• Data integrity: Important data that is processed by smart contracts has to be integrity-
protected as well. Smart contracts should therefore store all relevant data in protected 
transactions. In the context of certification, this challenge also raises the question of 
input integrity. For example, a smart contract may obtain input data from a cloud 
service, e.g., about encryption configurations. If these data, however, are maliciously 
modified then they will be used in the unalterable logic of the smart contract which in 
turn produces outcomes that are stored unchangeably on the Blockchain.  

• Data confidentiality: While it is a current research problem to allow for confidential 
blockchain transactions, it is not a standard feature. The data that a smart contract 
generates and uses are therefore public – assuming that a public blockchain is used. 
When making certification decisions, this public information could potentially reveal 
sensitive information about the CSP’s security problems. 

• Confidentiality of the process: Carminati et al. [40] also raise the issue of confidentiality 
of smart contracts themselves, i.e., their program logic, since the process flow itself may 
reveal sensitive information. When implementing certification processes, this is not a 
relevant issue, since the workflow of a certification process, as well as its decision 
criteria, are usually defined in public documents. 

• Trust in the correct execution of the process: Process trust has to be established for all 
participants in the business process. One threat to this trust is the possible data 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 61 of 115 

www.medina-project.eu   

breaches and tampering attacks that may happen when the smart contract interacts 
with off-chain components which are not integrity-protected. This is also a major issue 
for implementing certificates as smart contracts since the certification process itself 
requires trust by customers in this process. In traditional certification approaches, this 
trust is established through the auditors who represent a trusted third party. 

• Data provenance: Data provenance refers to the origin of data and its “history”. In 
MEDINA, there is an inherent trust assumption for the tools that gather and assess 
evidence, so this data’s provenance is assumed to be verified. In future work, however, 
the issue of making the provenance of evidence that is, e.g., gathered from a public 
cloud provider, should be addressed. 

In summary, smart contracts can be used to reliably execute a piece of code, e.g., for translating 
evaluation results into a certificate state according to pre-defined criteria. Yet, elements of the 
certification pipeline, i.e., all systems and tools that contribute to the continuous certification 
including evidence gathering, evaluation, and certificate management, that are not (or cannot 
be) deployed in an integrity-protected environment, such as a Blockchain, can severely limit the 
usefulness of a blockchain-deployed smart contract. For example, APIs for the gathering of 
evidence may change, configurations for the smart contract may change (e.g., the service 
location or scope), or the requirements for publishing or managing the requirements may 
change (e.g., the states and their conditions). Also, the data transmission from off-chain 
elements to the smart contract may be attacked. As soon as such a condition changes, the smart 
contract may become non-functional, and the continuous certification process may be 
interrupted.  

The question therefore is whether these conditions can be assumed to remain unchanged, and 
whether a smart contract can mitigate the previously identified risks, e.g., the risk of malicious 
modification of the certificate management logic. On the one hand, smart contracts can reliably 
protect the integrity and execution of a piece of code. They can therefore be seen as a mitigation 
for attack vectors 1 and 2 (see section 6.1.1). On the other hand, this mitigation introduces new 
risks, e.g., unfixable bugs, disclosure of sensitive information, and the challenge of protecting 
the integrity of the other parts of the certification pipeline remain. 

Due to the additional risks that the usage of smart contract introduces for certificate 
management, we have decided to handle the risks differently in MEDINA. We review them again 
in section 6.4.  

6.2 Life-Cycle Manager 

As stated above, implementation of the Life-Cycle Manager component is independent from 
smart contracts and Blockchains in general. The final version of the Life-Cycle Manager is 
published as an open-source project8. 

6.2.1 Certificate States 

In the following, we briefly review the certificate states defined by the EUCS [19]: 

• New Certificate for newly issued certificates, following an assessment with positive 
outcome. 

• Continued for certificates that have been reassessed and should not reflect any 
changes. 

• Renewed for certificates that have been reassessed and whose validity is extended. 
Updates to the certificate’s information may be added. 

 
8 https://git.code.tecnalia.com/medina/public/life-cycle-manager  

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/life-cycle-manager


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 62 of 115 

www.medina-project.eu   

• Updated for certificates that have been reassessed and which remain valid but need 
updates in its information. 

• Suspended for certificates that have been reassessed with the outcome that the service 
does not conform to the requirements of the targeted assurance level anymore. The 
state is also entered if a periodic reassessment has not been conducted in due time. 

• Withdrawn for certificates that have not been maintained after the suspension.  

These states and transitions are reflected in the state machine model as shown in Figure 17. The 
dashed lines refer to the renewal flow where a certificate is first withdrawn and then renewed, 
e.g., to reflect a different assurance level. 

 
Figure 17. A state machine model of the EUCS phases (source: MEDINA’s own contribution) 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 63 of 115 

www.medina-project.eu   

6.2.2 Automating Certification Decisions 

There are multiple possibilities and degrees to which the above-described certificate state 
changes may be automated. In the following, we discuss several possible options and derive a 
decision for MEDINA. 

6.2.2.1 Option 1: No Automation 

The first, and simplest, possibility is to not automate certificate decisions at all. This is the normal 
case in state-of-the-art audits where auditors make point-in-time audits to manually check 
documentation, conduct interviews, etc. In this case, the MEDINA framework can still 
considerably benefit CSPs and auditors as it prepares evidence and assessment results in a way 
that they can easily be presented in a point-in-time audit.  

Still, there are two reasons that suggest some amount of automation: First, new certification 
frameworks, like the EUCS, demand an automatic monitoring of certain security requirements. 
Second, such an automatic monitoring generates evidence in a high frequency which may 
overwhelm (internal and external) auditors. Third, meaningful information for the automation 
of certification decisions is available: Overall risk scores, as well as time rules, and operational 
effectiveness data, can be used to derive a reasonable decision on if there are significant 
underlying problems in the system. Also, they can do so very quickly, and therefore improve 
overall security. 

6.2.2.2 Option 2: Complete Automation 

The second alternative presents the other extreme: completely automating the certificate 
updates, especially suspending, withdrawing, and continuing the certificate. This requires the 
LCM to take decisions based on the data mentioned above, e.g., provided by the Risk Assessment 
and Optimisation Framework (RAOF) component (see D4.5 [1]). 

However, integrating this information into the certificate maintenance decisions is challenging, 
because meaningful thresholds need to be defined. For instance, the one may define a threshold 
of 50 for the risk value generated by the RAOF and suspend a certificate when the value is higher 
than the threshold. Since no general thresholds can be defined for all systems, they should 
always be validated by an expert, e.g., in the initial audit. 

Furthermore, there are more risks in the automation of certification decisions: First, bugs in the 
system may trigger a high-risk value, resulting in harming the CSP’s reputation if the risk is 
automatically translated into a suspension. Second, the thresholds may be tampered with by 
attackers unnoticed. Third, there is also a general risk of neglecting important information about 
the cloud service (in comparison with manual audits) due to focusing on one or few metrics like 
the overall risk value. 

6.2.2.3 Option 3: Automation in Selected Cases 

We can furthermore analyse the certificate maintenance cases and decision rules specified in 
the EUCS to identify cases that are easier to automate and less prone to the risks described 
above. Consider the cases from the EUCS presented in Table 14. 

Table 14. Certificate maintenance decisions defined in the EUCS [19] 

Case Nominal Decision 

The maintenance evaluation activities have 
been performed and reviewed, and have 
determined that the cloud service still fulfils 

Continue the certificate until the next 
periodic assessment or until its expiration 
date 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 64 of 115 

www.medina-project.eu   

the requirements without significant changes 
in the service 
The maintenance evaluation activities have 
been performed and reviewed, and have 
determined that the cloud service still fulfils 
the requirements, and the changes impact the 
security of users without any reduction in the 
scope of certification or assurance level 

Update the certificate with the new 
information and continue the certificate 
until the next periodic assessment or until 
its expiration date 

A renewal conformity assessment has been 
performed and reviewed, and have 
determined that the cloud service still fulfils 
the requirements, possibly with changes that 
impact the security of users without any 
reduction in the scope of certification or 
assurance level 

Renew the certificate with a new expiration 
date and if required with the new 
information 

The maintenance evaluation activities have 
been performed and reviewed, and have 
determined that the cloud service only fulfils 
the requirements after reducing the scope of 
certification or reducing the assurance level 

Withdraw the certificate and issue a new 
certificate with the reduced scope or 
assurance level, possibly with a different 
expiration date 

The maintenance evaluation activities have 
been performed and reviewed, have 
determined that the cloud service does not 
fulfil the requirements anymore, and action 
from the CSP is possible to maintain the 
certificate at the same assurance level and 
scope, though not immediately, or improper 
use of the certificate is not solved by suitable 
retractions and appropriate corrective actions 
by the CSP. 

Suspend the certificate pending remedial 
action from the CSP 

The maintenance evaluation activities have 
been performed and reviewed, and have 
determined that the cloud service does not 
fulfil the requirements anymore 

Withdraw the certificate 

The periodic assessment has not been 
performed in due time 

Suspend the certificate pending remedial 
action from the CSP 

Remediation action has not been performed in 
due time after suspension 

Withdraw the certificate 

Two exemplify the automation potential, consider the following two cases in more detail: 

• “The maintenance evaluation activities have been performed and reviewed, have 
determined that the cloud service does not fulfil the requirements anymore, and action 
from the CSP is possible to maintain the certificate at the same assurance level and 
scope, though not immediately, or improper use of the certificate is not solved by 
suitable retractions and appropriate corrective actions by the CSP.”  

In the above case, the resulting decision is to (temporarily) suspend the certificate. However, it 
is difficult to determine what exactly constitutes the criterion that the service does not fulfil the 
requirements anymore, e.g., which requirements, or how many, and to which degree.   

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 65 of 115 

www.medina-project.eu   

• “The periodic assessment has not been performed in due time.”  

In this second case, an automation is easily achievable, assuming that a specific “due time” has 
been defined, e.g., agreed with auditors. Such a time interval could, for instance, take some 
weeks or months as a threshold for suspending the certificate (or withdrawing it if it is already 
suspended).  

6.2.2.4 Option 4: Automation Barring Manual Verification 

In MEDINA, we aim at exploring the potentials for automation, and at the same time mitigate 
risks as far as possible. We therefore automate the certification decision making but introduce 
a manual verification by an auditor before the new certificate state is published. 

To this end, we currently combine two types of information to make an automated certificate 
update, i.e., a risk value and an operational effectiveness value (explained in section 6.2.3). After 
making the decision, internal auditors may be alerted automatically to allow for a quick 
remediation. Additionally, the CAB is informed to allow external auditors to review information 
about the (potential) certificate change. They can then accept or reject the change.  

The advantages of this approach are twofold: First, the CSP benefits from quick information on 
the current certificate and potential problems in the cloud system, and second, the manual 
verification ensures that the CSP’s reputation is not harmed in case of erroneous automatic 
decisions. 

However, this approach may still present disadvantages. Apart from potential problems 
regarding the validity of the automatic results (see section 6.2.2), it can be the case that internal 
and external auditors are overwhelmed if the system generates too many changes and alerts. In 
this case, auditors may even disregard alerts. 

6.2.3 Implementation 

6.2.3.1 Functional Description 

The implementation of the Life-Cycle Manager (LCM) represents the state machine shown in 
Figure 17. The tool is written in the Go programming language.  

Rules for automatic state transition 

Three types of automatic transitions for certificate states are conceptually designed and 
implemented: 

• Risk value: First, transitions may be triggered based on the risk value reported by the 
Risk Assessment and Optimisation Framework. A configurable threshold value in the 
RAOF determines whether the risk value is considered a minor or major deviation. 
Consequently, the LCM suspends the respective certificate if a major deviation is 
reported. Analogously, the certificate is continued if no deviation or a minor deviation 
is reported. Since risk values are reported frequently, they build the basis of the 
certificate maintenance decisions in MEDINA. 

• Operational effectiveness: Second, transitions may be triggered based on the 
operational effectiveness values reported by the Continuous Certification Evaluation 
component. Please refer to section 5 for more information on the calculation of the 
operational effectiveness values. The results of these calculations are reported to the 
LCM where a configurable threshold value again determines if the value is considered a 
major deviation and the certificate should be suspended. Operational effectiveness is a 
rather long-term view, for example calculated over a time period of six months. It is 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 66 of 115 

www.medina-project.eu   

therefore computed in larger intervals, e.g., daily. It is important to note that it 
overwrites decisions made based on the risk value. For example, a continued certificate 
due to a low-risk value may indicate that the current state of the respective cloud system 
is overall compliant, but may be overwritten by a major deviation due to a low 
operational effectiveness value, which indicates that compliance was too low in the last 
six months. 

• Time rules: Third, transitions may be triggered based on the time rules defined in the 
EUCS (see Table 14). For instance, if a certificate is in the suspended state and no 
remedial action has been done, i.e., no change to a minor deviation has been achieved, 
it is automatically withdrawn after a configurable time period. 

The two most frequent and therefore most important decisions are to continue and 
suspend the certificate. If it is withdrawn, it cannot be continued automatically, but 
needs to be issued newly again. The time-based rules are independent from the risk-
based and operational effectiveness-based transitions. Note also that we assume that 
all configurable parameters, like thresholds, are reviewed by auditors in the initial audit. 

With the logic described above, we achieve an automated certificate maintenance which 
incorporates simple rules, a risk perspective, and a temporal view on the certificate state. This 
makes the WP4 components an extendible certificate management toolkit that is both 
sophisticated and easily understandable. 

Interface for a public registry 

Currently, the LCM reports certificate suspensions and withdrawals to the SSI Framework, so the 
CAB can review the report and decide whether the state change should be published. 

ENISA will in the future provide a certification website, which is defined in the Cybersecurity Act 
(Art. 85). Final certificate changes should therefore be reported to this website. The website or 
its interface is, however, not yet defined at the time of writing and should further be investigated 
in future work. 

6.2.3.1.1 Fitting into Overall MEDINA Architecture 

Within the MEDINA framework, the LCM is located between the RAOF and CCE components on 
one side and the SSI Framework on the other. It processes risk assessment and operational 
effectiveness data (please see Figure 4).  

6.2.3.1.2 Component card 

Component 
Name 

Life-Cycle Manager (LCM) 

Main 
functionalities 

The component provides the following functionalities: 

• Update certificate states according to the states defined in the EUCS 
based on the evaluation results. 

• Push appropriate entities (CAB) to issue/update/revoke and sign security 
certifications for the cloud providers based on the updated certificate 
state. 

Sub-
components 
Description 

This component has no subcomponents. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 67 of 115 

www.medina-project.eu   

Main logical 
Interfaces 

Note that a graphical presentation of the certificates and their state histories 
are accessible via the Orchestrator UI.  

Interface name Description Interface technology 

Certificate Create, update, and delete 
certificates. 

REST 

Evaluation Provide results of the risk 
assessment  

REST 

 

Requirements 
Mapping 

List of requirements covered by this component (seeD5.2 [5]):  
ACLM.01-08 

Interaction 
with other 

components 

 

Interfacing Component Interface Description 

Continuous Evalluation 
of Cloud Security 
Certification (CCE) 

Obtain data about operational effectiveness 

Risk Assessment and 
Optimisation Framework 
(RAOF) 

Obtain a risk assessment, including if a minor 
or major deviation has been identified. 

CAB / SSI Framework Forward created certificates and updates to 
the SSI Framework. 

Orchestrator Store certificate data in the Orchestrator 
database. 

 

Relevant 
sequence 
diagram/s 

See Figure 18 

Current TRL9 TRL4 

Target TRL10  TRL5 

Programming 
language 

Go 

License Apache 2.0 

WP and task WP4: T4.3 

MEDINA 
Workflows 

WF6 “EUCS – Maintenance of ToC certificate”, and  
WF7 “EUCS –Report on ToC Certificate” (see D5.4 [25]) 

 

 
9 TRL value before validation 
10 TRL value after validation 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 68 of 115 

www.medina-project.eu   

 

Figure 18. Sequence diagram of the LCM component 

6.2.3.1.3 Requirements 

The following requirements, defined in D5.1 [41] and updated in D5.2 [5], are fulfilled in this 
third and final iteration of the component: 

- ACLM.01 Cloud security certification issuance: Based on the quality evaluation results, 
the system will push appropriate entities (CAB) to issue and sign security certifications 
for the cloud providers. 

- ACLM.02 Automatic cloud security certification update: Based on the quality 
evaluation results, the system will push appropriate entities (CAB) to update the security 
certifications for the cloud providers. 

- ACLM.03 Cloud security certification revocation: Based on quality evaluation results, 
the system will push appropriate entities (CAB) to revoke the security certifications for 
the cloud providers. 

- ACLM.04 Continuous update of the certificate state: The certificate life-cycle 
management component must continuously, i.e. in high-frequency intervals, convert 
the evaluation results from the CCE to the corresponding certificate state. 

- ACLM.06 Compliance with EUCS assurance levels and certificate states: The certificate 
life-cycle management component must map the certificate states and assurance levels 
defined in the EUCS scheme. 

- ACLM.07 Interface for a public registry: The life-cycle management component must 
provide an interface for publishing the certificate status in a public registry by the 
corresponding entities (CAB). 

Regarding ACLM.08 (The life-cycle management component can be implemented in a smart 
contract to ensure a tamper-proof execution), it was decided to not implement this requirement 
due to the results of the evaluation of smart contracts. 

6.2.3.2 Technical Description 

6.2.3.2.1 Component Architecture 

The LCM does not comprise further sub-components. More information about its APIs and 
internal structure is described in the following subsections. 

Note that in a previous iteration, the LCM included its own database. It has, however, been 
removed and the LCM now uses the Orchestrator’s database. This way, we reduce the overall 
complexity of managing the MEDINA components, as a user of MEDINA does not have to 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 69 of 115 

www.medina-project.eu   

manage an additional database. Also, certificate state changes can be viewed directly in the 
Orchestrator UI rather than in a different interface. 

6.2.3.2.2 Description of Components  

No subcomponents are implemented in the LCM component. 

6.2.3.2.3 Technical Specifications 

The LCM is written in Go and makes use of multiple libraries which can be reviewed in the 
go.mod file11. 

The LCM provides several APIs for the management of certificates and provision of evaluation 
data: 

• HandleEvaluation: a POST API for the RAOF to provide the identified risk value 

• HandleCreation: a POST API for creating a new certificate 

• HandleInfoUpdate: a PUT API for updating information on a certificate 

• HandleDeletion: a DELETE API for deleting a certificate 

• GetStateLog: provides data about a certificate’s state history. 

6.2.4 Delivery and usage  

6.2.4.1 Package information  

The implementation of the LCM component is structured as follows.  

• The main method in the cmd/life-cycle-manager package creates a sample certificate 
and starts the REST API.  

• Next, the models package contains all data models, currently a user model and a 
certificate model. 

• The rest package represents the API of the Life-Cycle Manager. It listens to different 
HTTP routes for different commands, e.g., create a new certificate, or handle a 
deviation. When a respective command is retrieved, it calls the functionalities of the cert 
package (see below). 

• The cert package contains most of the actual functionalities: The rest-util file contains 
utility functions to execute HTTP and gRPC connections, as well as other functionalities. 
The cert file contains methods for creating and modifying certificates and their state 
histories, and methods for the interactions with other components, such as retrieving 
operational effectiveness data form the CCE component. 

6.2.4.2 Installation instructions and User Manual 

Since the LCM is written in Go it can be built with the following command: go build 

cmd/life-cycle-manager/life-cycle-manager.go 

It can then be started with the command: ./life-cycle-manager 

Afterwards, it can be queried via the specified APIs, and risk values can be provided via the Risk 
Assessment and Optimisation Framework as specified in D4.5 [1]. 

6.2.4.3 Licensing Information  

The LCM is licensed under the open-source Apache License 2.0. 

 
11 https://git.code.tecnalia.com/medina/public/life-cycle-manager/-/blob/main/go.mod  

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/life-cycle-manager/-/blob/main/go.mod


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 70 of 115 

www.medina-project.eu   

6.2.4.4 Download  

The LCM implementation is available in the public MEDINA repository: 
https://git.code.tecnalia.com/medina/public/life-cycle-manager  

6.2.1 Advancements within MEDINA 

The Life-Cycle Manager has been developed completely from scratch within MEDINA. In the last 
iteration, it has advanced primarily in its integration with other components, including the 
Orchestrator, CCE, and SSI Framework. The main overall advancements in this component 
comprise the following: 

• Analysis of the EUCS certification states and their potential for automation 

• Concept for implementing multiple certification automation cases, integrating data 
from different sources: 

o Risk assessment information from the RAOF component 
o Operational effectiveness data from the CCE component 
o Timing rules based on the cases defined in the EUCS 

• Implementation and integration 

6.2.2 Limitations and future work  

Limitations of the Life-Cycle Manager include firstly that it focuses on risk value and operational 
effectiveness. This information may be too narrow; its usefulness would need to be shown in 
practical studies. Also, many changes in the certificates could be generated due to oscillating 
assessment results, which could overwhelm auditors. Finally, the security of certificates is 
limited by the general security measures that have been taken by a CSP, e.g., to secure the CSP’s 
network, which is not outside the scope of MEDINA. 

Potential future work for the LCM includes practical experiments and studies that to collect 
experience about how the component should be configured (e.g., its thresholds), and how 
usable its design is. One specific example is the possibility of oscillating certificate states in case 
resource configurations change frequently. 

6.3 Self-Sovereign Identity (SSI) Framework 

As described in section 6.2, the automated decision taken by the LCM is reported to the CAB if 
it is a suspension or withdrawal of the certificate. The CAB is represented in the SSI Framework 
as the Issuer who creates the official certificate, signs it, and issues it to the CSP. This section 
describes the implementation of the SSI Framework in detail. 

6.3.1 Implementation 

6.3.1.1 Functional Description 

The Self-Sovereign Identity (SSI) Framework provides CSPs with the capability to manage their 
own security certificates as part of their identity through verifiable credentials. “To manage their 
own identity” ultimately means that they store their identity on their own “user space” without 
intervention of a third-party.  

The SSI Framework is not only composed of the CSP component to store and control the 
credentials about themselves. It is also composed of the issuer component which provides the 
CAB a way to issue verifiable credentials about the security certificates related to the CSPs; and 
the client´s component which provides a way to ask and verify proofs of different security 
certificates features. In this sense, privacy is an important requirement within MEDINA, as 
several security certificates features are considered sensitive and must be treated carefully. The 

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/life-cycle-manager


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 71 of 115 

www.medina-project.eu   

SSI Framework is capable of sharing sensitive information in a confidential way by keeping user´s 
identity out of third parties, that act as identity silos, reducing the risk of identity theft; but also 
by using Zero-Knowledge Proofs (ZKPs).  

ZKPs allow to prove the validity of a statement without revealing the statement itself. ZKPs are 
embedded into SSI technologies and allow the holder to prove that he has some attributes 
against a verifier, without showing these attributes. ZKPs can be included in the so-known as 
“Privacy-Enhancing Technologies” or PETs, which are technologies whose main goal is to 
preserve and improve privacy. ZKPs could be applied to any field in the certificate to preserve 
its privacy allowing the holder of the certificate to be able to generate verifiable proofs based 
on the verifiable credential representing this certificate, but without disclosing the specific 
attribute itself, but a ZKP over it. 

Recently, a proposal of the digital version of the certificates has been proposed by ENISA [42] to 
describe in a machine-readable format the EUCS certificates. This digital version of certificate 
includes all the attributes to describe the certificate completely. MEDINA has defined the data 
model of certain attributes of the certificate based on this proposed model. Currently modelled 
attributes, shown in Figure 19, only cover a portion of the complete description, incorporating 
only the ones used by the main involved tools of the MEDINA framework (i.e., CCE), which are 
public, and no confidentiality is consequently needed, so ZKPs are not applicable. 

 

Figure 19. MEDINA certificate data model 

However, it is expected that in the future MEDINA considers the whole description of the digital 
model of the certificate, to support new business cases and enhanced functionalities such as the 
preservation of the privacy of the certificates through ZKPs. More concrete and considering the 
complete description of the EUCS certificates [42], there are some attributes which correspond 
to information that should be kept private in a verifiable credential. In particular, ENISA 
certificates have two fields that may contain private information, which are: ContactType and 
ProductDetailsType. ContactType has information about the person or entity owning or 
manufacturing a product, and ProductDetailsType about the kind of product represented by the 
certificate. We can apply ZKPs to any sub-field in ContactType and ProductDetailsType to enable 
selective disclosure. For example, a ZKP could be used over the field ProductDetailsType-> 
periodSecuritySupport so the holder can proof he is still within the security support period 
without disclosing this period. Another example, ZKP could be used over the field ContactType-
>PostalCode, so the holder can proof he is based on a geographical zone, for example to receive 
any kind of public funding, without disclosing his exact location. 

The sub-fields contained in ContactType and ProductDetailsType, in which we can apply ZKPs, 
are: 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 72 of 115 

www.medina-project.eu   

ContactType: 

•  Address 
•  City 
•  PostalCode 
•  Country 
•  Telephone 
•  Email 

 

ProductDetailsType: 

•  Name 
•  evaluationTarget 
•  evaluationTargetPerimeter 
•  securityTarget 
•  commercialName 
•  type 
•  manufacturerName 
•  manufacturerProviderContactInfo  ContactType 
•  cybersecurityInfo 
•  guidanceSecure 
•  periodSecuritySupport 
•  providerContactInfoVulnerability 
•  aCCEptedVulnerabilityNotifications 
•  publicDisclosedVulnerabilities 

To sum up, ZKPs, which are starting to being used in many application fields, open many 
possibilities when applied to private information contained in the certificates, and enable 
interesting use cases, where not all the information should be known by a verifier. That is why 
ZKPs are supported on the MEDINA SSI Framework implementation. 

Figure 20 shows the SSI based verifiable cloud security certification architecture showing its 
main components. The different services for the different actors have been identified as well as 
their relations. 

 

Figure 20. MEDINA SSI-based verifiable cloud security certification functional architecture 

As this tool is additional to the base MEDINA framework, it is provided as a proof-of-concept, to 
validate the suitability of using SSI for assisting the CAB operation. For this reason, the CSP 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications - v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium  Contract No. GA 952633 Page 73 of 115 

www.medina-project.eu   

component (holder) will be part of the MEDINA framework (being deployed as part of MEDINA). 
However, the CAB (issuer) and CSP customers (verifier) components are completely deployed 
on TECNALIA’s premises as a proof of concept to validate the correct SSI complete operation 
while maintaining correct communication with the rest of the MEDINA framework. 

6.3.1.1.1 Fitting into overall MEDINA Architecture 

The SSI Framework fits the overall MEDINA architecture, as shown in Figure 21, providing a way 
to the CAB to issue, update or remove security certificates of CSP using the MEDINA framework. 
Considering the MEDINA components, only the Life-Cycle Manager will provide the information 
needed by the CAB to update the security certificates status. 

 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management and Evaluation of Cloud Security Certifications – v3    Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium    Contract No. GA 952633      Page 74 of 115 

www.medina-project.eu               

 
Figure 21. Overall MEDINA Architecture (source: D5.2 [5]) 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 75 of 115 

www.medina-project.eu       

6.3.1.1.2 Component card 

Component 
Name 

Self-Sovereign Identity Framework (SSI Framework) 

Main 
functionalities 

The component provides the following functionalities: 

• Tool for appropriate entities (CAB) to issue/update/revoke and sign 
security certifications for the cloud providers based on the updated 
certificate state received from the Certificate Lifecycle Automation 
component. 

• Tool for appropriate entities (CAB) to publish the certificate state in a 
public registry. 

• Tool for appropriate entities (for example, cloud providers clients) to ask 
for proofs about the state of different certifications of the cloud providers. 

• Tool for cloud providers to see/list received certifications and their 
associated state. 

• Tool for cloud providers to send proofs about the certificate state to their 
clients. 

Sub-
components 
Description 

The SSI Framework is composed of five main components. 

• Public service for the CAB to receive certificates updates (from LCM). 

• Certificate signing application for the CAB to issue, update, or revoke 
security certificates to a CSP as well as to save the signed security 
certificates in a public registry. 

• Application for CSP clients to request and verify proofs of security 
certificates. 

• Application for the CSPs to save the signed security certificates as well as 
to generate verifiable proofs based on the signed security certificates. 

• A blockchain network to record the different actors’ signatures. 

 

Main logical 
Interfaces 

 

Interface name Description Interface technology 

Life Cycle 
Manager (LCM) 

Provides the security certificate 
state update. 

REST API 

CAB  Sign and publicly publish security 
certifications 

Web (Provided aaS) 

CSP List and proof generation of 
security certifications 

Web (Provided aaS) 

CSP client Proof request and verification of 
security certifications. 

Web (Provided aaS) 

 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 76 of 115 

www.medina-project.eu       

Requirements 
Mapping 

List of requirements covered by this component (see D5.2 [5]):   
SSI.01, SSI.02, SSI.03, SSI.04, SSI.05, SSI.06, SSI.07 

Interaction with 
other 

components 

 

Interfacing Component Interface Description 

Life Cycle Manager (LCM) It will provide the security certificate state 
update. 

 

Relevant 
sequence 
diagram/s 

See Figure 22 

Current TRL12 TRL4 

Target TRL13 TRL5 

Programming 
language 

JavaScript (ReactJS) 

License Proprietary. Copyright by TECNALIA. 

WP and task WP4, Task T4.3 

MEDINA 
Workflows 

WF6 “EUCS – Maintenance of ToC certificate”, and  
WF7 “EUCS –Report on ToC Certificate” (see D5.4 [25]) 

 

 

Figure 22. Sequence diagram of the SSI Framework 

6.3.1.1.3 Requirements 

Below is the collection of requirements (described in D5.2 [5]) related to the SSI Framework and 
a description of how and to what extent these requirements have been implemented. 

Requirement id SSI.01 

Short title Cloud security certificate issuance 

Description The system should provide a way for appropriate entities (CAB) to issue 
and sign security certifications for the cloud providers as indicated by the 
automated certificate Life-Cycle Manager. 

Status Fully Implemented 

 
12 TRL value before validation 
13 TRL value after validation 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 77 of 115 

www.medina-project.eu       

Comments The Life-Cycle Manager sends the certificate status to the SSI Framework 
issuer. 

 

Requirement id SSI.02 

Short title Cloud security certificate update 

Description The system should provide a way for appropriate entities (CAB) to update 
security certifications for the cloud providers as indicated by the Life-Cycle 
Manager. 

Status Fully Implemented 

Comments The Life-Cycle Manager updates the certificate status to the SSI 
Framework issuer. 

 

Requirement id SSI.03 

Short title Cloud security certificate revocation 

Description The system should provide a way for appropriate entities (CAB) to revoke 
security certifications for the cloud providers as indicated by the Life-Cycle 
Manager. 

Status Fully Implemented 

Comments The Life-Cycle Manager updates the certificate status to revoked to the SSI 
Framework issuer. 

 

Requirement id SSI.04 

Short title Cloud security certificates listing 

Description The system must list the historical cloud security certificates issued, 
updated and revoked.  

Status Fully Implemented 

Comments The SSI Framework allows the CSP to list the owned security certificates 
issued by the CAB through the SSI-webapp. 

 

Requirement id SSI.05 

Short title Cloud security certificate verifiable public proofs generation 

Description The system must generate verifiable proofs of the security certificate state 
on request.  

Status Fully Implemented 

Comments The SSI Framework allows the CSP to generate proofs of its security 
certificates on demand (by a client/customer) through the SSI-webapp. 

 

Requirement id SSI.06 

Short title Cloud security certificate confidential proofs generation 

Description The system should generate verifiable confidential proofs of the security 
certificate private parameters on request.  

Status Fully Implemented 

Comments The SSI Framework allows the CSP to generate confidential proofs of its 
security certificates on demand (by a client/customer) by means of ZKPs 
through the SSI-webapp.  

 

Requirement id SSI.07 

Short title Cloud security certificate proofs request and verification 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 78 of 115 

www.medina-project.eu       

Description The system should provide a way for appropriate entities (potential 
clients) to request and verify proofs of the security certificates to the cloud 
service providers. 

Status Fully Implemented 

Comments The SSI Framework allows the clients/customers to request proofs of CSP 
security certificates attributes through the SSI-webapp. 

6.3.1.2 Technical Description 

6.3.1.2.1 Prototype Architecture and Workflow 

Figure 23 shows the SSI based verifiable cloud security certification technical architecture 
showing its main components: the Aries agents for the issuer, holder and verifier (SSI-agents); 
the web controller the three roles (SSI-webapp); and the “updates API” needed by the 
integration with the Life-Cycle Manager (SSI-API). Additionally, an SSI Blockchain network is 
needed for secure storing of the information needed for the secure signatures of the verifiable 
credentials and proofs (SSI-network). 

 

Figure 23. MEDINA SSI based verifiable cloud security certification technical architecture 

The holder instance will be deployed on-premises in each CSP as part of the MEDINA framework. 
However, the issuer and verifier instances will be provided as a service from TECNALIA as a 
proof-of-concept of the complete solution. The workflow is as follows: 

1. The certificate state has changed according to the certificate life-cycle manager; this 
MEDINA component will notify the CAB about this update through the “updates API”.  

2. The credential with the previous certificate state is automatically revoked and a new 
credential with the new certificate state is automatically generated for the CAB to 
validate. 

3. When the CAB accesses through the web interface, pending credentials are shown; the 
CAB will make internal checks and validations, add the CAB report (public and/or private 
parts) and validate or not the new certificate state. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 79 of 115 

www.medina-project.eu       

4. If validated, the new credential with the new certificate state signed by the CAB is issued 
to the CSP. 

5. This new credential is locally stored in the holder (CSP). 
6. The CSP staff will be able to access and visualize the credentials they have, at any time, 

through the web interface. 
7. If a client wants to know the current certificate state, he/she will ask the holder for a 

proof signed by the CAB. 
8. When the CSP staff accesses, they will have a list of pending requests, which they will 

answer as they consider (giving the proof or not). 
9. The client will be able to verify the verifiable proof from the CSP in order to probe its 

authenticity. 

6.3.1.2.2 Description of Components 

This section describes all components of the SSI Framework. The SSI Framework is composed by 
4 parts: the SSI-API, the SSI-network, the SSI-agents, and the SSI-webapp.  

SSI-API 

The SSI-API connects the certificate Life-Cycle Manager with the SSI Framework. It is therefore 
an intermediate middleware. It receives the certificate state updates from MEDINA framework 
to notify the CAB. 

This component is deployed at TECNALIA premises as a proof-of-concept, emulating the CAB. 

SSI-network 

The SSI-network implements the Verifiable Data Registry within the SSI Framework, which stores 
the public cryptographic material, such as: public keys, Decentralized Identifiers (DIDs) and 
associated metadata. The SSI network acts as a trusted decentralized source with which the 
different parties can interact. 

This component is deployed at TECNALIA premises as a proof-of-concept, emulating a potential 
Blockchain network of auditors (out of the scope of MEDINA). 

SSI-agents 

Actors interacting with the SSI Framework need a specific piece of software that allows them to 
communicate each other. This piece of software is known as “agent”. MEDINA users have cloud 
agents, which means that they are installed in the cloud instead of the user’s side. Therefore, 
users call these agents using HTTP methods. Each agent is in charge of keeping the user´s wallet 
and all the information that this wallet contains, such as verifiable credentials.  

SSI-webapp 

The SSI-webapp eases the use of the functionality provided by the SSI-agents to the end user. In 
other words, the user can: 

• Connect to one of the available SSI cloud agents in MEDINA: “issuer”, “holder 1”, “holder 
2” and “verifier”. Two holder instances have been deployed, one per use-case. 

• Check the current connection status, configuration and historic usage statistics. 

• Manage connections with other SSI cloud providers: list current connections and create 
new ones. To create a new connection, the initiator must create an invitation and pass 
it to the other party. The other user must enter the invitation received to definitely 
establish the connection. The invitation must be shared with the other user using a 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 80 of 115 

www.medina-project.eu       

secure communication mechanism (e.g., email). If both parties are physically located in 
the same place, the invitee can scan a QR code generated by the inviter’s browser to 
comfortably read the invitation. 

• List and create DIDs. 

• List and create data models. 

• Claim ownership of data models and list owned those schemas. 

• Create credentials based on those owned schemas for another user and list them. 

• Present proofs to a verifier based on credentials the user stores in her wallet. 

6.3.1.2.3 Technical specification 

This section includes the programming language, libraries, databases, application servers and 
other elements required for the implementation of the prototype.  

SSI-API 

The SSI-API has been developed using Python as programming language. The SSI-API uses Flask, 
which is a python library for developing HTTP Rest APIs. The API es protected by an API KEY that 
the certificate Life-Cycle Manager needs to use to interact with it.  

The SSI-API allows the submission of certificates state updates to the SSI Framework. It exposes 
a HTTP REST API with the swagger interface shown in Figure 24. 

 

Figure 24. MEDINA SSI-API overview 

As Figure 24 shows, the SSI-API is quite simple and is merely a GET/SET API that sends and gets 
certificate states from the certificate Life-Cycle Manager and to the SSI Framework. For each 
certificate, the fields that the API is processing are: 

• Certificate_id: uniquely identifies a certificate. 

• Certificate_status: defines the current certificate state: issuance, renewal, revocation, 
suspension. 

The MEDINA SSI-API is available at: https://api.ssi.medina.bclab.dev/ 

Appendix D: SSI-API Definition includes a detailed definition of the SSI-API endpoints. 

http://www.medina-project.eu/
https://api.ssi.medina.bclab.dev/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 81 of 115 

www.medina-project.eu       

SSI-network  

The SSI network has been developed using Hyperledger Indy. Hyperledger Indy provides a set of 
utilities that allow the deployment of a Verifiable Data Registry, which has been named SSI-
network. Each node can be deployed using a Docker container. It is also possible to define how 
many virtual or physical machines the network will have.  

For MEDINA, a single physical machine has been used with 4 docker containers, each one 
containing a Hyperledger Indy node. This is considered enough as proof-of-concept; however, it 
is a basic setup that can be easily escalated to more physical machines if required.  

SSI-agents  

SSI agents have been implemented using Hyperledger Aries. Hyperledger Aries is a set of 
libraries that allows the implementation of SSI agents. Each user within the SSI Framework has 
its own cloud agent. The Hyperledger Aries Cloud Agent (aca-py) library has been used to 
implement the agents. Internally, the SSI agents include an SQLite Database for keeping internal 
information within the wallet. Once it has been deployed, the agent exposes an HTTP Rest API 
for allowing interaction with it. 

Within the scope of MEDINA project, three SSI-agents have been deployed:  

• Issuer: issues verifiable credentials to the holder associates to the security certificates 
states. Issuer can be found at: https://issuer.admin.ssi.medina.bclab.dev/api/doc. 

• Holder: keeps the verifiable credentials in its own wallet and creates verifiable 
presentations based on these credentials to proof he fulfils certain conditions to the 
verifier. The holders have been deployed on the MEDINA infrastructure, considering the 
authentication and authorization requirements defined in D5.4 [25].  

• Verifier: verify if the verifiable presentation sent by the holder is correct or not. The 
verifier can be found at: https://verifier.admin.ssi.medina.bclab.dev/api/doc. 

SSI-webapp 

The web application is a SPA (Single Page-Application) developed using the React framework. It 
can be deployed in a standard web server as static files. It uses the “Material UI” library for the 
graphic components in order to keep a clean look and feel. The application is responsive so its 
UI will adapt to different screen sizes making it appropriate both for normal machines and for 
mobile devices. When the user goes to the web application for the first time, it will be 
automatically redirected to the connection page as shown in Figure 25. In this page, the user 
can select one of the available SSI-agents. After connecting to one of them, the user will be able 
to use any of the other functionalities described in Appendix E: SSI-Webapp Manual. 

http://www.medina-project.eu/
https://issuer.admin.ssi.medina.bclab.dev/api/doc
https://verifier.admin.ssi.medina.bclab.dev/api/doc


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 82 of 115 

www.medina-project.eu       

 

Figure 25. MEDINA SSI-webapp: Connection page visualized in an iPhone SE and in a Desktop browser 

6.3.2 Delivery and usage  

6.3.2.1 Package information  

Only the components related to the holder (CSP) need to be provided (SSI-agent and SSI-
webapp), as the rest of the SSI Framework are provided from TECNALIA as a proof-of-concept. 
Both components are packaged as a docker image. 

6.3.2.2 Installation instructions 

Only the SSI-agent and SSI-webpp related to the holder need to be installed. 

For the SSI-agent:  

• docker compose-up -d docker-compose.yaml 

For the SSI-webapp:  

• sudo docker login optima-medina-docker-dev.artifact.tecnalia.com (and 
enter your username and password; registration in Orein is needed in advance) 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 83 of 115 

www.medina-project.eu       

• sudo docker pull optima-medina-docker-
dev.artifact.tecnalia.com/wp4/t43/ssi-framework-ui-test:2.0.1 

• sudo docker run -d -p 8080:8080 –name medina_ssi_webapp optima-medina-
docker-dev.artifact.tecnalia.com/wp4/t43/ssi-framework-ui-test:2.0.1 

6.3.2.3 User Manual 

The manual focuses on the use of the web application (SSI-webapp), as this is the way users will 
use the SSI Framework. 

• The first thing the webapp demands to the user is to connect to one of the available SSI-
agents.  

• The communication between SSI-agents is handled through invitations. It is possible to 
create a new invitation and share it a providing a QR code with the invitation that other 
parties can scan to comfortably enter the invitation. The invitation will be then 
automatically accepted. 

• New DID (identifiers), data models or schemas can be defined at any time. This 
information is needed for issuing credentials. 

• Issuer: New credentials can be issued selecting the schema (and corresponding data 
model) and providing the required details associated to the attributes from the selected 
schema. 

• Holder: The received credentials can be listed at any time. 

• Verifier: Proofs for different attributes can be requested. 

• Holder: Based on the received credentials, proofs for different attributes can be 
provided. 

More details are available at Appendix E: SSI-Webapp Manual. 

6.3.2.4 Licensing information 

Proprietary. Copyright by TECNALIA. 

6.3.2.5 Download 

This section is not applicable as the whole components are provided as a service from TECNALIA 
for demo purposes and no download is needed by users. 

6.3.1 Advancements within MEDINA 

The SSI Framework, which was previously only described as a concept, is presented in this third 
iteration as a proof-of-concept implementation for demonstrating its functionality and the 
advantages of such a system in comparison to the state-of-the-art, like a Public Key 
Infrastructure (PKI). In particular: 

• The applicability of ZKPs on certification has been theoretically analysed. 

• The SSI Framework has been integrated with the MEDINA framework. 

• Authentication and authorization requirements have been included in the SSI 
Framework. 

• MEDINA look and feel has been considered in the SSI Framework 

• The SSI Framework has been extensively tested 

6.3.2 Limitations and future work 

The main limitation in the current development of the SSI Framework prototype is related to the 
simulation of CAB (issuer) and CSP customers (verifier) by TECNALIA. More validation is needed 
including real partners for the credentials’ issuance and verification functionalities.  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 84 of 115 

www.medina-project.eu       

Additionally, for MEDINA, a demo Hyperledger Indy network has been deployed at TECNALIA for 
prototype purposes. However, in real deployments, this network should be distributed among 
different organizations. 

Finally, the information to be included on the credential for the security certificate could be 
extended with more fields and details provided not only by the LCM but also from other tools 
or sources of information. 

6.4 Risk Mitigation 

In section 6.1 we have summarized the identified risks that are associated to manage certificates 
automatically. In the following we address each one shortly, describing to what the extent they 
are addressed by the design choices made in the LCM and SSI Framework. 

1. Modify the logic of the certificate management component: While an attacker who 
modifies the LCM can change the certificate state (assuming its identifier is known), the 
manual verification is still in place. 

2. Forge a certificate: a certificate can only be forged if the attacker obtains the CAB’s 
private signing key. 

3. Delete a certificate: The SSI Framework stores certificates in a distributed way which is 
highly tamper-proof.  

4. Deny the retrieval of a certificate: The SSI Framework stores certificates in a distributed 
way which is highly available. 

5. Disclose sensitive certificate details: This risk will be addressed by the usage of zero-
knowledge proofs. 

6.5 Future Work 

6.5.1 Criteria for Certifying Tools in the context of the EU Cybersecurity Act 

This deliverable has investigated the question of how various parts of the certification process 
can be automated. A central question in this endeavour is how trust can be established in such 
an automated process – or if the trust simply has been moved to the development of the used 
tools. A possibility for increasing trust in an automated framework like MEDINA is therefore to 
establish standards for tools used in an automated certification process and audit and certify 
them. Possible certification criteria include the following: 

• High reliability: Collect and process data continuously, and handle high throughput 
without data loss. 

• Traceability: The programming logic and processing results, e.g., assessment of 
evidence, must be traceable afterwards, for instance to allow auditors to validate the 
tool’s functionality. 

• Security best practices must be followed in development and operation, e.g., based on 
OWASP guidelines. 

6.5.2 Outlook: Compositional Certification in MEDINA 

The certification of composed services is both highly relevant and highly complex. It is, for 
example, highlighted by h-cloud as an important issue14. A related Horizon 2020 project, called 
certMILS15 has treated this topic in the context of cyber-physical systems. 

 
14 https://www.h-cloud.eu/recommendations/rec-id-101/  
15 https://cordis.europa.eu/project/id/731456  

http://www.medina-project.eu/
https://www.h-cloud.eu/recommendations/rec-id-101/
https://cordis.europa.eu/project/id/731456


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 85 of 115 

www.medina-project.eu       

The EUCS [19] also mentions the compositional fulfilment of certain requirements, i.e., the case 
where an auditee does not (or cannot) fulfil requirements alone, but another actor fulfils them 
(partly). One simple example is the usage of an Infrastructure-as-a-Service provider, like 
Microsoft Azure or Amazon Web Services: In this case, the CSP uses the infrastructure provider’s 
hardware who in turn is in charge of fulfilling, e.g., physical security requirements.  

The EUCS guidelines for these cases distinguish the CSP and CSC (Cloud Service Customer), 
where the CSC requires information from the CSP to achieve a certification. Among others, the 
guidelines define the following duties:  

• The CSP shall develop specific documentation and make it available to CSCs. 

• The CSP shall provide a list of actionable requirements for the CSC, and it shall associate 
each Complementary Customer Control (CCC) to an EUCS requirement. 

• The CSP shall label each requirement associated to a CCC with the lowest EUCS 
evaluation level for which the CCC is required. 

• The CSP shall document for each EUCS requirement how its cloud service will contribute 
to the fulfilment of the requirements. 

Note that in the following, we do not distinguish between CSP and CSC. We rather discuss 
different compositional certification scenarios in the context of MEDINA from the perspective 
of one service provider who wants to become certified – and requires information from a 
secondary cloud service to that end. 

In MEDINA we have developed a framework that supports CSPs in a baseline scenario without 
compositional requirements: We commonly assume that a CSP is in charge of all the EUCS 
requirements and can fulfil them. At the same time, MEDINA offers different possibilities for 
introducing evidence and assessment results from other providers. In the following, we present 
some scenarios for collaboratively fulfilling a requirement, and discuss the technical integration 
in MEDINA which can be achieved in future work. 

6.5.2.1 Scenario 1: Infrastructure-as-a-Service 

In this scenario, the CSP (the auditee) makes use of the cloud infrastructure of a provider like 
Azure, AWS or GCP. For example, the CSP’s software may be deployed on virtual machines and 
container orchestration frameworks which run on the IaaS provider’s hardware. 

In this case, as mentioned above, especially requirements regarding physical security must be 
fulfilled by the IaaS provider. To include respective evidence in the CSP’s MEDINA framework, 
different technical possibilities exist: 

1. First, the IaaS provider could create respective evidence regularly and provide them it 
to the CSP via standard Cloud APIs. The CSP could then user a custom evidence collector 
(e.g., based on the Generic Evidence Collector presented in D3.3 [3]) that retrieves the 
evidence and forwards them it to the Security Assessment. The advantage of this 
approach is that the CSP obtains standard evidence and can even compare them it 
against custom target values. Yet, it is to be expected that an IaaS provider will not want 
to provide evidence that contain sensitive data to all CSPs, but rather more abstract 
information about their its compliance. 

2. Second, the IaaS provider could provide assessment results instead of evidence. This 
way, the IaaS provider could hide the detailed evidence, but reveal the target value that 
was applied, as well as the compliance state regarding a certain metric and requirement. 
Again, this information could be provided via a standard Cloud API that can be addressed 
by a custom module which forwards the results to the Orchestrator. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 86 of 115 

www.medina-project.eu       

3. Third, the IaaS provider could be certified in a manual (or possibly automatic) 
assessment, but only for the relevant requirements, such as physical security. The 
resulting partial certificate could be published, for instance, on the ENISA certification 
website. It could then be retrieved by the CSP to be merged with the CSP’s own partial 
certificate. This integration could technically be achieved in the Continuous Certification 
Evaluation component which aggregates and visualizes the compliance state of a 
certification catalogue. 

In cases 2 and 3, however, also the alignment of metrics needs to be taken into account: When 
the IaaS provider creates the assessment results, they should be agreed with the CSP, since the 
CSP and auditors cannot validate the appropriate coverage of the respective requirement.  

Some requirements that have been addressed in MEDINA to some degree, but possibly require 
the collaboration with an IaaS provider, are the following: 

• AM-01.4H: “The CSP shall automatically monitor the process performing the inventory 
of assets to guarantee it is up-to-date.” 

When using IaaS offerings, they often include a native inventory service. For example, Azure 
performs inventory processes to provide Infrastructure-as-Code templates and to provide 
security overviews of the configured resources in the Defender service. When a CSP needs 
information about the status of such a process, modifications to the IaaS provider’s APIs may 
therefore be required. 

• PSS-04.2H: “An integrity check shall be performed, automatically monitored and 
reported to the CSC if the integrity check fails.” 

Also, for integrity checks, an IaaS (or PaaS) provider can be partly responsible, for instance, if 
virtual machine images are offered via a marketplace which the CSP has no access to. 

6.5.2.2 Scenario 2: Multi-Cloud and Hybrid Cloud 

Multi-cloud refers to a scenario where a CSP uses more than one public cloud provider to build 
the cloud service. For example, one might be used for storage services, while another one is 
used for processing and analysing data. In a hybrid cloud scenario, the CSP mixes a private cloud, 
like resources in a company-owned data centre with the resources offered by a public cloud 
provider. 

Both scenarios are well suited to be integrated in MEDINA: The basic configuration of metrics, 
as well as certification-related configurations (e.g., related to operational effectiveness), can be 
defined generally for all system parts in a multi-cloud or hybrid cloud system. Only dedicated 
evidence collectors need to be deployed to merge all measurement results in a single MEDINA 
deployment. 

6.5.2.3 Scenario 4: Cloud-Edge-Continuum 

The Cloud-Edge-Continuum is an emerging concept which describes the seamless, context-
aware movement of data (processing) between different elements of a connected Cloud-Edge 
system. 

This is a scenario that can be challenging for continuous certification. As long as the used 
resources do not change, and only the data is moved between the resources – depending on 
requirements to latency, processing power, etc. – MEDINA can be used to collect evidence about 
these static resources. If, however, responsibility for the resources on the different levels of the 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 87 of 115 

www.medina-project.eu       

continuum is distributed, data about their configurations cannot be obtained as easily. Rather a 
standardized API would be required as it is implied in federated service described next.  

Since the overall concept of the Cloud-Edge-Continuum is still emerging and not well defined, 
the general topic of automated certification – including its relation to MEDINA – should be 
further investigated in future work. 

6.5.2.4 Scenario 5: Federated Services 

This scenario refers to a model where independent services implement a common set of 
standards to become compatible, and possibly act as a distributed cloud platform. Such a model 
is, e.g., envisioned in the Gaia-X initiative [43]. 

In a federated scenario, it is possible to implement a standardized evidence collection, 
assessment, and lifecycle management. In Gaia-X, there is the Continuous Automated 
Monitoring module which has been designed for this purpose [44]. Similar to the scenario of the 
Cloud-Edge-Continuum, the creation of standardized methods and APIs for continuous 
certification is a valuable topic of future work for federated services as well. 

Additionally, MEDINA components using Self-Sovereign Identities (SSI) could also support the 
update of certificates in the federated environment. Also, a certificate’s validity could be 
assessed continuously by checking the CSP’s credentials who that offers the respective 
federated service. 

  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 88 of 115 

www.medina-project.eu       

7 Conclusions 

The continuous certification of security properties in cloud services poses various challenges, 
including the continuous aggregation and evaluation of evidence, as well as the continuous 
management of certificates. Also, the protection of evidence integrity, i.e., its trustworthiness, 
is a major challenge, since it is essential to establish trust in the whole certification process. 

This deliverable has presented the third and final iteration of concepts and prototypes for a 
Continuous Certification Evaluation component, an Automated Life-Cycle Manager, a Self-
Sovereign Identity system for the issuance of certificates, as well as the concept for the 
trustworthiness of evidence and assessment results (whose implementation is described in 
WP3).  

The technology evaluations in this deliverable have shown that some emerging technologies, 
like Blockchain and smart contracts, can provide benefits for the automation and protection of 
certificates. At the same time, they can introduce considerable overhead and new risks. Future 
work therefore must carefully balance practical considerations of CSPs with appropriate security 
and automation measures. 

In future work, the technology readiness level of the components should be increased to make 
them more practically usable. This includes obtaining user feedback in realistic circumstances 
and conducting practical studies. Also, the possibilities to compose certificates (as discussed in 
section 6.5.2) should be further investigated. 

  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 89 of 115 

www.medina-project.eu       

8 References 

 

[1]  MEDINA Consortium, "D4.5: Methodology and tools for risk-based assessment and 
security control reconfiguration-v2," To be published in 2023. 

[2]  MEDINA Consortium, “D2.5 Specification of the Cloud Security Certification Language - 
v3,” 2023. 

[3]  MEDINA Consortium, "D3.3: Tools and techniques for the management of trustworthy 
evidence-v3," 2023. 

[4]  MEDINA Consortium, "D4.2: Tools and Techniques for the Management and Evaluation of 
Cloud Security Certifications - v2," 2022. 

[5]  MEDINA Consortium, “D5.2: MEDINA Requirements, Detailed architecture, DevOps 
infrastructure and CI/CD and verification strategy-v2,” 2022. 

[6]  J. Luna, A. Taha, R. Trapero and N. Suri, "Quantitative Reasoning about Cloud Security 
Using Service Level Agreements," IEEE Transactions on Cloud Computing, vol. 5, no. 3, pp. 
457-471, 2017.  

[7]  J. Luna, R. Langenberg and N. Suri, "Benchmarking cloud security level agreements using 
quantitative policy trees," in CCSW '12: Proceedings of the 2012 ACM Workshop on Cloud 
computing security workshop, Raleigh North Carolina USA, 2012.  

[8]  A. Taha, R. Trapero, J. Luna and N. Suri, "AHP-Based Quantitative Approach for Assessing 
and Comparing Cloud Security," in IEEE 13th International Conference on Trust, Security 
and Privacy in Computing and Communications, 2014.  

[9]  J. Modic, R. Trapero, A. Taha, J. Luna, M. Stopar and N. Suri, "Novel efficient techniques 
for real-time cloud security assessment," Computers & Security, vol. 62, 2016.  

[10]  EU FP7 SPECS, "Secure Provisioning of Cloud Services based on SLA management," 
[Online]. Available: https://cordis.europa.eu/project/id/610795. [Accessed April 2023]. 

[11]  S. Maroc and J. Biao Zhang, "Towards Security Effectiveness Evaluation for Cloud Services 
Selection following a Risk-Driven Approach," International Journal of Advanced Computer 
Science and Applications (IJACSA), vol. 11, no. 1, 2020.  

[12]  P. Stephanow and C. Banse, "Evaluating the performance of continuous test-based cloud 
service certification," in 17th IEEE/ACM International Symposium on Cluster, Cloud and 
Grid Computing (CCGRID), 2017.  

[13]  B. Preneel, "Cryptographic hash functions.," European Transactions on 
Telecommunications, vol. 5, no. 4, pp. 431-448, 1994.  

[14]  T. Baicheva, S. Dodunekov and P. Kazakov, "On the cyclic redundancy-check codes with 8-
bit redundancy," Computer Communications, vol. 21, no. 11, pp. 1030-1033, 1998.  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 90 of 115 

www.medina-project.eu       

[15]  M. Rjaško, "Properties of cryptographic hash functions," in Cryptology ePrint Archive, 
2008.  

[16]  P. Rogaway and T. Shrimpton, "Cryptographic hash-function basics: Definitions, 
implications, and separations for preimage resistance, second-preimage resistance, and 
collision resistance," in International workshop on fast software encryption, Heidelberg 
(Germany), 2004.  

[17]  A. E. d. P. d. Datos, "Introduction to the hash function as a personal data pseudonymisation 
technique," 20019. [Online]. Available: https://edps.europa.eu/data-protection/our-
work/publications/papers/introduction-hash-function-personal-data_en. 

[18]  J. H. F. H. O. P. L. &. S. V. Horalek, "Analysis of the use of Rainbow Tables to break hash," 
Journal of Intelligent & Fuzzy Systems, vol. 32, no. 2, pp. 1523-1534, 2017.  

[19]  ENISA, "EUCS – Cloud Services Scheme," 12 2020. [Online]. Available: 
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme. [Accessed April 
2023]. 

[20]  S. Cimato, E. Damiani, F. Zavatarelli and R. Menicocci, "Towards the certification of cloud 
services," in IEEE Ninth World Congress on Services, Santa Clara, CA, USA, 2013.  

[21]  C. A. Ardagna, R. Asal, E. Damiani, N. El Ioini, C. Pahl and T. Dimitrakos, "A certification 
technique for cloud security adaptation," in IEEE International Conference on Services 
Computing (SCC), San Francisco, CA, USA, 2016.  

[22]  I. Kunz and P. Stephanow, "A process model to support continuous certification of cloud 
services," in IEEE 31st International Conference on Advanced Information Networking and 
Applications (AINA), 2017.  

[23]  M. Anisetti, C. A. Ardagna, E. Damiani and F. Gaudenzi, "A semi-automatic and trustworthy 
scheme for continuous cloud service certification," IEEE Transactions on Services 
Computing, vol. 13, no. 1, pp. 30--43, 2017.  

[24]  AssureMoss Consortium, "D5.2. Methodology for Incremental and Continuous 
Certification Scheme of software," 
https://assuremoss.eu/en/resources/Deliverables/D5.2.-Methodology-for-Incremental-
and-Continuous-Certification-Scheme-of-software, 2021. 

[25]  MEDINA Consortium, "D5.4: MEDINA Integrated solution - v2," 2023. 

[26]  P. Torr, “Demystifying the threat modeling process,” in IEEE Security & Privacy, 2005.  

[27]  R. M. Blank, "Guide for conducting risk assessments," in Citeseer, 2011.  

[28]  “Hyperledger Fabric,” [Online]. Available: https://www.hyperledger.org/use/fabric. 
[Accessed April 2023]. 

[29]  Consensys, “Quorum,” [Online]. Available: https://github.com/ConsenSys/quorum. 
[Accessed April 2023]. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 91 of 115 

www.medina-project.eu       

[30]  Ethereum, "Ethereum's energy expenditure," 2023. [Online]. Available: 
https://ethereum.org/en/energy-consumption/. [Accessed April 2023]. 

[31]  H. Besu, "Proof of authority consensus," August 2022. [Online]. Available: 
https://besu.hyperledger.org/en/stable/private-networks/concepts/poa/. [Accessed 
March 2023]. 

[32]  A. S. I. K. P. &. C. S. Baliga, "Performance evaluation of the quorum blockchain platform," 
arXiv preprint arXiv:1809.03421, 2018.  

[33]  M. &. A. M. H. Ahamad, "Performance characterization of quorum-consensus algorithms 
for replicated data," IEEE Transactions on Software Engineering, vol. 4, no. 492-496, p. 15, 
1989.  

[34]  S. Nakamoto, "Bitcoin. A peer-to-peer electronic cash system.," Decentralized Business 
Review, no. 21260, 2008.  

[35]  MEDINA Consortium, "D3.2: Tools and techniques for the management of trustworthy 
evidence-v2," 2022. 

[36]  L. Ante, "Smart contracts on the blockchain–a bibliometric analysis and review," 
Telematics and Informatics, 2020.  

[37]  M. Röscheisen, M. Baldonado, K. Chang, L. Gravano, S. Ketchpel and A. Paepcke, “The 
Stanford InfoBus and its service layers: Augmenting the Internet with higher-level 
information management protocols,” Digital Libraries in Computer Science: The MeDoc 
Approach, pp. 213--230, 1998.  

[38]  W. Viriyasitavat, L. Da Xu, Z. Bi and A. Sapsomboon, "Blockchain-based business process 
management (BPM) framework for service composition in industry 4.0," Journal of 
Intelligent Manufacturing, vol. 31, no. 7, pp. 1737--1748, 2020.  

[39]  L. García-Bañuelos, A. Ponomarev, M. Dumas and I. Weber, "Optimized execution of 
business processes on blockchain," in International conference on business process 
management, 2017.  

[40]  B. Carminati, E. Ferrari and C. Rondanini, "Blockchain as a platform for secure inter-
organizational business processes," in Carminati, Barbara, Elena Ferrari, and Christian 
Rondanini. "Blockchain as a platform for secure inter-organizational business processes." 
2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC), 
2018.  

[41]  MEDINA Consortium, “D5.1: MEDINA Requirements, Detailed architecture, DevOps 
infrastructure and CI/CD and verification strategy-v1,” 2021. 

[42]  ENISA, "Cybersecurity Certification Website- API Guidelines v0.3," Draft version provided 
by ENISA (April 2022) - not intended for being used outside the context of MEDINA, 2022. 

[43]  Gaia-X European Association for Data and Cloud, "Gaia-X," [Online]. Available: gaia-x.eu. 
[Accessed 21 April 2023]. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 92 of 115 

www.medina-project.eu       

[44]  Gaia-X European Association for Data and Cloud, Continuous Automated Monitoring, 
https://gitlab.com/gaia-x/data-infrastructure-federation-services/cam, 2022.  

[45]  R. Sobti and G. Geetha, "Cryptographic hash functions: a review," International Journal of 
Computer Science Issues (IJCSI), vol. 9, no. 2, p. 461, 2012.  

[46]  M. J. Dworkin, "SHA-3 standard: Permutation-based hash and extendable-output 
functions," 2015. 

[47]  J. Czajkowski, L. Groot Bruinderink, A. Hülsing, C. Schaffner and D. Unruh, "Post-quantum 
security of the sponge construction," in International Conference on Post-Quantum 
Cryptography, 2018.  

[48]  C. Signing, "Hash Algorithm Comparison: MD5, SHA-1, SHA-2 & SHA-3," [Online]. Available: 
https://codesigningstore.com/hash-algorithm-comparison. [Accessed April 2023]. 

[49]  X. Wang, D. Feng and X. Y. H. Lai, "Collisions for hash functions MD4, MD5, HAVAL-128 and 
RIPEMD," Cryptology EPrint Archive, 2004.  

[50]  X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, "Cryptanalysis of the Hash Functions MD4 and 
RIPEMD," in Annual international conference on the theory and applications of 
cryptographic techniques, 2005.  

[51]  H. Dobbertin, A. Bosselaers and B. Preneel, "RIPEMD-160: A strengthened version of 
RIPEMD," in International Workshop on Fast Software Encryption, Heidelberg (Germany), 
1996.  

[52]  X. Wang, D. Feng and X. Yu, "An attack on hash function HAVAL-128.," Science in China 
Series F: Information Sciences, vol. 48, no. 5, pp. 545-556, 2005.  

[53]  F. Mendel, N. Pramstaller, C. Rechberger, M. Kontak and J. Szmidt, "Cryptanalysis of the 
GOST hash function," in Annual International Cryptology Conference, Heidelberg, 2008.  

[54]  D. C. Schmidt, "Gperf: A perfect hash function generator," 2000.  

[55]  Y. Yang, F. Shen, H. T. Shen, H. Li and X. Li, "Robust discrete spectral hashing for large-scale 
image semantic indexing," IEEE Transactions on Big Data, vol. 1, no. 4, pp. 162-171, 2015.  

[56]  S. Halevi, W. E. Hall and C. S. Jutla, "The Hash Function "Fugue"," Cryptology ePrint Archive, 
2014.  

[57]  V. Buterin, "Ethereum white paper. GitHub repository," 2013. [Online]. Available: 
https://ethereum.org/en/whitepaper/. [Accessed April 2023]. 

[58]  M. Hearn, "Corda: A distributed ledger. Corda Technical White Paper," 2016. 

[59]  H. Sawtooth. [Online]. Available: https://www.hyperledger.org/use/sawtooth. [Accessed 
April 2023]. 

[60]  "Hyperledger Besu explained," [Online]. Available: 
https://limechain.tech/blog/hyperledger-besu-explained/. [Accessed April 2023]. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 93 of 115 

www.medina-project.eu       

[61]  “What is Amazon QLDB?,” [Online]. Available: 
https://docs.aws.amazon.com/qldb/latest/developerguide/what-is.html. [Accessed April 
2023]. 

[62]  “About BigchainDB,” [Online]. Available: https://www.bigchaindb.com/. [Accessed April 
2023]. 

[63]  "Tendermint," [Online]. Available: https://tendermint.com/. [Accessed April 2023]. 

[64]  F. M. Schuhknecht, A. Sharma, J. Dittrich, Agrawal and Divya, "chainifyDB: How to get rid 
of your Blockchain and use your DBMS instead," CIDR, 2021.  

[65]  “CovenantSQL-The Blockchain SQL Database,” [Online]. Available: https://covenantsql.io/. 
[Accessed April 2023]. 

[66]  “Fluree – The Web3 Data Platform,” [Online]. Available: https://flur.ee/. [Accessed April 
2023]. 

[67]  M. S. Sahoo and P. K. Baruah, "Hbasechaindb–a scalable blockchain framework on hadoop 
ecosystem," in Asian Conference on Supercomputing Frontiers, 2018.  

[68]  “What is HBase?,” [Online]. Available: https://www.ibm.com/topics/hbase. [Accessed 
April 2023]. 

[69]  MEDINA Consortium, "D2.2: Continuously certifiable technical and organizational 
measures and catalogue of cloud security metrics-v2," 2023. 

 

 

  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 94 of 115 

www.medina-project.eu       

9 Appendix A: Current Leading Hash Algorithms 

Various types of hash functions have been developed in the past [45]. Some important ones are 
described below: 

SHA-2 [45] 

The SHA algorithm (Secure Hash Algorithm) was originally created by the NSA and NIST with the 
aim of generating unique hashes or codes based on a standard. In 1993 the first SHA protocol, 
also called SHA-0, was born, but it was hardly used and did not have much impact. A couple of 
years later, an improved, more robust and secure variant, SHA-1, was released, which has been 
used for many years to sign SSL/TLS digital certificates for millions of websites. A few years later 
SHA-2 was created, which has four variants depending on the number of output bits, namely 
SHA2-224, SHA2-256, SHA2-384 and SHA2-512. Currently, for security reasons, SHA-1 is no 
longer used, but it is highly recommended to use SHA2 or SHA3 (within the SHA family). 

Among the many ways to create hashes, the SHA2-256 algorithm is one of the most used thanks 
to its balance between security and speed, it is a very efficient algorithm and has a high 
resistance to collisions. For example, the method of verifying Bitcoins is based on SHA2-256. The 
main characteristics for the different types of SHA-2 are: 

• Output size: the size of characters that will form the hash. 

• Internal state size: it is the internal hash sum, after each compression of a data block. 

• Block size: the size of the block handled by the algorithm. 

• Maximum message size: is the maximum size of the message on which the algorithm is 
applied. 

• Word length: it is the length in bits of the operation applied in each round by the 
algorithm. 

• Interactions or rounds: the number of operations performed by the algorithm to obtain 
the hash. 

• Supported operations: the operations performed by the algorithm to obtain the hash. 

SHA-256: It has an output size of 256 bits, an internal state size of 256 bits, a block size of 512 
bits, the maximum message size it can handle is 264 - 1, the word length is 32 bits, and the 
number of rounds is 64, as well as the operations it applies to the hash are +, and, or, xor, shr 
and rot.  

SHA2-384: This algorithm is different in terms of features, but its operation is the same. It has 
an output size of 384 bits, an internal state size of 512 bits, a block size of 1024 bits, the 
maximum message size it can handle is 2128 - 1, the word length is 64 bits, and the number of 
rounds is 80, as well as the operations it applies to the hash are +, and, or, xor, shr and rot. This 
algorithm is a more secure version than SHA2-256, since more rounds of operations are applied, 
and it can also be applied on more extensive information. This hash algorithm is often used to 
check message integrity and authenticity in virtual private networks. On the downside, it is 
slower than SHA2-256, but in certain circumstances it can be suitable. 

SHA2-512: As in all SHA-2, the operation is the same, changing only one feature. It has an output 
size of 512 bits. The rest of the features are the same as SHA2-384. 512 bits of internal state size, 
1024 bits of block size, 2128 - 1 for the maximum message size, 64 bits of word length, and 80 
is the number of rounds. This algorithm also applies the same operations on each round +, and, 
and, or, xor, shr and rot. 

SHA2-224: SHA2-224 has not mentioned as the main one, because its big brother (SHA2-256) is 
much more widely used, since the computational difference between the two is negligible and 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 95 of 115 

www.medina-project.eu       

SHA2-256 is much more standardized. No collisions have been found for this algorithm, which 
makes it a safe and usable option. 

SHA-3 [46] 

SHA-3 is the most recent hash algorithm belonging to the SHA family; it was released by the NIST 
in 2015, but it is not yet being widely used. Although it is part of the same family, its internal 
structure is quite different. This new hashing algorithm is based on sponge construction [47]. 
This sponge construction is based on a random function or random permutation of data; it 
allows any amount of data to be input and any amount of data to be generated: the data is 
"absorbed" and processed to display an output with the desired length. In the data absorption 
phase, the XOR operation is used and then transformed into a permutation function. SHA-3 
allows additional bits of information, to protect from extension attacks, something that happens 
with SHA-1 or even with SHA-2.  

Another important feature is that it is very flexible, making it possible to test cryptanalytic 
attacks and use it in lightweight applications. Currently SHA2-512 is twice as fast as SHA3-512, 
but the latter could be implemented through hardware, in which case it could be even faster. 

SHA-3 was born as an alternative to SHA-2, but not because using SHA-2 is insecure, but a plan 
B was considered necessary in case of a successful attack against SHA-2. In this way, both SHA-
2 and SHA-3 will coexist for many years. Its final goal is to replace SHA-2 in typical TLS or VPN 
protocols that use this hashing algorithm to check data integrity and data authenticity. 

Although SHA-2 and SHA-3 have been proven to be the most secure hash functions today with 
a good trade-off between security and performance, SHA-2 is considered even more secure as 
it can be shown from Table 15 [48]. SHA-3 is usually considered when there is a specific problem 
with SHA-2. 

Table 15: SHA-2 and SHA-3 comparison 

 SHA-2 SHA-3 

Possibility of 
Collision 

No proof of collision has been 
found yet. 

Susceptible to collision in squeeze 
attack. 

Weakness • SHA 256 is slower than its 
previous versions.  

• Software and browsers 
must be updated to 
implement SHA2. 

Susceptible to collision 

In use? Yes Yes 

Applications • Security application 
protocols. 

• Cryptographic transactions.  
• Digital certificates. 

Can replace SHA2 where necessary. 

 

MD5 [49] 

The MD (Message Digest) family was created in 1974 by Ron Rivest, a cryptographer and 
professor at MIT. MD2 was the first hashing system he created, focused on 8-bit computers, so 
it is easy to deduce that it has suffered numerous attacks and cannot be considered secure. 

MD4 [50] was considered insecure because its hash calculation was not sufficiently complex. 
Although MD4 hashes resemble MD5 hashes, in MD5 there are many more steps added to the 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 96 of 115 

www.medina-project.eu       

calculation to increase the complexity. MD5 was quite secure for many years, but today it is no 
longer of sufficient complexity for cryptographic and data encryption purposes. Computers have 
become powerful enough to crack MD5 hashes easily, so its use is currently limited. 

RIPEMD-160 [51] 

RIPEMD-160 (RACE Integrity Primitives Evaluation Message Digest) is a 160-bit message digest 
algorithm developed in Europe by Hans Dobbertin, Antoon Bosselaers and Bart Preneel, and first 
published in 1996. It is an improved version of RIPEMD, which was based on the design principles 
of the MD4 algorithm and is similar in security and performance to the more popular SHA-1. 

There are also 128-bit, 256-bit and 320-bit versions of this algorithm, called RIPEMD-128, 
RIPEMD-256 and RIPEMD-320 respectively. The 128-bit version was intended only as a 
replacement for the original RIPEMD, which were also 128-bit and had some security concerns. 
The 256-bit and 320-bit versions only decrease the possibility of accidental hash collisions, and 
do not have higher levels of security than RIPEMD-128 and RIPEMD-160. 

RIPEMD-160 was designed in the open academic community, in contrast to the SHA-1 algorithm, 
designed by the US National Security Agency (NSA). RIPEMD-160 is a less popular design and 
correspondingly less well studied than SHA functions. 

Other hash functions 

Other hash functions that are not so widely used today but have been important throughout 
history include: HAVAL [52], GOST [53], Gperf [54], Spectral [55] or Fugue [56], among others. 

  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 97 of 115 

www.medina-project.eu       

10 Appendix B: Alternatives to Blockchain for Audit Trails 

This section theoretically compares the three mentioned alternatives, identifying the main 
advantages and disadvantages in each case. It also analyses different Blockchain technologies in 
order to identify a suitable option for MEDINA. 

10.1 Blockchain vs Traditional databases 

At first glance, Blockchain and traditional databases can be considered similar, as both are used, 
broadly speaking, to store information in a distributed or centralized way. However, Blockchain 
is more than just a database. There are several differences between both technologies: 

• AUTHORITY: 
o Blockchain: It is decentralized; no central control 
o Database: It is centralized; it is controlled by an administrator 

In Blockchain, each node takes part in a consensus mechanism to check all transactions, with 
the same level of access and capability. In a traditional database, a central authority 
(administrator) controls the whole system. In this context, Blockchain takes advantage over 
traditional databases since trust in a central entity is not required. 

• ARCHITECTURE: 
o Blockchain: Distributed 
o Database: Client-server architecture 

In Blockchain, data is distributed among all nodes; each node stores a copy of the complete 
Blockchain so although some node is compromised, the rest can continue working. Therefore, 
single point of failure attacks are infeasible in Blockchain, gaining in robustness and fault 
tolerance over traditional databases where data is centrally stored in a server. 

• DATA HANDLING: 
o Blockchain: Read and Write 
o Database: CRUD (Create, Read, Update and Delete) 

Traditional databases provide additional functionalities over Blockchain (update and delete). 
One of the most important features is the ability to delete information. In Blockchain nothing 
can be deleted; any data included in the Blockchain will be recorded forever.  

In the MEDINA context, it is not needed to update evidence and assessment results in the audit 
trail, as an update in any of them is considered new evidence or a new assessment result. In 
addition, being able to delete existing information is not a requirement for MEDINA.  

• INTEGRITY: 
o Blockchain: Supported 
o Database: Malicious actors could modify database data (if they gain access). 

One of the most important features of Blockchain is integrity, which is achieved through the 
consensus mechanism in which all participating nodes check and validate all transactions, and 
the distribution of data between all nodes with each node storing a copy of the entire 
Blockchain, so it seems impossible for a malicious actor to modify the stored information or to 
include incorrect information in the Blockchain. In traditional databases, the system is 
vulnerable if the administrator is compromised; as it is a centralized party, it is more likely to 
happen. 

• TRANSPARENCY: 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 98 of 115 

www.medina-project.eu       

o Blockchain: Supported 
o Database: The administrator decides which data can be accessed by whom. 

In Blockchain, every participating node has the same level of access and capability, creating a 
system in which transparency is guaranteed by design. On the contrary, in traditional databases, 
the administrator decides who can access the database and what actions can execute. 

• IMPLEMENTATION AND MAINTAINANCE COSTS: 
o Blockchain: High 
o Database: Low 

Blockchain is still a new technology, so its implementation and maintenance are still more costly 
than for traditional databases based on “old” technologies. However, some existing Blockchain 
technologies are already widespread, and their costs are beginning to be reduced. 

• PERFORMANCE: 
o Blockchain: Low (due to the verification and consensus methods) 
o Database: Fast and with high scalability 

Traditional databases are known for faster execution time and can handle millions of data at any 
given time. However, Blockchain is considerably slower because of carrying more operations, 
including signature verifications and consensus mechanisms. However, in the MEDINA context, 
a high performance in the audit trail is not a requirement. 

10.2 Blockchain vs Replicated databases 

Some of the traditional databases’ main disadvantages can be improved by means of replication 
techniques, copying data from one database to another resulting in a distributed database 
system with all databases with the same level of information. However, Blockchain still differs 
from replicated databases in the following aspects: 

• REPLICATION: 
o Blockchain: Transaction replication 
o Replicated Database: State replication 

Blockchain replicates entire transactions so that its execution can be replayed by each 
participant node. Distributed databases, on the contrary, replicate the resulting log of read and 
write operations. For this purpose, a distributed database management system is needed to 
guarantee that updates, additions, and deletions performed on the data at any given database 
are automatically reflected in the data stored at all the other databases.  

• CONCURRENCY: 
o Blockchain: No (serial execution) 
o Replicated Database: Yes 

Most Blockchains support only serial execution as the transaction execution is not the real 
bottleneck in the Blockchain performance (the consensus mechanism usually is) and, by this 
way, the behaviour of smart contracts is deterministic when the transaction execution is 
replicated over many nodes, being easier to identify the ledger states. Distributed databases, on 
the contrary, employ sophisticated concurrency control mechanisms to extract as much 
concurrency as possible and improve performance.  

Although concurrency is not a real concern in MEDINA, some recent Blockchains have started to 
adopt some simple concurrency techniques, such as, for example, in Hyperledger Fabric where 
transactions are executed in parallel against the ledger states before being sent for ordering.  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 99 of 115 

www.medina-project.eu       

11 Appendix C: Blockchain Technologies 

This section analyses different Blockchain technologies in order to identify the one that best fits 
in the context of MEDINA. 

11.1 Consensus Algorithms 

First of all, it is not possible to compare different Blockchain technologies without introducing 
some of the most famous consensus algorithms. All technologies use their own consensus 
algorithm or a combination of some of them. Some of the most used consensus algorithms are 
described below. 

Proof-of-Work (PoW): Proof-of-work-based consensus mechanisms require the resolution of a 
computationally expensive calculation to validate a block. Mining nodes (the nodes in the 
network responsible for validating or "mining" blocks) compete to solve the computation and 
mine the block and are rewarded with a fee. It was the first consensus mechanism used in 
Blockchain (used by Bitcoin), and requires high energy consumption.  

Proof-of-Stake (PoS): In this case, the node creating the block is selected deterministically. The 
richness (number of tokens accumulated by a node) of each node is positively involved in this 
selection. The main problem of this "nothing-at-stake" consensus algorithm is that when a chain 
is split, since it costs nothing, the two forks are bet on. This makes it so that consensus on a 
single Blockchain is not guaranteed. It is used by Nxtcoin, Peercoin or Bitshares, for example. 
Ethereum has decided to incorporate Proof of Stake by means of the Casper Protocol.  

Proof of Authority (PoA): PoA is a modified form of PoS where instead of stake with the 
monetary value, a validator’s identity performs the role of stake. In this context, identity means 
the correspondence between a validator’s personal identification on the platform with officially 
issued documentation for the same person, i.e., certainty that a validator is exactly who that 
person represents to be. Just like in PoS, in PoA consensus, identity as a form of stake is also 
scarce. But unlike PoS, there’s only one identity per person. Kovan and Rinkeby, the two 
Ethereum test nets, use PoA. 

Casper protocol: Casper emerges as a hybrid between PoW and PoS and is currently the 
algorithm that Ethereum is trying to implement. That is why it is actually considered by some 
authors as a PoS type algorithm. Casper works as a kind of wager in which different nodes 
propose blocks that should be added to the chain. The validating nodes deposit an amount of 
currency (deposit) and receive a reward if they have behaved honestly and, on the contrary, 
they are penalized if they do not, losing their deposit. The nodes bet on the blocks that will be 
added and if the block turns out to be correct, they receive the reward, i.e., betting on the 
consensus implies winning coins, while betting against the consensus implies losing them. This 
system of incentives and penalties maintains the consistency of the network. 

Proof-of-Elapsed Time (PoET): Each participant requests a timeout from their local trusted 
enclave. The participant with the shortest timeout is next to propose a block, after waiting the 
allotted timeout. Each local trusted enclave signs the function and the result so that other 
participants can verify that no one has cheated on the timeout. 

Proof-of-Space (Proof-of-Capacity): In this case, the user “pays” with hard disk space. The more 
hard-disk space the user has, the better is the chance of extracting the next block and earning 
the block reward. The algorithm generates large data sets known as “plots”, which must be 
stored on the users’ hard disk. The more plots the user has, the better is the chance of finding 
the next block on the chain. Burstcoin is the only cryptocurrency that currently uses a form of 
proof of capability. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 100 of 115 

www.medina-project.eu       

Practical Byzantine Fault Tolerance (PBFT): This is a consensus algorithm that is normally used 
for consensus in distributed system but does not really meet the requirements for economic 
consensus on Blockchains since PBFT becomes infeasible in networks with a high number of 
nodes due to the required communication; Blockchain technologies using PBFT only rely on a 
reliable subnetwork of participants to establish consensus. Such a consensus algorithm is 
popular in private networks, being currently employed in Hyperledger Fabric, as it provides a 
way to reach consensus where the majority of nodes are assumed to be non-malicious. 

Istanbul Byzantine Fault Tolerance (IBFT): IBFT is a variant of the PoA algorithm. Moving away 
from the more technical aspects of IBFT, the most important fact is that it is, along with Raft16, 
one of the consensus algorithms employable in Quorum networks. In the same way as PBFT, it 
makes sense mainly in private Blockchain deployments. 

11.2 Private vs Public 

Blockchains can be public or private: 

Public: A public Blockchain is open to the public and anyone can join without specific permission. 
All people who join the network can read, write, and participate in this network that is not 
controlled by anyone in particular. 

Private: Private Blockchains are based on invitation and anyone who wants access to the 
Blockchain must ask for permission from the Blockchain’s governing body. They allow different 
levels of access that determine which users can write, read, and audit the Blockchain. Thus, data 
is not public. 

The main advantage of a private Blockchain is related to the control over the network 
participants, which is highly recommended in MEDINA, where the network should not be open 
to the public. In addition, the number of nodes needed to set up the network is limited, so the 
network is faster, more efficient, and more convenient in terms of time and energy 
consumption. This is mainly because the consensus in public Blockchains is more complex since 
it is necessary to protect the network from untrusted nodes, so extra verifications and 
operations must take place, while in private Blockchains it does not happen because the nodes 
which are in the network are under control; it logically takes more time to synchronize a network 
and reach consensus when more nodes are involved in the consensus process. Finally, private 
Blockchains can be free of charge, which is highly recommended for the MEDINA audit trail 
system. 

11.3 Technical comparison 

This section presents some of the most well-known Blockchain technologies with their main 
characteristics.  

Bitcoin: Bitcoin is a protocol conceived in 2008 by Satoshi Nakamoto, an anonymous person, 
that promises decentralized [34] payments between parties with no central authority using 
peer-to-peer technology. Bitcoin promises to send value in form of tokens between different 
actors by paying a small amount of money as fee, offering the promise of lower transaction fees 
than traditional online payment mechanisms. There is no physical bitcoin, only balances kept on 
a public ledger that everyone has transparent access to. 

 
16 Raft is a CFT consensus algorithm 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 101 of 115 

www.medina-project.eu       

All bitcoin transactions are verified by a massive amount of computing power, which is 
commonly known as mining. Regarding their Blockchain characteristics, Bitcoin is public and 
permission less, as anyone has access to the shared ledger and can participate in the network. 

Ethereum: Ethereum [57] is one of the most extended Blockchain platforms for money (it has 
its own cryptocurrency ether (ETH)) and any kind of applications as it also supports decentralized 
programmable Smart Contracts, which use ether to work. These Smart Contracts are 
implemented using Solidity language. Ethereum also has transaction fees, so users must pay a 
small amount of money to use the network, similarly to Bitcoin. It features a throughput of 
approximately 20 transactions per second, bettering Bitcoin. It is a public and permission less 
Blockchain. 

Hyperledger Fabric: Hyperledger Fabric [28] is a platform for the implementation of distributed 
solutions. It is based on Blockchain, so it can take advantage of all the benefits provided by this 
technology. Fabric implements Smart Contracts using Go as programming language. 

Hyperledger Fabric, unlike Bitcoin and Ethereum, is private which means that permissions are 
required for third parties to access the network, and it is also permissioned, so it is possible to 
set different permissions to different nodes in the network. This marks a profound difference 
with Ethereum when it comes to forming consensus, since in Ethereum the roles and tasks 
required to reach consensus are identical. In addition, due to its nature, it allows the 
implementation of private channels, so that it is possible to share information only with certain 
parties. Unlike Bitcoin or Ethereum, it does not have mining or its own token, so it is not possible 
to give it cryptocurrency functionalities. In addition, due to the smaller size of the networks, it 
does not present as many scalability problems as the previous ones.  

Quorum: Quorum [29] is, according to the project page, an enterprise-focused version of 
Ethereum. The differences with Ethereum are therefore notable; on the one hand, it is 
permission-oriented and works on private networks. It also promises high speed and high 
performance, although logically it should not be compared with technologies such as Ethereum 
or Bitcoin, since, as they are focused on public networks, it is to be expected that performance 
and speed will be much lower due to a larger number of nodes.  

Being based on Ethereum, it supports the use of Smart Contracts and has a token. Also, 
according to the project page, since it runs on Ethereum, it is easy to incorporate Ethereum 
functionalities into Quorum. As for the consensus algorithm, it uses PoS, although it can also 
work with other consensus algorithms. 

Corda: Corda [58] is an open-source project based on Blockchain technology and designed to be 
used mainly by financial institutions. In terms of scalability, it has the same particularities as 
Hyperledger Fabric, as well as the consensus mechanism. However, Corda uses what are known 
as notary nodes, which provide evidence that a transaction has been carried out. This way of 
reaching consensus is state-based. 

Like Hyperledger Fabric, it is private and permission-oriented and implements Smart Contracts, 
which can be mainly implemented in Java or Kotlin. Like Hyperledger Fabric, it does not have its 
own token. 

Hyperledger Sawtooth: Hyperledger Sawtooth [59] is similar to Hyperledger Fabric, but in this 
case, it is designed to operate in IoT devices with little human interaction. It incorporates the 
consensus mechanism PoET. It has become well-known due to its ease of integration into 
security hardware solutions. In addition, it provides some advances over Hyperledger Fabric 
such as the ability to execute transactions in parallel and offers support for multiple languages 
and Ethereum. However, the project is still at a very early stage of development and, in addition, 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 102 of 115 

www.medina-project.eu       

having been developed by Intel, there are doubts about the range of hardware devices that will 
be able to work with this system. 

Hyperledger Besu: Hyperledger Besu [60] is a java-based Ethereum client designed to be 
enterprise-friendly for both public and private permissioned network use cases. It can also be 
run on test networks such as Rinkeby, Ropsten, and Görli. Hyperledger Besu includes several 
consensus algorithms including PoW, and PoA (IBFT, IBFT 2.0, Etherhash, and Clique). Its 
comprehensive permissioning schemes are designed specifically for use in a consortium 
environment. The project, formerly known as Pantheon, joined the Hyperledger family in 2019, 
adding for the first time a public blockchain implementation to Hyperledger’s suite of private 
blockchain frameworks. Whereas Hyperledger Fabric is a private protocol designed from the 
ground up to support enterprise-grade solutions, Besu seeks to utilize the public Ethereum 
network. 

Regarding Hyperledger Besu, the Besu client is designed to be highly modular to ensure that key 
Blockchain features such as consensus algorithms can be easily implemented and upgraded. The 
goal here is to provide businesses with the means to easily configure Ethereum according to 
their needs while enabling smooth integration with other Hyperledger projects, such as 
Hyperledger Fabric.  

Its smart approach of using the Ethereum Blockchain affords developers enough flexibility to 
build public or permissioned solutions based on the specific requirements of each use case. 
Rather than a comparison between Hyperledger Besu and Hyperledger Fabric, it is important to 
remark than both technologies are complementary and solve different problems. However, 
Hyperledger Besu presents advantages against Hyperledger Fabric in terms of interoperability, 
because it can be integrated as an enterprise client in any Ethereum network. It also has 
compatibility with Quorum. Hence, it fulfils more integration requirements than Hyperledger 
Fabric, which can only use its own network. Also, due to its compatibility with Ethereum, 
Hyperledger Besu allows the use of tokens. 

Amazon QLDB: Amazon Quantum Ledger Database (Amazon QLDB) [61] is a fully managed 
ledger database that provides a transparent, immutable, and cryptographically verifiable 
transaction log owned by a central trusted authority. Amazon QLDB can be used to track all 
application data changes and maintain a complete and verifiable history of changes over time. 
Amazon QLDB is a new class of database that helps eliminate the need to engage in the complex 
development effort of building your own ledger-like applications. With QLDB, the history of 
changes to your data is immutable. 

Amazon QLDB works as a “Blockchain-as-a-Service” (BaaS) where Amazon provides the 
infrastructure. One of the main drawbacks is that governance is fully managed by Amazon and 
data is stored on Amazon´s side, centralizing the storage in a single provider. Also, it has 
associated costs as it works as-a-Service. 

BigchainDB: BigchainDB [62] was mainly developed to combine the best characteristics of the 
“traditional” distributed database and the “traditional” Blockchain. It uses MongoDB as 
database and allows queries over the stored data, while preserving the immutability and 
decentralization; and Tendermint [63] as Blockchain framework. It has low latency and presents 
a better throughput than other Blockchains, such as Bitcoin and Ethereum. However, this is not 
a fair comparison as it is permissioned and uses BFT algorithm to reach consensus, which is 
significantly faster than other algorithms used in public networks. One of its strong points is that 
it can be easily integrated in traditional stacks, providing a decentralized and immutable ledger 
where data and transactions can be stored. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 103 of 115 

www.medina-project.eu       

ChainifyDB: ChainifyDB [64] presents itself as a solution to integrate existing databases with 
Blockchain technology. It proposes the installation of a lightweight Blockchain layer on top.  

ChainifyDB is a permissioned Blockchain layer which can be integrated into an existing 
heterogeneous database landscape adding a low overhead (8.5%) on the underlying database 
systems. It also promises up to 6x higher throughput than Hyperledger Fabric. 

CovenantSQL: CovenantSQL [65] is a BFT relational database built on a standard SQLite, 
powered by a decentralized query engine. Hence, it seems to work as a private and permissioned 
Blockchain. It is an open-source alternative of Amazon QLDB. It also achieves decentralization 
by using peer-to-peer technology and keeps the integrity of the data stored in it. At the current 
date, they are still working on the whitepaper. 

FlureeDB: FlureeDB [66] is an enterprise Blockchain-based database solution that combines 
Blockchain’s security, immutability, decentralization and distributed ledger capabilities with a 
feature-rich graph-style database. It is composed by a database and a permissioned Blockchain. 
Regarding the ledger, it can be kept private among a consortium of entities or public for 
everyone.  

FlureeDB deviates from other Blockchain technologies, such as Hyperledger Fabric or Ethereum, 
by focusing on queries and being optimized for read performance. Hence, it can be used as a 
complement to these technologies, rather than a direct rival, by for example storing 
transactions´ data.  

HBasechainDB: HBasechainDB [67] is a big data storage system for distributed computing based 
on Blockchain. It achieves immutability and decentralization thanks to Blockchain and uses a 
HBase database. An HBase database [68] is a column-oriented non-relational database 
management system that runs on top of Hadoop Distributed File System (HDFS) and is fault-
tolerant. This database is not compatible with structured query languages, such as SQL, so it 
clearly deviates from other alternatives, such as CovenantSQL or ChainifyDB. Its scope seems 
therefore quite limited to big data applications, in particular those running Hadoop. Finally, 
HBasechainDB is permissioned, as only authorised nodes are able to submit transactions. 

In practice, HBasechainDB follows a similar approach than BigchainDB, but it uses Hadoop 
database instead of MongoDB. However, HBasechainDB seems to be more appropriate for big 
data applications as it uses Hadoop database. 

Although some of the more recent aforementioned technologies present some advantages in 
terms of performance, they also present some concerns in terms of governance because the 
network is under the control of an enterprise. In addition, more traditional Blockchain 
technologies, such as Ethereum or Hyperledger Fabric, have a big community behind them and 
are more extended. Hence, they are much more appropriate in terms of support and 
compatibility for the audit trail in MEDINA. 

  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 104 of 115 

www.medina-project.eu       

12 Appendix D: SSI-API Definition  

Figure 26, Figure 27, Figure 28, Figure 29 and Figure 30 show the different endpoints of the SSI-
API, showing the required parameters and the possible responses. 

 

Figure 26. MEDINA SSI-API: GET a Certificate from its certificate_id 

 

 

Figure 27. MEDINA SSI-API: DELETE a Certificate from its certificate_id 

 

 

Figure 28. MEDINA SSI-API: GET all certificates 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 105 of 115 

www.medina-project.eu       

 

Figure 29. MEDINA SSI-API: POST a Certificate 

 

 

Figure 30. MEDINA SSI-API: UPDATE a Certificate 

 

  

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 106 of 115 

www.medina-project.eu       

13 Appendix E: SSI-Webapp Manual 

13.1 General usage 

The first thing the webapp demands to the user is to connect to one of the available SSI-agents 
as shown in Figure 31. 

 

Figure 31. MEDINA SSI-webapp: Connection page while the user is connected to the issuer 
provider 

After selecting one SSI-agent, two new views will become available: status and account pages. 
The status page (shown in Figure 32) details some connection stats to verify that everything is 
working properly, while the account page (shown in Figure 33) allows the user to access his 
credentials and manage his account. This page has six tabs: invitations, did, data models, owned 
schemas, credentials, and presentations.  

 

 

Figure 32. MEDINA SSI-webapp: Web page showing the status of the current connection 

 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 107 of 115 

www.medina-project.eu       

 

Figure 33. MEDINA SSI-webapp: Connection page showing the configuration of the current 
connection 

13.2 Handling invitations  

After clicking in the “Invitations” tab, the current connection invitations and their state can be 
seen as shown in Figure 34. Each invitation can be deleted and/or downloaded. 

 

Figure 34. MEDINA SSI-webapp: Invitation tab showing the invitations sent or received by the 
current user 

To create a new invitation, the user must click on the “Create invitation” button as shown in 
Figure 35. Afterwards, the invitation will be copied to the clipboard and a new entry will appear 
in the list. This new entry will have a sharing button. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 108 of 115 

www.medina-project.eu       

 

Figure 35. MEDINA SSI-webapp: Invitation tab listing a new invitation to be shared. 

Clicking on the share button, a dialog will be opened as shown in Figure 36. This dialog contains 
a QR code with the invitation that the other party can scan to comfortably enter the invitation. 
Apart from that code, a “Copy to clipboard” button will allow to copy the invitation to the 
clipboard. 

 

Figure 36. MEDINA SSI-webapp: Dialog to share a connection invitation. 

The user who will be using this invitation to open a new connection with the former SSI agent 
must either manually introduce it (as shown in Figure 37) or simply scan it from its browser if 
both users are in the same location (as shown in Figure 38). The invitation could be shared using 
any external secure communication mechanism like an email or SMS. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 109 of 115 

www.medina-project.eu       

 

Figure 37. MEDINA SSI-webapp: Dialog used to accept a connection invitation. Form used to 
manually introduce the invitation. 

 

 

Figure 38. MEDINA SSI-webapp: Dialog used to accept a connection invitation. Scanning mode 

Any SSI-agent will automatically accept the invitation and complete the invitation procedure. 
Eventually both the invitation sender and receiver will see the new connection listed and marked 
as “completed” (shown in Figure 39). 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 110 of 115 

www.medina-project.eu       

 

Figure 39. MEDINA SSI-webapp: New invitation marked as completed. 

13.3 Managing DID, data models and owned schemas  

The DID tab lists all the available DIDs (either in wallet or user’s public DID) as shown in Figure 
40, and allows to create a new DID.  

 

Figure 40. MEDINA SSI-webapp: DID tab showing the DIDs of the current user. 

The “Data models” tab shows a list with the data models created by the user as shown in Figure 
41. It also allows to create new schemas with the “Create new schema” button as shown in 
Figure 42. The model must have a user and a version which univocally identifies it and some 
attributes (common attributes are provided by the autocompletion field). 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 111 of 115 

www.medina-project.eu       

 

Figure 41. MEDINA SSI-webapp: “Data models” tab listing the details of all the data models. 

 

Figure 42. MEDINA SSI-webapp: Creation of a new data models. 

The “Owned schemas” tab allows a user to claim the ownership of a certain data model (see 
Figure 43) and list the schemas she owns (see Figure 44). 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 112 of 115 

www.medina-project.eu       

 

Figure 43. MEDINA SSI-webapp: Dialog which allows the user to claim the ownership of a data 
model. 

 

Figure 44. MEDINA SSI-webapp: “Owned schema” tab listing after claiming ownership of the 
“user_profile” schema 

13.4 Issuing credentials  

An issuer can create a new credential using the “Create credential” button in the “Credentials” 
tab. The dialog will allow to send a credential auto-offer to another SSI-agent. That is, the 
credential sent by the issuer will be automatically accepted by the receiver (holder) and added 
to his wallet. 

To create a new credential, the user must select an active connection and an owned schema. 
After the schema selection, the form will be updated showing a text field for each of the 
attributes of this schema, as shown in Figure 45. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 113 of 115 

www.medina-project.eu       

 

Figure 45. MEDINA SSI-webapp: Credential sending dialog with the credentials provided to 
“MEDINA SSI Tecnalia Holder1” for the “userProf” schema. 

The holder can then list all the owned credentials from different issuers, as shown in Figure 46. 

 

Figure 46. MEDINA SSI-webapp: “Credentials” tab showing the credentials of “MEDINA SSI 
Tecnalia Holder1”. 

13.5 Proof exchange  

The “Presentations” tab shows the credentials presented to/by the current SSI agents. Any 
verifier can ask for a credential presentation using the “Request proofs” button in the 
“Presentations” tab as shown in Figure 47. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 114 of 115 

www.medina-project.eu       

 

Figure 47. MEDINA SSI-webapp: Dialog used to claim a credential presentation. 

Once the verifier has requested some proofs, the prover account will see the new request listed 
as shown in Figure 48. Afterwards, the prover can click on the “reply” button to open a new 
dialog where the credential to be presented in the response can be selected as shown in Figure 
49. 

 
Figure 48. MEDINA SSI-webapp: Presentation tab seen by the prover account. 

http://www.medina-project.eu/


D4.3 –Tools and Techniques for the Management  
and Evaluation of Cloud Security Certifications – v3 Version 1.0 – Final. Date: 30.04.2023 

© MEDINA Consortium   Contract No. GA 952633 Page 115 of 115 

www.medina-project.eu       

 

Figure 49. MEDINA SSI-webapp: Dialog used by a prover to manually choose the credential needed 
to answer to the presentation request 

Additionally, the list of requested proofs can be checked as shown in Figure 50, where two 
proofs are shown: the proof requested in the previous screenshot and a proof presentation 
which has been abandoned because the prover did not present a credential which satisfies it. 

 

Figure 50. MEDINA SSI-webapp: “Presentations” tab showing the credentials presented to 
“MEDINA SSI Tecnalia Verifier” 

http://www.medina-project.eu/

	Table of Contents
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure
	1.3 Updates from D4.2

	2 Background and Related Work
	2.1 Evaluating Cloud Security Certifications
	2.2 Operational Effectiveness
	2.3 Target of Evaluation
	2.4 Digital Audit Trails
	2.5 Hashes
	2.5.1 What is a Hash?
	2.5.2 Properties of a Good Hash Algorithm
	2.5.3 Are hashes completely irreversible?

	2.6 The Cloud Security Certification Life-Cycle

	3 Architecture
	3.1 Design Goals
	3.2 Architecture Overview and Data Flow Model
	3.3 Authorization and Filtering

	4 Establishment of a Digital Audit Trail in MEDINA
	4.1 Risk Assessment
	4.1.1 Assumptions
	4.1.2 Asset Classification Scheme
	4.1.3 Potential Users
	4.1.4 Protection Goals
	4.1.5 Potential Attackers
	4.1.6 Potential Attacks
	4.1.7 Likelihood of Exploitation
	4.1.8 Impact
	4.1.9 Risk Calculation
	4.1.10 Security Requirements

	4.2 Solutions for Audit Trails
	4.2.1 Quorum Energy consumption
	4.2.2 Quorum performance and scalability

	4.3 Guarantee of Data Integrity: Hash Functions
	4.3.1 Blockchain
	4.3.2 Evidence (and Assessment Result) Integrity

	4.4 Verifying Evidence and Assessment Results
	4.4.1 Calculation of Hashes in the Orchestrator
	4.4.2 Calculation of Hashes in the MEDINA Evidence Trustworthiness Management System
	4.4.3 Calculation of Hashes in an Additional Service
	4.4.1 Discussion with auditors

	4.5 Advancements within MEDINA
	4.6 Limitations and Future Work

	5 Continuous Evaluation of Cloud Security Certification in MEDINA
	5.1 Approach and Design
	5.1.1 Certification Evaluation Methodology
	5.1.1.1 Building the Tree Structure
	5.1.1.2 Aggregating the evaluation values
	5.1.1.3 Operational Effectiveness


	5.2 Implementation
	5.2.1 Functional Description
	5.2.1.1 Fitting into overall MEDINA Architecture
	5.2.1.2 Component card
	5.2.1.3 Requirements

	5.2.2 Technical Description
	5.2.2.1 Component Architecture
	5.2.2.2 Description of Components
	5.2.2.3 Technical Specifications


	5.3 Delivery and Usage
	5.3.1 Package Information
	5.3.2 Installation Instructions
	5.3.3 User Manual
	5.3.4 Licensing Information
	5.3.5 Download

	5.4 Advancements within MEDINA
	5.5 Limitations and Future Work

	6 Automation of the Cloud Security Certification Life-Cycle in MEDINA
	6.1 Risks and Mitigations in the MEDINA Certification Management
	6.1.1 Potential Risks
	6.1.2 Discussion of Smart Contracts as a Possible Mitigation

	6.2 Life-Cycle Manager
	6.2.1 Certificate States
	6.2.2 Automating Certification Decisions
	6.2.2.1 Option 1: No Automation
	6.2.2.2 Option 2: Complete Automation
	6.2.2.3 Option 3: Automation in Selected Cases
	6.2.2.4 Option 4: Automation Barring Manual Verification

	6.2.3 Implementation
	6.2.3.1 Functional Description
	6.2.3.1.1 Fitting into Overall MEDINA Architecture
	6.2.3.1.2 Component card
	6.2.3.1.3 Requirements

	6.2.3.2 Technical Description
	6.2.3.2.1 Component Architecture
	6.2.3.2.2 Description of Components
	6.2.3.2.3 Technical Specifications


	6.2.4 Delivery and usage
	6.2.4.1 Package information
	6.2.4.2 Installation instructions and User Manual
	6.2.4.3 Licensing Information
	6.2.4.4 Download

	6.2.1 Advancements within MEDINA
	6.2.2 Limitations and future work

	6.3 Self-Sovereign Identity (SSI) Framework
	6.3.1 Implementation
	6.3.1.1 Functional Description
	6.3.1.1.1 Fitting into overall MEDINA Architecture
	6.3.1.1.2 Component card
	6.3.1.1.3 Requirements

	6.3.1.2 Technical Description
	6.3.1.2.1 Prototype Architecture and Workflow
	6.3.1.2.2 Description of Components
	6.3.1.2.3 Technical specification


	6.3.2 Delivery and usage
	6.3.2.1 Package information
	6.3.2.2 Installation instructions
	6.3.2.3 User Manual
	6.3.2.4 Licensing information
	6.3.2.5 Download

	6.3.1 Advancements within MEDINA
	6.3.2 Limitations and future work

	6.4 Risk Mitigation
	6.5 Future Work
	6.5.1 Criteria for Certifying Tools in the context of the EU Cybersecurity Act
	6.5.2 Outlook: Compositional Certification in MEDINA
	6.5.2.1 Scenario 1: Infrastructure-as-a-Service
	6.5.2.2 Scenario 2: Multi-Cloud and Hybrid Cloud
	6.5.2.3 Scenario 4: Cloud-Edge-Continuum
	6.5.2.4 Scenario 5: Federated Services



	7 Conclusions
	8 References
	9 Appendix A: Current Leading Hash Algorithms
	10 Appendix B: Alternatives to Blockchain for Audit Trails
	10.1 Blockchain vs Traditional databases
	10.2 Blockchain vs Replicated databases

	11 Appendix C: Blockchain Technologies
	11.1 Consensus Algorithms
	11.2 Private vs Public
	11.3 Technical comparison

	12 Appendix D: SSI-API Definition
	13 Appendix E: SSI-Webapp Manual
	13.1 General usage
	13.2 Handling invitations
	13.3 Managing DID, data models and owned schemas
	13.4 Issuing credentials
	13.5 Proof exchange


