

Deliverable D5.2

MEDINA requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy-v2

Editor(s): Iñaki Etxaniz, Juncal Alonso

Responsible Partner: Fundación TECNALIA Research & Innovation (TECNALIA)

Status-Version: Final – v1.0

Date: 04.11.2022

Distribution level (CO, PU): PU

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 2 of 120

www.medina-project.eu

Project Number: 952633

Project Title: MEDINA

Title of Deliverable:
MEDINA requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy – v2

Due Date of Delivery to the EC 31.10.2022

Work package responsible for the
Deliverable:

WP5 - MEDINA Framework Integration

Editor(s): Iñaki Etxaniz, Juncal Alonso (TECNALIA)

Contributor(s): Bosch, FhG, HPE, XLAB, Fabasoft

Reviewer(s): Jesús Luna (Bosch), Cristina Martínez (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP4, WP6

Abstract: This deliverable has a threefold goal. Firstly, it contains

the requirements of the MEDINA framework in close
collaboration with Task 6.1.
Secondly, it describes the MEDINA architecture: its
components, workflow, and interfaces.
Thirdly, it details the DevOps infrastructure, namely the
set of tools and services to support the continuous
integration and deployment phases, as well as the CI/CD
strategy followed for the integration of the MEDINA
framework.

Keyword List: Architecture, Requirements, Use Cases, DevOps, CI/CD

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 3 of 120

www.medina-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 01.08.2022 Initial TOC and assignments TECNALIA

v0.2 14.09.2022 Section 5: added
Section 3: completely refurbished
Section 4.1: several FR updated

HPE
Bosch, Fabasoft
TECNALIA, Bosch, FhG,
HPE, XLAB, Fabasoft

v0.3 28.09.2022 Section 4: general updates.
Section 5.3: component cards updated

TECNALIA, Bosch, FhG,
HPE, XLAB, Fabasoft

v0.4 10.10.2022 Architecture (section 4) completed
Section 4.4 Requirement Analysis

TECNALIA, Bosch, FhG,
HPE, XLAB, Fabasoft

v0.5 17.10.2022 Architecture diagrams updated
Introduction & Conclusions added
Section 2 updated
Section 4.4: summary part added
Executive summary

TECNALIA

v0.6 20.10.2022 Internal review Jesus Luna (Bosch)

v0.7 02.11.2022 Reviewer comments addressed TECNALIA, Bosch, FhG,
HPE

v0.8 02.11.2022 Final quality review Cristina Martínez
(TECNALIA)

v1.0 04.11.2021 Final version submitted to the
European Commission

Cristina Martínez
(TECNALIA)

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 4 of 120

www.medina-project.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 9

1 Introduction ... 11

1.1 About this deliverable .. 11

1.2 Document structure ... 11

1.3 Update from D5.1 ... 12

2 MEDINA Use Cases ... 13

2.1 UC1: European Certification of Multi-cloud backends for IoT solutions 13

2.1.1 Integration Approach .. 13

2.1.2 Testbed .. 13

2.2 UC2: European Cloud Service Provider SaaS public & private cloud 14

2.2.1 Integration Approach and Expected Benefits (after MEDINA) 14

2.2.2 Testbed .. 15

3 MEDINA Framework Requirements ... 17

3.1 Functional requirements .. 18

3.1.1 Catalogue of control and metrics .. 18

3.1.2 Certification Language ... 19

3.1.3 Risk assessment and optimisation framework .. 21

3.1.4 Evidence gathering tools ... 21

3.1.5 Evidence Assessment tool ... 23

3.1.6 Continuous Evaluation and Certification Life-Cycle .. 23

3.1.7 Integrated User Interface .. 25

3.2 Analysis of Requirements ... 27

3.2.1 Mapping of Requirements to KRs ... 27

3.2.2 Mapping of WP5 requirements to WP6 requirements 29

3.2.3 Prioritization and status of requirements ... 32

3.2.4 Requirements Summary Dashboard ... 35

4 MEDINA Framework Architecture ... 38

4.1 MEDINA workflows .. 38

4.2 MEDINA framework ... 39

4.3 MEDINA data model ... 42

4.4 MEDINA components structural and behavioural description 44

4.4.1 Catalogue ... 44

4.4.2 Certification language ... 45

4.4.3 Risk assessment and optimisation framework .. 49

4.4.4 Continuous Evaluation and Certification Life-Cycle .. 51

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 5 of 120

www.medina-project.eu

4.4.5 Organizational evidence gathering and processing .. 56

4.4.6 Orchestrator and databases .. 57

4.4.7 Evidence Collection and Security Assessment .. 59

4.4.8 Integrated User Interface .. 67

4.5 MEDINA Deployment Models .. 68

5 MEDINA DevOps Infrastructure and CI/CD and Verification Strategy 70

5.1 Implemented CI/CD pipeline .. 70

5.2 Infrastructure in MEDINA framework .. 71

5.2.1 CI/CD supporting tools .. 71

5.2.2 Development and Test Environment .. 73

5.2.3 Validation Environment .. 73

6 Conclusions .. 74

7 References ... 75

8 Appendix A. Requirements Management in MEDINA ... 78

8.1 Methodology for requirements elicitation ... 78

8.2 Requirements gathering and prioritization process ... 78

8.3 Requirements documentation ... 80

9 Appendix B. Use Cases Definition .. 81

9.1 UC1: European Certification of Multi-cloud backends for IoT solutions 81

9.2 UC2: European Cloud Service Provider SaaS public & private cloud 81

9.3 List of Use Cases requirements .. 82

10 Appendix C. List of Requirements .. 85

10.1 Functional requirements .. 85

10.1.1 Catalogue of controls and metrics .. 85

10.1.2 Certification Language ... 88

10.1.3 Risk based selection of controls framework ... 91

10.1.4 Evidence gathering tools ... 92

10.1.5 Evidence Assessment tool ... 97

10.1.6 Continuous Evaluation and Certification Life-Cycle .. 98

10.1.7 Integrated User Interface .. 103

10.2 Non-functional requirements ... 104

10.2.1 NF Requirements for the development of CI/CD tools 104

11 Appendix D. CI/CD Strategy ... 108

11.1 Quality & Assurance ... 110

11.2 Containerization deployment model ... 111

11.3 CI/CD supporting tools ... 111

11.3.1 Analysis of CI/CD Tools .. 112

11.3.2 Quality and Assurance Tools ... 118

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 6 of 120

www.medina-project.eu

11.3.3 Selection of tools ... 120

 List of tables

TABLE 1. OVERVIEW OF DELIVERABLE UPDATES WITH RESPECT TO D5.1 .. 12
TABLE 2. COLOUR CODING FOLLOWED IN THE REQUIREMENTS TABLES .. 17
TABLE 3. FUNCTIONAL REQUIREMENTS AND KRS ALIGNMENT.. 27
TABLE 4. MAPPING OF FUNCTIONAL REQUIREMENTS TO UC REQUIREMENTS ... 29
TABLE 5. REQUIREMENT PRIORITIZATION AND STATUS ... 33
TABLE 6. SUMMARY TABLE OF REQUIREMENTS STATUS AT M24 (BY KR) ... 36
TABLE 7. REQUIREMENT PROGRESS SUMMARY (BY KR) .. 37
TABLE 8. MEDINA WORKFLOWS ... 38
TABLE 9. SOFTWARE DEVELOPMENT TOOLS .. 72
TABLE 10. LIST OF USE CASE REQUIREMENTS ... 83
TABLE 11. MAPPING OF CI/CD TOOLS WITH NF REQUIREMENTS. .. 120

List of figures

FIGURE 1. ILLUSTRATION OF UC2 DEMO-SYSTEM ... 14
FIGURE 2. SCREENSHOT OF THE ACTUAL UC2 DEMO-SYSTEM IMPLEMENTATION .. 15
FIGURE 3. REQUIREMENT STATUS BY KR AT M24 ... 36
FIGURE 4. REQUIREMENT PROGRESS (BY KR) ... 37
FIGURE 5. PROCESS FOLLOWED IN MEDINA TO DEVELOP THE MEDINA ARCHITECTURE 38
FIGURE 6. ARCHITECTURE DIAGRAM OF THE MEDINA FRAMEWORK .. 40
FIGURE 7. MEDINA FRAMEWORK DATA MODEL ... 43
FIGURE 8. CI/CD PIPELINES IN MEDINA (SOURCE D5.3 [3]) ... 71
FIGURE 9. DEFECTDOJO DASHBOARD .. 72
FIGURE 10. DEVELOPMENT AND TESTING ENVIRONMENTS ... 73
FIGURE 11. DIFFERENT REQUIREMENTS SOURCES IN MEDINA .. 78
FIGURE 12. PROCESS FOLLOWED IN MEDINA FOR REQUIREMENTS GATHERING AND PRIORITIZATION 79
FIGURE 13. HIGH-LEVEL VIEW OF USE CASE 1 DEPLOYMENT. .. 81
FIGURE 14. CI/CD PIPELINE .. 109

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 7 of 120

www.medina-project.eu

Terms and abbreviations

AMOE Assessment and management of organizational evidence

API Application Programming Interface

AWS Amazon Web Services

BSI Bundesamt für Sicherheit in der Informationstechnik

CAB Conformance Assessment Body

CCD Company Compliance Dashboard

CI/CD Continuous Integration / Continuous Delivery

CISO Chief Information Security Officer

CISQ Consortium for Information & Software Quality

CloudPG Cloud Property Graph

CNL Controlled Natural Language

CORS Cross-Origin Resource Sharing

CS Cloud Service

CSA or EU CSA EU Cybersecurity Act

CSP Cloud Service Provider

CVE Common Vulnerabilities and Exposures

CVS Concurrent Versioning System

CWE Common Weakness Enumeration

DevOps Development and Operations

DoA Description of Action

DSL Domain Specific Language

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

gRPC Google Remote Procedure Call

ICI Internal Control Implementer

ICO Internal Control Owner

IEC International Electrotechnical Commission

IoT Internet of Things

ISO International Organization for Standardization

IUI Integrated User Interface

KR Key Result

NCCA Non-Conformity Certification Authority

NL2CNL Natural Language To Controlled Natural Language

KPI Key Performance Indicator

NLP Natural Language Processing

OCR Optical Character Recognition

OS Open Source

OWASP Open Web Application Security Project

OWL Web Ontology Language

PII Personally Identifiable Information

REST Representational State Transfer

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 8 of 120

www.medina-project.eu

SaaS Software as a Service

SATRA Self-Assessment Tool for Risk Analysis

SDLC Software Development Life Cycle

SSI Self-Sovereign Identity

ToC Target Of Certification

TOM Technical and Organizational Measure (aka Requirement)

TRL Technology Readiness Level

UC Use Case

VAT Vulnerability Assessment Tools

VDE Virtual Development Environment

VM Virtual Machine

XML Extensible Markup Language

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 9 of 120

www.medina-project.eu

Executive Summary

This deliverable, D5.2, is the second release of the detailed definition of the MEDINA framework,
being developed in the scope of Task 5.1 and Task 5.2. It updates and enhances the previous
version, D5.1 [1], delivered at M12. The goal of this document is to be a comprehensive report
containing the general definition of the MEDINA framework, the development methodology to
be followed in the project, and the infrastructure used to construct the solution.

This document follows the same structure as D5.1 and includes part of its content to keep the
document self-contained and easier to follow, thus avoiding constant references to the first
release. In this regard, the chapter dedicated to the requirement management process is mainly
unchanged, as the methodology for requirement elicitation was already defined in the previous
version and has not changed. The referred process combines requirements coming top-down
from the Use Cases and requirements going bottom-up from the component owners.

The two MEDINA use cases are also briefly presented. These are the up-to-date versions that
have been extracted from D6.3 [2]. Additionally, the list of UC requirements is included for
completeness.

The bulk of the document is devoted to defining the components of the MEDINA framework. To
this end, the functional and non-functional requirements of each component have been
updated and extended. A total of 100 requirements are presented (88 functional and 12 non-
functional). Of them, 21 requirements have been added since the previous version of this report
(D5.1), while other 6 have been discarded. An analysis of the relations and dependencies
between requirements, Key Results and architecture components is also presented. In this
version of the document, we have included a requirement status dashboard to complete the
requirements chapter. The conclusions are that 96% of the requirements have been at least
partially implemented, and that most of them (53%) are already fully implemented. Only 4% of
the requirements are about to be implemented.

The document also outlines the architecture of MEDINA. The structural and behavioural
description of the components conforming the MEDINA framework has been detailed. Each
component is described by means of a template called “component card”, that includes the
main information regarding the component: functionalities, sub-components, interfaces,
sequence diagrams, etc. As a result of the architecture definition work, two new components
have been defined this year, namely the Automated Self-Sovereign Identity-based certificates
management (SSI) and the Integrated User Interface, giving a total of 15 components. The
architectural framework is presented as divided in eight “building blocks” or groups, each with
distinct functionality.1

Finally, the deliverable describes the infrastructure used to build and demonstrate the MEDINA
framework and the Continuous Integration (CI) strategy followed, which includes version control
functionalities, regular check-ins, and automated testing. The Continuous Delivery (CD), which
automates the release of the app into production without manual intervention, is also
presented. The containerized deployment model (based on Docker and virtual machines) used
in MEDINA is described. The list of tools selected to implement this whole process has been
adjusted in the categories of static code analysis and dynamic code analysis.

1 MEDINA building blocks are: Catalogue, Certification language, Risk assessment and optimisation
framework, Continuous Evaluation and Certification Life-Cycle, Organizational Evidence Gathering and
Processing, Orchestrator and Databases, Evidence Collection and Security Assessment, and Integrated UI.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 10 of 120

www.medina-project.eu

The next steps will be dedicated to finish the implementation of components tackling the
pending requirements, and integrating and testing them into the MEDINA infrastructure.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 11 of 120

www.medina-project.eu

1 Introduction

This section explains the goal and purpose of the deliverable, its context, and its structure.

1.1 About this deliverable

This deliverable is the second release of the WP5 report dedicated to describing the general
MEDINA framework. It is based on the first version of deliverable (D5.1 [1]), maintaining the
same structure.

WP5 “MEDINA framework Integration” has five deliverables that can be divided in two parallel
series:

• Those that define the MEDINA framework in detail (D5.1 [1] and D5.2)

• Those that describe the developed solution (D5.3 [3], D5.4, and D5.5)

The main goal of this document is, therefore, to be a comprehensive document containing the
general definition of the MEDINA framework, the development methodology followed in the
project, and the infrastructure employed to build the solution. It is the result of tasks T5.1
“Requirements, architecture and Infrastructure Specifications” and T5.2 “Framework CI/CD
strategy definition” and contributes to the following WP5 purposes:

• To design the overall architecture of the MEDINA framework

• To provide the basis for the integration of the components (key results KR1 to KR6)

• To define and set up the Continuous Integration and Deployment (CI/CD) strategy of
MEDINA

The main portion of the document is devoted to defining the components of the MEDINA
framework. For this, the functional and non-functional requirements for each component are
provided. Then, the description of the architecture of MEDINA forms the second part of the
document, i.e., components and interfaces. The structural and behavioural description of the
components conforming the MEDINA framework is detailed by means of a template called
“component card”, which includes the main information related to the component:
functionalities, sub-components, interfaces, sequence diagrams, among others. In addition, the
MEDINA data model is described, classifying the different entities into eight groups according to
the building block to which they belong.

As mentioned above, this deliverable is the second version of D5.1 [1]. Due to the progress of
the project in the 12 months since the first version, the content has been updated and expanded.
However, as the aim is to provide a self-contained deliverable that facilitates the reader´s
understanding, both documents share content that remains unchanged. Although the changes
are pointed out throughout the document, a table of the main changes is provided in Section
1.3.

1.2 Document structure

The rest of the document is structured as follows:

• Section 2 describes the two use cases developed in MEDINA to validate and test the
framework prototypes. It explains how they are integrated in the actual systems used
by Bosch and Fabasoft, and what the main objective of each use case is.

• Section 3 describes the requirements of the MEDINA framework. Requirements are
primarily organized as functional vs non-functional requirements. A further division is
made attending the component (aka module) owning the requirement.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 12 of 120

www.medina-project.eu

• Section 4 presents the architecture of MEDINA. The components conforming the
MEDINA framework are detailed, as well as the workflows. It also describes the
interfaces implemented between the components, and the data model used.

• Section 5 details the CI/CD strategy followed for the continuous integration of the
MEDINA framework. Also, the DevOps infrastructure used in the project is defined and
described, including the set of tools and services needed to support the DevOps
approach, and the different environments defined to support the development,
integration, and deployment phases.

• Section 6 summarizes and briefly comments on the reported results.

The Appendixes sections contain sections of the document that are largely unchanged with
respect to the previous version (D5.1):

• Methodology for requirements elicitation in MEDINA (Appendix A. Requirements
Management in MEDINA)

• Description of the MEDINA use cases (Appendix B. Use Cases Definition)

• Full list of MEDINA Framework requirements (Appendix C. List of Requirements) and

• CI/CD Strategy to follow for the continuous integration of the MEDINA framework
(Appendix D. CI/CD Strategy)

1.3 Update from D5.1

For simpler tracking of progress and updates with regards to the previous deliverable version
(D5.1), Table 1 shows a brief overview of the changes and additions to each of the document
sections.

Table 1. Overview of deliverable updates with respect to D5.1

Section Change

2 Use Case 1 and Use Case 2 have updated their integration approach, and have
included their testbed.

3 This section includes those requirements that have been added, discarded, or
modified in their description.
The requirements analysis includes updated tables to show the alignment
between requirements and KRs, and the status of requirements. A new
mapping table between functional requirements and use case requirements
has been included. A summary dashboard has also been developed.

4 The MEDINA framework architecture and the Data Model diagrams have been
updated to reflect changes in the last release of the components.
The Component cards have also been updated. Two new components, named
Automated SSI-based certificates management (SSI) and Integrated User
Interface (IUI), have been added.

5

The implemented CI/CD pipeline is described.
The sub-section on the infrastructure for the MEDINA framework has been
updated to reflect the actual situation in terms of supporting tools,
development, test, and validation environments.

Appendix A Includes the requirements management methodology, unchanged since v1.

Appendix B The Use Cases definition remains basically the same.
The list of use case requirement corresponds to the latest version of the WP6
documents, extracted from D6.3 [2].

Appendix C Contains the complete list of requirements. It includes those that remain
unchanged since v1 and those that have been discarded, added o modified.

Appendix D Includes the CI/CD strategy, unchanged since v1.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 13 of 120

www.medina-project.eu

2 MEDINA Use Cases

This section provides an update related to the implementation of the MEDINA use cases which
have been previously described in D5.1 [1]. On one hand we refer to the use case 1 (UC1)
provided by the partner Bosch, which focuses on the EUCS certification scheme for high
assurance [4], based on a multicloud deployment leveraging three public cloud service
providers. On the other hand, the second use case (UC2) is provided by the partner Fabasoft and
builds around the real compliance activities regarding the Fabasoft Business Process Cloud.

It is worth to notice that the definition of the use cases has not changed with respect to the
description found in D5.1. This part has been moved to Appendix B. Use Cases Definition.
However, its degree of implementation has progressed due to the ongoing validation activities.

The rest of this section summarizes the implementation approach and associated progress for
both UC1 and UC2. More details can be found in D6.3 [2].

2.1 UC1: European Certification of Multi-cloud backends for IoT
solutions

2.1.1 Integration Approach

In D5.3 [3] a set of seven generic workflows was introduced, which form the basis for
instantiating real-world scenarios with the MEDINA framework. The proposed workflows play
two very important roles from a use case validation perspective, by:

• Allowing the project to evaluate if all framework’s components are interacting among
them, and

• enabling MEDINA’s early adopters to use the framework in different cloud security
certification contexts.

The implementation approach followed by Bosch instantiates each one of the seven
documented generic workflows (see D6.3 [2], Appendix C) in the deployed testbed which is
presented below. For the sake of completeness, D6.3 also shows the basic sequence of actions
needed to implement the referred workflows in the Bosch testbed2. The integration approach
of UC1 demonstrates how each workflow is correlated to the user stories from Bosch to
indirectly guarantee full coverage of the elicited components’ requirements.

As required background for this report, the following section presents the deployed Bosch
testbed (more details can be found in D6.3 [2]).

2.1.2 Testbed

For the purposes of the initial validation milestone, Bosch setup a testbed in its corporate
Microsoft Azure tenant (bosch.onmicrosoft.com), consisting of a Subscription3 containing the 28
cloud resources including:

• Virtual Machines,

• Network security groups,

• Software defined networks,

• Virtual disks,

• Public IP addresses, and

2 Detailed explanation of the presented workflow steps can be found in D6.3 [2]
3 In Microsoft’s Azure terminology, a Subscription is a virtual container of cloud resources. From a MEDINA
perspective, a Subscription is considered synonym of “Cloud Service” to certify.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 14 of 120

www.medina-project.eu

• Raw storage (virtualized).

In order to validate the capabilities of the deployed evidence collectors, and the configured
technical metrics, some resources in the testbed were misconfigured (e.g., reducing the
retention time in some of the virtual storage services, or disabling data-at-rest encryption on
the virtual machine’s disks). Despite the final MEDINA framework aims to support multiple
targets of certification (ToC), the deployed testbed provides only one during this initial
implementation effort. In any case, the implemented certification logic allows the MEDINA
framework to aggregate the compliance status of the underlying cloud services/resources to
manage a unique EUCS certificate for the ToC.

To complement the implementation of the testbed validating the technical metrics, this task
also benefited from MEDINA framework’s support to the assessment of organizational metrics.
For that purpose, and as part of the implementation efforts, the deployed testbed also included
a PDF version of Bosch’s security concept of its IoT Cloud (BIC). The BIC security concept
leverages the ISO/IEC 27001 structure to document cloud service aspects like shared
responsibility, access control, asset management, cryptography, operations security, and
communication security. Due to copyright and confidentially reasons it is not possible to include
a verbatim copy of the BIC security concept in this deliverable, however further details related
to the automated assessment of both technical and organizational measures can be found in
D6.3 [2].

2.2 UC2: European Cloud Service Provider SaaS public & private cloud

2.2.1 Integration Approach and Expected Benefits (after MEDINA)

Fabasoft expects MEDINA to offer a strong increase in efficiency combined with a significant cost
reduction in the long run, especially when it comes to multi-audits for different compliance
frameworks. To achieve that and to test the MEDINA functionality, Fabasoft will set up a Demo-
System in a Virtual Development Environment (VDE) which is a perfect virtual clone of the
Fabasoft Cloud production environment. By doing this, both scenarios can be achieved: the
application of MEDINA in a private and a public cloud SaaS solution.4

Figure 1. Illustration of UC2 Demo-System

Currently, there is no scenario where a CSP would simply install a MEDINA software framework
into its own datacentres and let it “just work”. So, to make use of the MEDINA approach, UC2
will tackle it as a framework that can be accessed via an audit API, illustrated as the green lines

4 The VDE is applicable for the public Fabasoft Cloud and the on-premises installation, the private cloud.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 15 of 120

www.medina-project.eu

in Figure 1, which will enable a Compliance Manager at Fabasoft to communicate with the
several components offered by MEDINA. MEDINA will not have direct access to the Fabasoft
Cloud at all levels and each stack, but will “ask” for correct return values according to the
configuration of an audit that the Compliance Manager will specify in the Fabasoft Certification
App. The Audit API is also the point of connection for the auditor, who will have to validate the
Fabasoft implementation for all Security Controls and the different implementations of the
configured return values to the MEDINA framework. Figure 2 shows a screenshot of the current
development of the UC2 demonstrator system, the CCD. A live demo is available as of October
2022.

Figure 2. Screenshot of the actual UC2 demo-system implementation

Note that the auditor does not directly interact with the Fabasoft system. We will design it this
way, because we expect auditors to use a specific MEDINA UI to fulfil their tasks within an audit
process. We strongly believe that if auditors would have to connect to each individual
implementation of a MEDINA audit functionality, the number of different systems an auditor
has to deal with will create a huge overhead for them and thus is not feasible.

2.2.2 Testbed

For UC2, the testing approach is twofold. The main approach is by utilizing the Company
Compliance Dashboard (CCD, see D6.2 [5] and D6.3 [2]). Here it is possible to cover a good set
of EUCS requirements – some automatically, some manually – with the actual Fabasoft
approach, used for instance in BSI C5 audits. The CCD will communicate via the implemented
APIs with MEDINA and transport results and checks in the recommended form of an
“Assessment Rule” to the orchestrating component Clouditor5. The CCD is currently in
development by the Fabasoft MEDINA team, please refer to D6.3 [2] for more details.

The second approach is similar to the methodology of UC1: for the purposes of the additional
validation milestones, Fabasoft will set up a testbed that hosts a micro-service deployment in
OpenStack. This testbed will be able to communicate continuously with Clouditor once it
addresses OpenStack. If OpenStack is not going to be an option in the scope of MEDINA, Fabasoft
will address the issue by deploying a testbed in AWS, which Clouditor is already familiar with.
The deployed service will be either a document-transformation-service or an OCR-service.

In order to validate the capabilities of the deployed evidence collectors, and the configured
technical metrics, some resources in the testbed will be misconfigured (e.g., reducing the

5 More details can be found in D3.5 [14].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 16 of 120

www.medina-project.eu

retention time in some of the virtual storage services, or disabling data-at-rest encryption on
the virtual machine’s disks). Despite the final MEDINA framework aims to support multiple
targets of certification (ToC), the deployed testbed provides only one during this initial
implementation effort. In any case, the implemented certification logic allows the MEDINA
framework to aggregate the compliance status of the underlying cloud services/resources to
manage a unique EUCS certificate for the ToC.

To complement the implementation of the testbed validating the technical metrics, this task
also benefited from MEDINA framework’s support to the assessment of organizational metrics.
For that purpose, and as part of the implementation efforts, Fabasoft created a MEDINA
example policy document. Further details related to the automated assessment of both
technical and organizational measures can be found in D6.3 [2].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 17 of 120

www.medina-project.eu

3 MEDINA Framework Requirements

The methodology that has been used for the elicitation of requirements in MEDINA is explained
in Appendix A. Requirements Management in MEDINA. It combines a top-down and a bottom-
up approach to implement the requirements gathering process: generic functionalities of the
MEDINA framework to offer its value propositions from one side and what Use Cases expect
from MEDINA components from the other side.

In MEDINA, requirements are mainly defined to provide an understanding of what will the
MEDINA framework will offer, i.e., its functionalities. Requirements are grouped by typology [6]:

• Functional requirements are presented as lists of features or services that the system
has to provide according to the assigned priority. They also describe the behaviour of
the system in the face of particular inputs and how it should react in certain situations.

• Non-Functional requirements represent system-related constraints and properties,
such as time constraints, constraints on the development process and on the standards
to be adopted. Non-functional requirements may constrain the process, or the elements
used to develop the system (e.g., performance, usability).

These requirements cover all the components to be implemented in the context of the MEDINA
technical Work Packages, namely WP2, WP3 and WP4.

As this is the second release of the MEDINA requirements, it is an evolution of the first version
presented in D5.1 [1]. As a result, most of requirements remain unchanged6, while some new
ones have been added, some have been discarded and some have changed their meaning
significatively.

For the sake of brevity, in Section 3.1 we list only the new, modified, and discarded functional
requirements. The list of non-functional requirements remains unchanged. The complete list of
requirements, also including the unchanged requirements, can be found in Appendix C. List of
Requirements. More compact views of the list of requirements can also be obtained from the
tables presented in the requirements analysis (see Section 3.2).

To make it easier for the reader to understand the changes, Table 2 shows the colour code that
has been followed in the requirement tables.

Table 2. Colour coding followed in the requirements tables

A white table means the requirement has not changed.7
It remains the same as in the previous version of the document.

An orange table means the requirement has significantly changed its definition,
which affects the meaning, provides more clarity, or modifies the scope.

A red table means the requirement has been definitively rejected.
The reason of the rejection is provided along with the status.

A green table means the requirement is new in this second version, so a new
functionality is defined for the component.

6 “Unchanged” is used here in the sense that the essential meaning of the requirement is unaffected. We
do not refer to the status of the requirement, that could have changed with respect to the previous
version of the document.
7 In this section, the unmodified requirements are not shown, so no white table appears. For the full list
of requirements, see Appendix C. List of Requirements.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 18 of 120

www.medina-project.eu

The possible status of a requirement is one of this: proposed, discarded, partially implemented,
or fully implemented.

3.1 Functional requirements

This section shows the modified, elicited or discarded functional requirements related to the
components of the MEDINA framework.

3.1.1 Catalogue of control and metrics

The modified, new, and discarded requirements of the Catalogue of controls and metrics
component are shown below. The complete list of requirements can be found in Appendix C.
List of Requirements.

Requirement id RCME.02

Short title Metrics and TOMs in the repository

Description (*) The repository should include realizable metrics for at least for the 70% of
the TOMs referenced in EUCS-High assurance requiring “continuous
(automated)” monitoring

Status Partially implemented

Priority Must

Related KR KR1

Reference DoA part B Annex 1 page 7 [7]

(*) This requirement has been modified due to the reformulation of KPI 1.1 in July 2022 based
on the new scope of the MEDINA technical metrics, which focus on the high-level requirements

of the ENISA EUCS Cloud Security Certification Scheme.

Requirement id RCME.07

Short title Interface to risk assurance

Description When the certification scheme changes in some way (partial changes,
requirements, new versions), the risk assurance component has to be
notified, or be able to know that something has changed.

Status Partially implemented

Priority Should

Related KR KR1

Reference WP2/WP4 Technical discussions. The risk assurance component needs to
be aware of the changes on the certification schemes, which are in the
Catalogue.

Requirement id RCME.08

Short title Catalogue GUI

Description The Catalogue has a GUI to search and show the different content it stores.
This GUI is going to be part of the MEDINA Integrated-UI.
Enhancements and adaptations due to changes in the data model are
foreseen until the final version of the Catalogue.

Status Partially implemented

Priority Must

Related KR KR1

Reference WP2/WP4 Technical discussions. The introduction of the Integrated UI
(IUI) component requires this interaction.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 19 of 120

www.medina-project.eu

Requirement id RCME.09

Short title Questionnaire for self-assessment

Description The Catalogue shall contain a questionnaire that helps a Cloud Service
Provider to make a self-assessment of the fulfilment degree of the EUCS
standard. This questionnaire will have the following features:

1) Allow the user to select the assurance level for the assessment
2) Provide one or more questions to check the fulfilment of every

requirement, of each control in each EUCS category
3) Provide an easy-to-use scale of support for the questions

(fully/partially/not supported)
4) Allow the user to enter comments related to a question
5) Allow the user to include textual references to locate the evidence

to support the response given to a specific question
6) Provide a dashboard that summarizes the result of the

assessment, and provides quantitative values to reflect the degree
of fulfilment

Status Partially implemented

Priority Could

Related KR KR1

Reference WP2/WP3 Technical discussions. In the first year, the questionnaire was
worked out in task T3.1 and shaped as an excel file. It will be integrated in
the Catalogue v2.

Requirement id RCME.10

Short title Questionnaire for auditors

Description The Catalogue shall contain a questionnaire that can be used by an auditor
to assist him/her in the audit process. For that purpose, the tool can
provide some extra functionalities such as:

1) Allow to enter non-conformities regarding a question
2) Provide a dashboard that summarizes the result of the audit,

including the related comments/non-conformities for each
requirement, as well as quantitative values to reflect the degree
of fulfilment for each control

Status Partially implemented

Priority Could

Related KR KR 1

Reference WP2/WP3 Technical discussions. In the first year, the questionnaire was
worked out in task T3.1 and shaped as an excel file. It will be integrated in
the Catalogue v2.

3.1.2 Certification Language

The modified, new, and discarded requirements of the Certification Language components are
shown below. The complete list of requirements can be found in Appendix C. List of
Requirements.

3.1.2.1 NL2CNL Translator

Requirement id NL2CNL.01

Short title Translation from natural language to controlled natural language

Description (*) The tool shall be able to translate in a semi-automatic way the
requirements selected from a security certification scheme – originally

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 20 of 120

www.medina-project.eu

expressed in natural language (English), into a set of obligations expressed
in a controlled natural language.
The output of the tool will be checked manually to verify if the obligations
generated by the tool are correctly linked to the selected requirement.

Status Partially implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description [7]

(*) The description has been polished and completed. About the input, it now refers to translate
“requirements” and not “most relevant aspects” of a security scheme. About the output, it says
“into a set of obligations expressed in a CNL” instead of “into a controlled natural language”. It
has been added a sentence about the output checking.

Requirement id NL2CNL.03

Short title Translation of organizational measures and technical measures

Description (*) NL2CNL translator will be able to translate some of the organizational
measures specified in the chosen EU cloud certification scheme, and some
of the technical measures.

Status Partially implemented

Priority Should

Related KR KR3

Reference DoA, KR3 description [7]

(*) The scope has been moderated. It now talks about translate “some”, not “all the
organizational measures”.

Requirement id NL2CNL.05

Short title XML compliant

Description The controlled natural language output of NL2CNL translator will be
compliant with the XML based format supported by the CNL Editor.

Status DISCARDED: duplicates the requirement NL2CNL.04

Priority Must

Related KR KR3

Reference DoA, KR3 description [7]

3.1.2.2 CNL Editor

Requirement id CNLE.02

Short title CNL Editor policies authoring

Description The CNL Editor will allow creating statements for security controls.

Status DISCARDED: the workflow changed during project discussions respect to
the initial idea, as a consequence the CNL Editor must not create
Obligations.

Priority Must

Related KR KR3

Reference DoA, KR3 description [7]

3.1.2.3 DSL Mapper

Requirement id DSLM.02

Short title Mapping elements

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 21 of 120

www.medina-project.eu

Requirement id DSLM.03

Short title DSL output compliancy

Description The tool will output REGO rules, compliant with the input required by the
Orchestrator.

Status Partially implemented

Priority Must

Related KR KR3

Reference This requirement was introduced to allow a straightforward
interoperability between the DSL mapper and the Orchestrator, which is
the main component it will need to interface with.

3.1.3 Risk assessment and optimisation framework

The discarded requirement of the Risk assessment and optimisation framework component is
shown below. The complete list of requirements can be found in Appendix C. List of
Requirements.

Requirement id RBSCF.04

Short title Interface to the auditor

Description Auditor follows a risk-based approach which provides flexibility to the
certification process: since an ever-changing threat landscape often
requires timely reaction from the security team provoking changes in the
security configurations. These could be efficient from the risk treatment
point of view, but will affect the previously obtained certificate, in the
worst case, invalidating it.

Status DISCARDED: The component provides the possibility to access the input
parameters and results of the assessment to a Compliance Manager (role).
An Auditor will have access to the component using the same
functionality. In other words, there is no need to develop a separate
interface for an auditor, as it will use the same interface that a Compliance
Manager uses. In short, the requirement is automatically fulfilled by
granting the auditor the rights of the Compliance Manager.

Priority Must

Related KR KR6

Reference DoA. Page 9 [7]

3.1.4 Evidence gathering tools

The modified, new, and discarded requirements of the Evidence gathering tools are shown
below. The complete list of requirements can be found in Appendix C. List of Requirements.

Description The mapping process will consider relevant elements of the target
certification framework, including (some) technical and organizational
measures, quantitative/qualitative security metrics, complex compliance
conditions, and cloud supply chain elements. The mapping process will
prioritize the translation of those requirements in CNL that can
automatically be enforced by WP4 and that are considered highly relevant
by the EU authorities at stage.

Status DISCARDED: Already contained in the rest of requirements

Priority Must

Related KR KR3

Reference DoA, KR3 description [7]

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 22 of 120

www.medina-project.eu

3.1.4.1 Evidence Orchestrator

Requirement id ECO.04

Short title Transmission of evidence checksums

Description The evidence orchestrator should integrate a Ledger client that stores
checksums of evidence in a DLT.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9 [7]

3.1.4.2 MEDINA Evidence Trustworthiness Management System

Requirement id ETM.06

Short title Compliance with existing standards

Description The design and implementation of the DAT should comply with the
requirements of existing standards regarding the certification chain (ISO-
based approach, ISAE3402 and evidence-based).

Status DISCARDED: Certification standards are not directly applicable to the
MEDINA Evidence Trustworthiness Management System as it is not
involved in the certification process. It is just a component that provides
extra security features.

Priority Should

Related KR KR5

Reference DoA part A Annex 1 pages 22 [7]

3.1.4.3 Technical evidence gathering tools: Clouditor, Codyze/CPG, Automated
vulnerability monitoring / detection

3.1.4.3.1 Common requirements for all the tools

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description (*) The developed tools must provide collected evidence to the central
evidence Orchestrator via its offered APIs.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9 [7]

(*) More specific definition. The destination to which to send the collected evidence has changed
from “a security assessment tool” to “the central evidence orchestrator”.

3.1.4.3.2 Specific tool requirements

Gathering evidence from CSP-native services

Requirement id TEGT.S.09

Short title Collect evidence from CSP-native services

Description The developed tool should be able to query findings from CSP-native
services, like Azure Policy, to integrate them in MEDINA by querying the
respective cloud API.

Status Proposed

Priority Could

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 23 of 120

www.medina-project.eu

Related KR KR4

Reference DoA part A Annex 1 pages 8-9 [7]

Gathering evidence from application source code

Requirement id TEGT.S.10

Short title Connect infrastructure- and application-level security analyses

Description The developed tool should be able to bridge the gap between
infrastructure- and application-level security analysis by extending graph-
based code analysis to the cloud resources, allowing to identify data flows
across cloud resources.

Status Fully implemented

Priority Could

Related KR KR4

Reference DoA part A Annex 1 pages 8-9 [7]

3.1.4.4 Organizational evidence gathering tools: AMOE

Requirement id OEGM.05

Short title Evidence Assessment results

Description The assessment results of evidence assessments must be submitted to the
evidence orchestrator via the API it provides.

Status Fully implemented

Priority Must

Related KR DoA KR4 [7]

3.1.5 Evidence Assessment tool

The modified, new, and discarded requirements of the Evidence Assessment tool are shown
below. The complete list of requirements can be found in Appendix C. List of Requirements.

Requirement id EAT.04

Short title Assess CSP-native evidence

Description The developed tool should be able to assess the CSP-native evidence or
translate CSP-native assessment results to the MEDINA data model.

Status Proposed

Priority Could

Related KR KR5

Reference DoA part A Annex 1 pages 8-9 [7]

3.1.6 Continuous Evaluation and Certification Life-Cycle

The modified, new, and discarded requirements of the Continuous Evaluation and Certification
Life-Cycle components are shown below. The complete list of requirements can be found in
Appendix C. List of Requirements.

3.1.6.1 Automation of the Cloud Security Certification Life-Cycle

Requirement id ACLM.08

Short title Secure lifecycle management

Description The lifecycle management component can be implemented in a smart
contract to ensure a tamper-proof execution.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 24 of 120

www.medina-project.eu

Status DISCARDED: based on the evaluation of smart contracts for the automatic
management of certificates8, it was considered that they introduce too
many risks compared to the potential benefits.

Priority Could

Related KR KR6

Reference DoA part A Annex 1 pages 9 [7]

3.1.6.2 SSI Framework

Requirement id SSI.01

Short title Cloud security certificate issuance

Description The system should provide a way for appropriate entities (CAB) to issue
and sign security certifications for the cloud providers as indicated by the
automated certificate Life-Cycle Manager.

Status Partially implemented

Priority Should

Related KR KR6

Reference D4.2 [8] & D5.4 [9]

Requirement id SSI.02

Short title Cloud security certificate update

Description The system should provide a way for appropriate entities (CAB) to update
security certifications for the cloud providers as indicated by the Life-Cycle
Manager.

Status Partially implemented

Priority Should

Related KR KR6

Reference D4.2 [8] & D5.4 [9]

Requirement id SSI.03

Short title Cloud security certificate revocation

Description The system should provide a way for appropriate entities (CAB) to revoke
security certifications for the cloud providers as indicated by the Life-Cycle
Manager.

Status Partially implemented

Priority Should

Related KR KR6

Reference D4.2 [8] & D5.4 [9]

Requirement id SSI.04

Short title Cloud security certificates listing

Description The system must list the historical cloud security certificates issued,
updated, and revoked.

Status Fully implemented

Priority Must

Related KR KR6

Reference D4.2 [8] & D5.4 [9]

8 For more details about the study, see deliverable D4.2 [10]

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 25 of 120

www.medina-project.eu

Requirement id SSI.05

Short title Cloud security certificate verifiable public proofs generation

Description The system must generate verifiable proofs of the security certificate state
on request.

Status Fully implemented

Priority Must

Related KR KR6

Reference D4.2 [8] & D5.4 [9]

Requirement id SSI.06

Short title Cloud security certificate confidential proofs generation

Description The system should generate verifiable confidential proofs of the security
certificate private parameters on request.

Status Fully implemented

Priority Should

Related KR KR6

Reference D4.2 [8] & D5.4 [9]

Requirement id SSI.07

Short title Cloud security certificate proofs request and verification

Description The system should provide a way for appropriate entities (potential
clients) to request and verify proofs of the security certificates to the cloud
service providers.

Status Fully implemented

Priority Should

Related KR KR6

Reference D4.2 [8] & D5.4 [9]

3.1.7 Integrated User Interface

The modified, new, and discarded requirements of the Integrated User Interface component are
shown below. The complete list of requirements can be found in Appendix C. List of
Requirements.

Requirement id IUI.01

Short title Authentication integration via Keycloak Adapter

Description Every component must implement an adapter that allows it to
authenticate with the Catalogue’s Keycloak authentication service in order
to prevent unauthenticated users to access its resources.

Status Fully implemented

Priority Should

Related KR KR6

Reference WP5 Technical discussions

Requirement id IUI.02

Short title Authorization integration via Keycloak

Description Every component that has resources that should only be accessed by
specific user roles must enforce authorization on its internal logic (e.g., in
a REST API, define at controller level that a specific endpoint can be
accessed only with the Product Engineer role). This can be obtained by

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 26 of 120

www.medina-project.eu

Requirement id IUI.02

defining appropriate configuration on the Catalogue’s Keycloak (Role
Mapping).

Status Fully implemented

Priority Should

Related KR KR6

Reference WP5/WP6 Technical discussions

Requirement id IUI.03

Short title Allow frame embedding into Integrated UI

Description Every component UI that needs to be embedded in an iframe inside the
Integrated UI must define a header “X-Frame-Options: ALLOW-FROM
integrated-ui-url” in order to allow it.

Status DISCARDED: we are currently sticking to the micro frontend strategy with
iframes only.

Priority Should

Related KR KR6

Reference WP5 Technical discussions

Requirement id IUI.04

Short title Allow CORS for Integrated UI

Description Every component backend that needs to be programmatically REST called
via Integrated UI frontend must define a header “Access-Control-Allow-
Origin: <integrated-ui-url>” in order to allow it.

Status DISCARDED: At the moment, no REST API integration with the IUI is
planned. With this approach CORS is not needed.

Priority Should

Related KR KR6

Reference WP5 Technical discussions

Requirement id IUI.05

Short title External Identity Provider Configuration

Description Users should be able to authenticate using their existing enterprise
identity provider once it has been configured to do so. Ideally, MEDINA
Generic Roles should be inherited from existing claims / roles.

Status Fully implemented

Priority Should

Related KR KR6

Reference WP5/WP6 Technical discussions

Requirement id IUI.06

Short title Homogeneous look and feel

Description Each component micro-frontend embedded into IUI should abide to a set
of graphical constraints and rules that the MEDINA consortium agreed on
in order to homogenize look and feel.

Status Partially implemented

Priority Should

Related KR KR6

Reference WP5 Technical discussions

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 27 of 120

www.medina-project.eu

3.2 Analysis of Requirements

This section provides an analysis of the requirements of the MEDINA framework. It includes
three main tables: a) a table showing the current alignment between requirements and KRs (see
Section 3.2.1); b) a table showing the mapping between functional requirements and UC
requirements (see Section 3.2.2); and c) and a table showing the status of requirements (see
Section 3.2.3). Finally, a summary dashboard reflecting the overall status and progress of the
requirements is included (see Section 3.2.4).

3.2.1 Mapping of Requirements to KRs

Table 3 shows the mapping between the functional requirements and Key Results (KR1-KR6).
Please note that the whole list can be consulted in Appendix C. List of Requirements

The Key Results of the MEDINA project, defined in the DoA [7], are the following:

• KR1: Repository of metrics and measures

• KR2: Risk-based selection of controls to reach the certification assurance

• KR3: Certification language

• KR4: Continuous evidence management tools

• KR5: Cloud certificate Evaluator

• KR6: Risk-based Auditor Tool

• KR7: Use Cases

• KR8: Standardization roadmap

• KR9: Training and awareness activities

For each row in Table 3, a ‘X’ in a cell specifies the Key Result to which that requirement refers.
A requirement can refer to several KRs, although this is not a common case. As a result of this
alignment, it can be concluded that all elicited functional requirements are related to at least
one specific KR.

This the colour code that has been followed in Table 3:

• Green new requirement with respect to the previous version of this deliverable (D5.1 [1])

• Yellow the scope or functionality of the requirement has changed significantly

• Red the requirement has been discarded

• White the requirement remains unchanged.

Table 3. Functional requirements and KRs alignment

Req. ID Description KR1 KR2 KR3 KR4 KR5 KR6

1 RCME.01 Catalogue of metrics, controls and TOMs X

2 RCME.02 Metrics and TOMs in the repository X

3 RCME.03 Metrics and TOMs for different assurance levels X

4 RCME.04 Technology agnostic security controls X

5 RCME.05 Interfaces to the continuous auditing tools X

6 RCME.06 Homogenization of the certification schemes X

7 RCME.07 Interface to risk assurance X

8 RCME.08 Catalogue GUI X

9 RCME.09 Questionnaire for self-assessment X

10 RCME.10 Questionnaire for auditors X

11 NL2CNL.01 Translation from NL to controlled NL X

12 NL2CNL.02 Based on NLP and ontologies X

13 NL2CNL.03 Translation of org. and technical measures X

14 NL2CNL.04 Compliant with the CNL editor language X

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 28 of 120

www.medina-project.eu

Req. ID Description KR1 KR2 KR3 KR4 KR5 KR6

 NL2CNL.05 XML compliant X

15 CNLE.01 CNL Editor GUI X

 CNLE.02 CNL Editor policies authoring X

16 CNLE.03 CNL Editor input format X

17 CNLE.04 CNL Editor policies changing X

18 CNLE.05 CNL Editor vocabulary X

19 CNLE.06 CNL Editor output format X

20 DSLM.01 Translation to selected DSLs X

 DSLM.02 Mapping elements X

21 DSLM.03 DSL output compliancy X

22 RBSCF.01 Risk assessment tool X

23 RBSCF.02 Risk assessment tool and TOMs X

24 RBSCF.03 Implementation selection functionality X

 RBSCF.04 Interface to the auditor X X

25 ECO.01 Provision of Interfaces X

26 ECO.02 Conformity to selected assurance level X

27 ECO.03 Secure Transmission to evidence storage X

28 ECO.04 Transmission of evidence checksums X

29 ETM.01 Trustworthiness of evidence X

30 ETM.02 Transmission of evidence checksums X

31 ETM.03 Trustworthiness guaranteeing capabilities X

32 ETM.04 Tamper-Resistance for evidence X

33 ETM.05 Tamper-Resistance for audit information X X

 ETM.06 Compliance with existing standards X X

34 TEGT.C.01 Continuous collection X

35 TEGT.C.02 Provision to defined interfaces X

36 TEGT.S.01 Collect evidence from cloud interfaces X

37 TEGT.S.02 Collect evidence from source code via CPG X

38 TEGT.S.03 Implement information and data flow analysis X

39 TEGT.S.04 Support expression of security requirements X

40 TEGT.S.05 Verify security requirements X

41 TEGT.S.06 Retrieve source code of cloud applications X

42 TEGT.S.07 Support for common programming languages, libraries, CS X

43 TEGT.S.08 Provision of malware, intrusion & vulnerability detection tools X

44 TEGT.S.09 Collect evidence from CSP-native services X

45 TEGT.S.10 Connect infrastructure- and application-level security analyses X

46 OEGM.01 Continuous collection of organizational evidence X

47 OEGM.02 Provision to defined interfaces X

48 OEGM.03 Usability for auditors X

49 OEGM.04 Minimum evidence storage X

50 OEGM.05 Evidence Assessment results X

51 EAT.01 Evidence assessment target X

52 EAT.02 Continuous evidence assessment X

53 EAT.03 Evidence assessment results X

54 EAT.04 Assess CSP-native evidence X

55 CCCE.01 Continuous Evaluation of Assessment Results X

56 CCCE.02 Evaluate the fulfilment degree per TOM X

57 CCCE.03 Configuration of needed metrics for requirements X

58 CCCE.04 Fulfilment degree per control, group & entire certification X

59 CCCE.05 Temporal fulfilment degree per TOM X

60 CCCE.06 Evaluate the time-to-fix indicator per TOM X

61 CCCE.07 APIs of the Continuous Certification Evaluation Component X

62 ACLM.01 Cloud security certification issuance X

63 ACLM.02 Automatic cloud security certification update X

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 29 of 120

www.medina-project.eu

Req. ID Description KR1 KR2 KR3 KR4 KR5 KR6

64 ACLM.03 Cloud security certification revocation X

65 ACLM.04 Continuous update of the certificate state X

66 ACLM.06 Compliance with EUCS assurance levels and certificate states X

67 ACLM.07 Interface for a public registry X

 ACLM.08 Secure lifecycle management (smart contract) X

68 SSI.01 Cloud security certificate issuance X

69 SSI.02 Cloud security certificate update X

70 SSI.03 Cloud security certificate revocation X

71 SSI.04 Cloud security certificates listing X

72 SSI.05 Cloud security certificate verifiable public proofs generation X

73 SSI.06 Cloud security certificate confidential proofs generation X

74 SSI.07 Cloud security certificate proofs request and verification X

75 RBCA.01 Dynamic risk assessment X

76 RBCA.02 Interface to the continuous evidence management tools X

77 IUI.01 Authentication integration via Keycloak Adapter X

78 IUI.02 Authorization integration via Keycloak X

 IUI.03 Allow frame embedding into Integrated UI X

 IUI.04 Allow CORS for Integrated UI X

79 IUI.05 External Identity Provider Configuration X

80 IUI.06 Homogeneous look and feel X

3.2.2 Mapping of WP5 requirements to WP6 requirements

This section shows the alignment between the functional requirements related to the MEDINA
components, developed in WP5, and the Use Cases requirements (also known as “user stories”)
gathered in WP6. Please note that the detailed list of WP5 and WP6 requirements can be
consulted in Appendix C. List of Requirements and Appendix B. Use Cases Definition, respectively.

Table 4 shows for each functional requirement (row), which user stories will be used to test it.
This mapping shows that each of the requirements defined in WP5 is related to one or more
user stories. This way, a final user can check the module responsible for implementing a
requirement and track the validation and coverage of the requirements along the time. The
requirements in red colour are those that have been discarded.

Table 4 serves to align both the bottom-up perspective and the top-down approach followed in
MEDINA for the elicitation of the requirements (see Appendix A. Requirements Management in
MEDINA). As a result of this alignment, it can be concluded that every elicited functional
requirement is related to at least one specific UC requirement.

Table 4. Mapping of Functional requirements to UC requirements

Req. ID UC00 requirements UC01 requirements UC02 requirements

1 RCME.01 UC00: 02, 09, 17, 19, 27 UC01: 18, 31

2 RCME.02 UC00: 02, 27 UC01: 18

3 RCME.03 UC00: 02, 17

4 RCME.04 UC00: 02

5 RCME.05 UC00: 02

6 RCME.06 UC00: 02, 19 UC01: 26

7 RCME.07 UC00: 02

8 RCME.08 UC00: 29 UC01: 06 UC02: 10

9 RCME.09 UC00: 02, 17, 19, 27 UC01: 18, 31

10 RCME.10 UC00: 02, 09, 17, 19, 27 UC01: 18, 31

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 30 of 120

www.medina-project.eu

Req. ID UC00 requirements UC01 requirements UC02 requirements

11 NL2CNL.01 UC00: 01, 06, 09, 17, 18, 19,
21, 24, 27, 29

UC01: 01, 02, 03, 04, 05, 06,
07, 08, 09, 13, 14, 15, 16, 19,
20, 21, 23, 24, 28, 30, 31

UC02: 01, 10

12 NL2CNL.02 UC00: 01, 06, 09, 17, 18, 19,
21, 24, 27, 29

UC01: 01, 02, 03, 04, 05, 06,
07, 08, 09, 13, 14, 15, 16, 19,
20, 21, 23, 24, 28, 30, 31

UC02: 01, 10

13 NL2CNL.03 UC00: 01, 06, 09, 17, 18, 19,
21, 24, 27, 29

UC01: 01, 02, 03, 04, 05, 06,
07, 08, 09, 13, 14, 15, 16, 19,
20, 21, 23, 24, 28, 30, 31

UC02: 01, 10

14 NL2CNL.04 UC00: 01, 06, 09, 17, 18, 19,
21, 24, 27, 29

UC01: 01, 02, 03, 04, 05, 06,
07, 08, 09, 13, 14, 15, 16, 19,
20, 21, 23, 24, 28, 30, 31

UC02: 01, 10

 NL2CNL.05

15 CNLE.01 UC01: 02, 03, 04, 06 UC02: 03

 CNLE.02

16 CNLE.03 UC01: 02, 03, 04

17 CNLE.04 UC00: 07 UC01: 02, 03, 04

18 CNLE.05 UC01: 02, 03, 04, 22 UC02: 03, 09, 14

19 CNLE.06 UC00: 01 UC01: 02, 03, 04,

20 DSLM.01 UC00: 01, 06, 09, 17, 18, 19,
21

UC01: 01, 02, 03, 04, 05, 06,
07, 08, 09, 13, 14, 15, 16, 19,
20, 21, 23, 24, 28, 30, 31

UC02: 01, 10

 DSLM.02

21 DSLM.03 UC00: 01, 06, 09, 17, 18, 19,
21, 24, 29

UC01: 02, 04, 09, 23, 28, 30,
01, 03, 05, 06, 07, 08, 13, 14,
15, 16, 19, 20, 21, 24, 31

UC02: 01, 10

22 RBSCF.01 UC00: 19 UC01: 02 UC02: 05

23 RBSCF.02 UC01: 02

24 RBSCF.03 UC01: 02

 RBSCF.04

25 ECO.01 UC00: 01, 02, 04, 07 UC01: 02, 04, 09, 18, 22, 23,
25, 28, 30, 01, 03, 05, 06, 07,
08, 10, 11, 12, 13, 14, 15, 16,
17, 20, 21, 24, 26, 31

26 ECO.02 UC00: 01, 07 UC01: 02, 04, 09, 18, 20, 22,
23, 25, 28, 30, 01, 03, 05, 06,
07, 08, 10, 11, 12, 13, 14, 15,
16, 17, 20, 21, 24, 26, 31

27 ECO.03 UC00: 07, 04 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

28 ECO.04 UC00: 07, 04 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

29 ETM.01 UC00: 31

30 ETM.02 UC00: 31

31 ETM.03 UC00: 31 UC01: 02, 04, 09

32 ETM.04 UC00: 31 UC01: 02, 04, 09

33 ETM.05 UC00: 31 UC01: 02, 04, 09

 ETM.06

34 TEGT.C.01 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 31 of 120

www.medina-project.eu

Req. ID UC00 requirements UC01 requirements UC02 requirements

11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

35 TEGT.C.02 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

36 TEGT.S.01 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

37 TEGT.S.02 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

38 TEGT.S.03 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

39 TEGT.S.04 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

40 TEGT.S.05 UC01: 02, 23, 31

41 TEGT.S.06 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

42 TEGT.S.07 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

43 TEGT.S.08 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24

44 TEGT.S.09 UC01: 29

45 TEGT.S.10 UC01: 02, 04, 09, 18, 23, 25,
28, 01, 03, 05, 06, 07, 08, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 26, 31

46 OEGM.01 UC00: 01, 05, 13, 18, 21, 22,
24, 25, 26, 27, 29

UC01: 02, 04, 09, 28, 30, 01,
05, 06, 08, 14, 16, 17, 20, 24,
26, 27, 31

UC02:14, 01

47 OEGM.02 UC00: 01, 05, 13, 18, 21, 22,
24, 25, 26, 27, 29

UC01: 02, 04, 09, 28, 30, 01,
05, 06, 08, 14, 16, 17, 20, 24,
26, 27, 31

UC02:14, 01

48 OEGM.03 UC00: 01, 05, 13, 18, 21, 22,
24, 25, 26, 27, 29

UC01: 02, 04, 09, 28, 30, 01,
05, 06, 08, 14, 16, 17, 20, 24,
26, 27, 31

UC02:14, 01

49 OEGM.04 UC00: 01, 05, 13, 18, 21, 22,
24, 25, 26, 27, 29

UC01: 02, 04, 09, 28, 30, 01,
05, 06, 08, 14, 16, 17, 20, 24,
26, 27, 31

UC02:14, 01

50 OEGM.05 UC00: 01, 05, 13, 18, 21, 22,
24, 25, 26, 27, 29

UC01: 02, 04, 09, 28, 30, 01,
05, 06, 08, 14, 16, 17, 20, 24,
26, 27, 31

UC02:14, 01

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 32 of 120

www.medina-project.eu

Req. ID UC00 requirements UC01 requirements UC02 requirements

51 EAT.01 UC00: 07 UC01: 02, 04, 09, 18, 23, 25,
28, 30, 01, 03, 05, 06, 07, 08,
10, 11, 12, 13, 14, 15, 16, 17,
20, 21, 24, 26, 31

52 EAT.02 UC00: 07 UC01: 02, 04, 09, 18, 23, 25,
28, 30, 01, 03, 05, 06, 07, 08,
10, 11, 12, 13, 14, 15, 16, 17,
20, 21, 24, 26, 31

53 EAT.03 UC00: 07 UC01: 02, 04, 09, 18, 23, 25,
28, 30, 01, 03, 05, 06, 07, 08,
10, 11, 12, 13, 14, 15, 16, 17,
20, 21, 24, 26, 31

54 EAT.04 UC01: 29

55 CCCE.01 UC00: 13, 14, 19, 28 UC01: 04, 03 UC02: 14, 07, 09

56 CCCE.02 UC00: 13, 14, 19, 28 UC01: 04, 03 UC02: 14, 07, 09

57 CCCE.03 UC00: 13, 14, 19, 28 UC01: 04, 03 UC02: 14, 07, 09

58 CCCE.04 UC01: 04, 03

59 CCCE.05 UC01: 04, 03

60 CCCE.06 UC01: 04, 03

61 CCCE.07 UC00: 13, 14, 28 UC02: 14, 09

62 ACLM.01 UC01: 09, 23, 28, 12, 14, 20,
21, 24, 26

63 ACLM.02 UC01: 09, 23, 28, 12, 14, 20,
21, 24, 26

64 ACLM.03 UC01: 09, 23, 28, 12, 14, 20,
21, 24, 26

65 ACLM.04 UC01: 09, 23, 28, 12, 14, 20,
21, 24, 26

UC02:09

66 ACLM.06 UC00: 17

UC01: 09, 23, 28, 12, 14, 20,
21, 24, 26

UC02: 07, 08

67 ACLM.07 UC01: 09, 23, 28, 12, 14, 20,
21, 24, 26

 ACLM.08

68 SSI.01 UC00: 20, 24, 26, 28 UC01: 06, 09, 14, 20, 21

69 SSI.02 UC00: 20, 24, 26, 28 UC01: 06, 09, 14, 20, 21

70 SSI.03 UC00: 20, 24, 26, 28 UC01: 06, 09, 14, 20, 21

71 SSI.04 UC00: 20, 24, 26, 28 UC01: 06, 09, 14, 20, 21

72 SSI.05 UC00: 20, 24, 26, 28 UC01: 06, 09, 14, 20, 21

73 SSI.06 UC00: 20, 24, 26, 28 UC01: 06, 09, 14, 20, 21

74 SSI.07 UC00: 20, 24, 26, 28 UC01: 06, 09, 14, 20, 21

75 RBCA.01 UC00: 19 UC01: 02 UC02: 04

76 RBCA.02 UC01: 02

77 IUI.01 UC00: 29 UC01: 06 UC02: 10

78 IUI.02 UC00: 29 UC01: 06 UC02: 10

 IUI.03

 IUI.04

79 IUI.05 UC00: 29 UC01: 06 UC02: 10

80 IUI.06 UC00: 29 UC01: 06 UC02: 10

3.2.3 Prioritization and status of requirements

This section provides an overview of the status of the functional and non-functional
requirements elicited during the first two years of the project. For each requirement we indicate
its priority, the status of the current implementation (month 24), and the expected

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 33 of 120

www.medina-project.eu

implementation status in month 33. This information will change as the project progresses and
is foreseen that more and more requirements will be implemented until the end of the project
in month 36.

Regarding the implementation status of a requirement, we distinguish in the degree of
fulfilment among “Partially implemented” (P) or “Fully implemented” (Fully). In the context of
WP5, “Fully implemented” means that no more development or test is needed to implement
the requirement. In other words, it is ready to be validated by the users in WP6. This status is
different from the concept of “Done”, which is used in WP6 and refers to the mentioned
validation task.

Columns M15, M24 and M33 in Table 5 refer to the month where the status of the requirements
has been measured: M15 corresponds to the first version of the requirements, i.e. the
requirements elicited in D5.1 [1]; M24 refers to the current status, i.e. the requirements listed
in Appendix C. List of Requirements; and M33 is the foreseen status of the requirements in
month 33, previous to the second integration of the MEDINA Framework.

The colour is also used to easily view the status of a requirement: green means “Fully
implemented”; orange means “Partially implemented”; and blank means “not started” (-).

Table 5. Requirement prioritization and status

KR Req. Id Short title Priority M15 M24 M33

KR1
Repository
of metrics

and
measures

RCME.01 Catalogue of metrics, controls and TOMs MUST P Fully Fully

RCME.02 Metrics and TOMs in the repository MUST P P Fully

RCME.03 Metrics and TOMs for different assurance levels MUST P Fully Fully

RCME.04 Technology agnostic security controls MUST - Fully Fully

RCME.05 Interfaces to the continuous auditing tools MUST P Fully Fully

RCME.06 Homogenization of the certification schemes MUST - P P

RCME.07 Interface to risk assurance Should - Fully

RCME.08 Catalogue GUI MUST P Fully

RCME.09 Questionnaire for self-assessment Could P Fully

RCME.10 Questionnaire for auditors Could P Fully

KR3
Certification

Language

NL2CNL.01 Translation from NL to controlled NL MUST P P Fully

NL2CNL.02 Based on NLP and ontologies MUST - P Fully

NL2CNL.03 Translation of org. and technical measures Should P P Fully

NL2CNL.04 Compliant with the CNL editor language MUST P P Fully

NL2CNL.05 XML compliant

CNLE.01 CNL Editor GUI MUST - Fully Fully

CNLE.02 CNL Editor policies authoring MUST

CNLE.03 CNL Editor input format MUST - Fully Fully

CNLE.04 CNL Editor policies changing MUST P Fully Fully

CNLE.05 CNL Editor vocabulary MUST - P Fully

CNLE.06 CNL Editor output format MUST P Fully Fully

DSLM.01 Translation to selected DSLs MUST - P Fully

DSLM.02 Mapping elements

DSLM.03 DSL output compliancy MUST P Fully

RBSCF.01 Risk assessment tool MUST - P Fully

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 34 of 120

www.medina-project.eu

KR Req. Id Short title Priority M15 M24 M33

KR2
Risk based

selection of
controls

RBSCF.02 Risk assessment tool and TOMs MUST - Fully Fully

RBSCF.03 Implementation selection functionality MUST - P Fully

RBSCF.04 Interface to the auditor

KR4
Continuous

evidence
manageme

nt tools

ECO.01 Provision of Interfaces MUST - Fully Fully

ECO.02 Conformity to selected assurance level MUST P P Fully

ECO.03 Secure Transmission to evidence storage MUST - Fully Fully

ECO.04 Transmission of evidence checksums MUST - Fully Fully

ETM.01 Trustworthiness of evidence MUST P Fully Fully

ETM.02 Transmission of evidence checksums Should P Fully Fully

ETM.03 Trustworthiness guaranteeing capabilities MUST P P Fully

ETM.04 Tamper-Resistance for evidence MUST P Fully Fully

ETM.05 Tamper-Resistance for audit information MUST P Fully Fully

ETM.06 Compliance with existing standards

TEGT.C.01 Continuous collection MUST P P Fully

TEGT.C.02 Provision to defined interfaces MUST Fully Fully Fully

TEGT.S.01 Collect evidence from cloud interfaces MUST P Fully Fully

TEGT.S.02 Collect evidence from source code via CPG MUST - Fully Fully

TEGT.S.03 Implement information and data flow analysis MUST P Fully Fully

TEGT.S.04 Support expression of security requirements MUST P P Fully

TEGT.S.05 Verify security requirements MUST P P Fully

TEGT.S.06 Retrieve source code of cloud applications Should - P Fully

TEGT.S.07
Support for common programming languages,
libraries, CS

Should P P Fully

TEGT.S.08
Provision of malware, intrusion & vulnerability
detection tools

MUST - P Fully

TEGT.S.09 Collect evidence from CSP-native services Could - - Fully

TEGT.S.10
Connect infrastructure- and application-level
security analyses

Could - Fully Fully

OEGM.01 Continuous collection of organizational evidence MUST - Fully Fully

OEGM.02 Provision to defined interfaces MUST - Fully Fully

OEGM.03 Usability for auditors Should - Fully Fully

OEGM.04 Minimum evidence storage MUST - Fully Fully

OEGM.05 Evidence Assessment results MUST Fully Fully

KR5
Continuous
certification
evaluation

EAT.01 Evidence assessment target MUST - Fully Fully

EAT.02 Continuous evidence assessment MUST P Fully Fully

EAT.03 Evidence assessment results MUST P Fully Fully

EAT.04 Assess CSP-native evidence Could - - Fully

CCCE.01 Continuous Evaluation of Assessment Results MUST P Fully Fully

CCCE.02 Evaluate the fulfilment degree per TOM MUST - Fully Fully

CCCE.03 Configuration of needed metrics for requirements MUST P Fully Fully

CCCE.04
Fulfilment degree per control, group & entire
certification

MUST - Fully Fully

CCCE.05 Temporal fulfilment degree per TOM Should P Fully Fully

CCCE.06 Evaluate the time-to-fix indicator per TOM Should - Fully Fully

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 35 of 120

www.medina-project.eu

KR Req. Id Short title Priority M15 M24 M33

CCCE.07
APIs of the Continuous Certification Evaluation
Component

MUST P Fully Fully

ACLM.01 Cloud security certification issuance MUST - P Fully

ACLM.02 Automatic cloud security certification update MUST - P Fully

ACLM.03 Cloud security certification revocation MUST - P Fully

ACLM.04 Continuous update of the certificate state MUST P P Fully

ACLM.06
Compliance with EUCS assurance levels and
certificate states

MUST P P Fully

ACLM.07 Interface for a public registry MUST P P Fully

ACLM.08 Secure lifecycle management (smart contract)

SSI.01 Cloud security certificate issuance Should P Fully

SSI.02 Cloud security certificate update Should P Fully

SSI.03 Cloud security certificate revocation Should P Fully

SSI.04 Cloud security certificates listing MUST Fully Fully

SSI.05
Cloud security certificate verifiable public proofs
generation

MUST Fully Fully

SSI.06
Cloud security certificate confidential proofs
generation

Should Fully Fully

SSI.07
Cloud security certificate proofs request and
verification

Should Fully Fully

KR6
Risk-Based
auditor tool

RBCA.01 Dynamic risk assessment MUST - P Fully

RBCA.02
Interface to the continuous evidence management
tools

MUST - P Fully

IUI.01 Authentication integration via Keycloak Adapter Should - Fully Fully

IUI.02 Authorization integration via Keycloak Should - P Fully

IUI.03 Allow frame embedding into Integrated UI

IUI.04 Allow CORS for Integrated UI

IUI.05 External Identity Provider Configuration Should - P Fully

IUI.06 Homogeneous look and feel Should - P Fully

Non-
Functional

Req.

CICD.01 Code repository MUST Fully Fully Fully

CICD.02 Automate software build MUST P Fully Fully

CICD.03 Automate test suite Should - Fully Fully

CICD.04 Software bugs tracking Should - Fully Fully

CICD.05 Deploy automation Should P Fully Fully

CICD.06 Free tools MUST P Fully Fully

CICD.07 Commercially friendliness tools Should P P P

CICD.08 Java support MUST Fully Fully Fully

CICD.09 Python support MUST Fully Fully Fully

CICD.10 C language support MUST Fully Fully Fully

CICD.11 GO Lang support MUST Fully Fully Fully

CICD.12 JavaScript support MUST Fully Fully Fully

3.2.4 Requirements Summary Dashboard

Table 6 summarizes how the functional requirements are distributed among the MEDINA
components and Figure 3 shows the same data in visual form.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 36 of 120

www.medina-project.eu

In total, 88 functional requirements have been worked out up to M24, with 8 of them being
discarded. We can see that KR4 (Continuous evidence management tools) and KR5 (Continuous
certification evaluator) have defined the most requirements, which is logical because they
comprise five and four tools respectively.

Table 6. Summary table of requirements status at M24 (by KR)

KR Discarded Not started
Partially

Implemented
Fully

implemented
TOTAL

KR1 0 1 5 4 10

KR2 1 0 2 1 4

KR3 3 0 7 4 14

KR4 1 1 8 17 27

KR5 1 1 9 14 25

KR6 2 0 5 1 8

TOTAL 8 3 36 41 88

 Figure 3. Requirement status by KR at M24

Some statistical conclusions about the implementation status and the evolution of the MEDINA
framework can be extracted from Table 6:

• In M15, 40% of the requirements were at least partially implemented.

• In M24, 96% of the not discarded requirements have been at least partially
implemented (45% partially implemented and 51% fully implemented).

• KR4 has the highest rate of fully implemented requirements (65%), followed by KR5
(58%) and KR1 (40%).

• KR6 has the lowest rate of fully implemented requirements (17%).

• The level of achievement of the different KRs (measured as the percent of the
requirements implemented at least partially) range between 90% and 100%.

Table 7 and Figure 4 show a detail of the evolution of the status, differentiating among partial
(P) and complete (Full) implementation of the requirements for each KR in the first year of the

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 37 of 120

www.medina-project.eu

project (Y1) and in the second year (Y2). The last two columns show the number of requirements
that have become, during this second year, Partially implemented (->P) and Fully implemented
(->F).

Table 7. Requirement progress summary (by KR)

KR Y1 Y2

 P Full P Full ->P ->Full

KR1 4 0 5 4 4 4

KR2 0 0 2 1 3 1

KR3 5 0 7 4 4 4

KR4 12 1 8 17 2 16

KR5 9 0 9 14 6 14

KR6 0 0 5 1 5 1

TOTAL 30 1 36 41 24 40

Figure 4. Requirement progress (by KR)

Leaving aside the discarded requirements, some general conclusions that can be drawn from

Table 7 are the following:

• During Y2, 24 requirements have progressed to “Partially implemented”

• During Y2, 40 requirements have progressed to “Fully implemented”

• 45% of the requirements are partially implemented at this stage

• 51% of the requirements are fully implemented at this stage

• 96% of the requirements are already partially or fully implemented at this stage

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 38 of 120

www.medina-project.eu

4 MEDINA Framework Architecture

This section presents the second version of the MEDINA architecture. To create this version of
the architecture, the process depicted in Figure 5was followed.

Figure 5. Process followed in MEDINA to develop the MEDINA architecture

This process comprises the following activities:

• First, an analysis of the MEDINA workflows and alternatives has been carried out (see
Section 4.1).

• In parallel to the workflow definition, the overall architecture with all components has
been designed (see Sections 4.2 and 4.3).

• Then, the structural and behavioural description of the components conforming the
MEDINA framework has been detailed (see Section 4.4).

• Finally, as part of the architecture definition, the deployment options for the
components and the MEDINA framework itself have been discussed and analysed (see
Section 4.5).

4.1 MEDINA workflows

MEDINA workflows were first introduced in D5.3 [3]. They consist of the seven different
scenarios/interactions, as shown in Table 8. These workflows cover different data flow paths of
the architecture, each of which uses different components of the MEDINA framework. The
MEDINA workflows are used in WP6 to instantiate user stories, and also to develop test steps
for the user-centric evaluation.

Table 8. MEDINA Workflows

Workflow Short Description MEDINA Components

WF1
Preparation of ToC

Setup, configure and deploy the cloud service to certify
(ToC) on top of the chosen hyperscaler(s).
This process includes configuring the underlying PaaS/IaaS.

CSP testbed

WF2
Preparation of

MEDINA
Components

Setup, configure and deploy the MEDINA components.
Only related to those components under the responsibility
of the CSP.

Evidence Collectors,
Integrated UI

WF3
EUCS Deployment

on ToC

Setup, configure and deploy the corresponding EUCS
framework (for the chosen assurance level
basic/substantial/high) on the ToC.

Catalogue,
NL2CNL Translator,

CNL Editor,
DSL Mapper

WF4
EUCS Preparedness -
ToC Self-Assessment

Self-assess preparedness for EUCS certification based on
the chosen assurance level.
This is a risk-based approach.

SATRA

WF5
EUCS - Compliance

Assessment

Performs a point-in-time (discrete) EUCS compliance
assessment for the ToC.
When such discrete assessment is periodically executed,
then we achieve the MEDINA notion of “continuous”.

AMOE,
Orchestrator,

Trustworthiness
System,

Evidence Collectors

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 39 of 120

www.medina-project.eu

Workflow Short Description MEDINA Components

WF6
EUCS - Maintenance

of ToC certificate

Start certificate maintenance life cycle for the ToC.
Based on current EUCS, the maintenance process
comprises the following stages: issuance, renewal,
continuation, update, re-issuance (new certificate),
withdrawal, and suspension.

RAOF (Dynamic),
CCE,

ACLM,
SSI

WF7
EUCS - Report on

ToC certificate

Report on EUCS certificate status for a ToC.
The report can be obtained by the CAB or by the CSP, in
which case the level of provided details might vary.

Integrated UI,
RAOF (Dynamic),

CCE,
ACLM,

SSI

4.2 MEDINA framework

The architectural framework proposed by MEDINA can be abstracted in the eight building blocks
shown in Figure 6. Each building block corresponds to a well differentiated functionality of the
proposed architecture and is instantiated by the use cases in WP6.

1. Catalogue
2. Certification language
3. Risk assessment and optimisation framework
4. Continuous Evaluation and Certification Life-Cycle
5. Organizational Evidence Gathering and Processing
6. Orchestrator and Databases
7. Evidence Collection and Security Assessment
8. Integrated UI

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture, DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 40 of 120

www.medina-project.eu

Figure 6. Architecture diagram of the MEDINA framework

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 41 of 120

www.medina-project.eu

The first building block, named Catalogue, relates to the set of catalogues being required by the
different roles and personas interacting with MEDINA (see the deliverable D6.2 [5]), which
comprises the different elements of a control’s framework such as EUCS [4]. We refer to the
catalogue of controls, metrics, TOMs’ reference implementations, and target values being
suggested to CSPs (see the deliverable D2.1 [10]). This building block also leverages self-
assessment functionalities targeting specific roles e.g., CABs and compliance managers.

Then we have a second block, named Certification Language, which implements the NLP
techniques proposed by MEDINA to guarantee that requirements from EUCS, or other
catalogues, are related to the metrics in the Catalogue building block referenced in the previous
paragraph .This building block leverages a novel ontology to guarantee that requirements
written in natural language are automatically associated to CSP-specific resources (see the
deliverable D2.4 [11]). Our goal is to automatize the current (manual) process performed by
compliance managers and auditors to interpret, map, implement, and assess requirements in
their own organizations.

The risk assessment functionalities provided by MEDINA, both static and dynamic, can be seen
in the third building block of the architecture, named Risk Assessment and Optimisation
framework. These functionalities take as input the Catalogue of controls & metrics and, and
based on the CSP’s risk appetite and assessment results can control the certification lifecycle in
block n.4 (see the deliverable D2.7 [12]).

A core building block in our framework comprises the components that manage the lifecycle of
the certification, which depends on the rules established by the corresponding scheme (EUCS in
the case of MEDINA). This is the fourth building block in our framework, named Continuous
Evaluation and Certification Life-Cycle, where National Certification Bodies (NCB), or even pan-
European entities like ENISA, can benefit from becoming public registers of issued certificates.
Our goal is to provide fully automated lifecycle management, which depends on dynamic risk
assessment techniques and the automation of the security assessment processes implemented
by MEDINA (see the deliverables D4.2 [8] and D4.4 [13]).

A state of practice challenge for providing automation of auditing/certification relates to the
processing of organizational measures, where related documentation of the CSP (e.g., security
concepts, operation manuals) is assessed for conformance with the certification scheme’s
requirements. Building block five in MEDINA’s framework, named Organizational Evidence
Gathering and Processing, implements both a repository for organizational evidence, and the
NLP-based techniques for their processing (see the deliverable D3.5 [14]).

Complementary to this functionality in MEDINA, is building block seven, named Evidence
Collection and Security Assessment, which provides the assessment of technical measures by
integrating a variety of tools, including native CSP functionalities (see the deliverable D3.5 [14]).
This building block seven targets the multi-layer assessment of the target-of-certification cloud
service i.e., the related IaaS, PaaS, and SaaS stack.

All gathered assessment results, either from organizational (block n.5) or technical measures
(block n.7), are holistically stored and processed by the components shown in building block 6,
named Orchestrator and Databases. Both an orchestrator (in charge if managing the collected
evidence and assessment results), and a DLT-enabled evidence manager (to guarantee tamper
proof storage of evidence) are core components of this building block (see the deliverable D3.5
[14]).

Finally, building block 8, named Integrated UI, provides a MEDINA user interface to facilitate
human interaction with the components in building block 7. Take for example a corporate

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 42 of 120

www.medina-project.eu

compliance manager who visualizes the near real-time status of issued EUCS certificates, or an
external CAB reviewing the evidence used for a certification process (see the deliverable D5.3
[3]).

4.3 MEDINA data model

This section presents the current version of the MEDINA data model. This data model describes
the different entities that are used and shared by the components in the MEDINA framework,
as well as their attributes (see Figure 7). The entities have been categorized into different groups
depending on the building block/WP they belong to, and are coloured differently for clarity:

• Blue entities: Catalogue of controls and metrics

• Grey entities: Risk Assessment and optimisation framework

• Orange entities: Evidence gathering and MEDINA ontology

• Red entities: Evidence assessment

• Green entities: Evidence gathering and assessment

• Purple entities: Evidence and assessment result trustworthiness

• Dark orange entities: Cloud security certification

This version of the data model is an evolution of first version that was described in deliverable
D5.1 [1]. The main differences lie in the extension of the list of data attributes in general, and
also in the introduction of new entities to face the needs of the latest version of the components.
Specifically, the new entities are:

• Target of evaluation

• Risk assessment result

• Certificate

• Security metric configuration

• User

For a more detailed description of the entities, see the deliverables describing the components
in the technical WPs (WP2, WP3 and WP4).

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture, DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 43 of 120

www.medina-project.eu

Figure 7. MEDINA framework data model

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 44 of 120

www.medina-project.eu

4.4 MEDINA components structural and behavioural description

This section presents the different components that are part of the MEDINA framework,
grouped into the main building blocks Identified in Section 4.2.

Components are described by means of the “component card” template, which includes main
functionalities, subcomponents, sequence diagrams, interfaces, etc., providing the structural
and behavioural description of the components.

4.4.1 Catalogue

The Catalogue of controls and metrics (a.k.a. Catalogue) is an IT tool for the storage and
management of controls, requirements, metrics, and their relationships9.

Component
Name

Catalogue of controls and metrics

Main
functionalities

The component provides the following functionalities:

• Endorsement of Security Control Frameworks and related attributes:
Security requirements, categories, controls, reference TOMs, metrics,
evidence, and assurance levels.

• Provision of guidance for the (self-)assessment of the requirements.

• Filtering of the information based on some values for the attributes
o Selection of requirements of a certain assurance level
o Selection of requirements from a certain framework
o Selection of metrics related to reference TOM
o Etc.

• Homogenization of the certification schemes: Provision of information
about related requirements from different frameworks especially
referenced to the EUCS.

Sub-
components
Description

Registry: The registry will store the available list of frameworks and the related
info for a specific CSP. This subcomponent will also include the corresponding
databases.

Back-end: The backend is the core sub-component of the Catalogue. It will
perform the actual discovery of the requirements, evidence, etc. from the
registry, considering the set of filters established by the user through the UI/
API.

Frontend: This sub-component is the graphical user interface of the Catalogue.
This frontend will allow the user to indicate the requirements to filter and
select a set of information related to the existing frameworks, i.e.,
requirements of a certain assurance level, requirements from a certain
framework, metrics related to a reference TOM, references TOMs, guidance,
etc.

Main logical
Interfaces

Interface name Description Interface technology

Catalogue UI Graphical user interface of the
Catalogue

Angular and
Bootstrap

Discover
requirements

Select a set of requirements
(and related attributes) for a
given CS

Rest API

9 The interested reader is referred to the Catalogue technical specifications in the deliverable D2.1 [11]. A
second version of the Catalogue will be realised in M27 and described in the deliverable D2.2.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 45 of 120

www.medina-project.eu

Requirements
Mapping

List of requirements covered by this component:
RCME.01, RCME.02, RCME.03, RCME.04, RCME.05, RCME.06, RCME.07,
RCME.08, RCME.09, RCME.10

Interaction
with other

components

Interfacing Component Interface Description

NL2CNL Translator NL2CNL Translator will request to the
Catalogue the requirements and related
information for a certain user

Risk assessment and
optimisation framework

RBSCF will request to the Catalogue the
requirements list and related information

Relevant
sequence
diagram/s

Current TRL Based on exiting tools (ACSmI-Tecnalia)

Programming
language

jHipster framework based on microservices architecture:

• Java stack on the server side with Spring Boot

• Frontend with Angular and Bootstrap

License Apache license v2.0

WP and task
WP2 - Task 2.1, Task 2.2
WP3 – Task 3.1

Workflow WF3

4.4.2 Certification language

The Certification Language is responsible of converting the security requirements of the chosen
certification schema, which are expressed in Natural Language (NL), into a language that can be
automatically “executed” by a machine.10

10 More details can be found in D2.4 [12].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 46 of 120

www.medina-project.eu

4.4.2.1 NL2CNL Translator

Component
Name

NL2CNL Translator

Main
functionalities

The component provides the following functionalities:

• Translates the natural language text (English) of Security Requirements
(TOMs) to the CNL obligations by recommending/predicting a set of metrics
and integrating them into the CNL

Sub-
components
Description

Recommender system: Associates a set of metrics to a requirement.

Obligation builder: Takes the associated metric, the predefined target value,
the operator, and the definition of the resource (probably from the Catalogue).
 Obl = op(MI, TV) -> returns Boolean
 Obl = op(MV, TV) -> returns Boolean

Optional component: Database. Stores the obligations and associated
metadata like requirement-ID etc. We would prefer to include this in a sub-
database in the repository of controls. Currently, obligations and associated
metadata are stored in the CNL Store, provided by the CNL Editor.

Main logical
Interfaces

Interface name Description Interface technology

NL2CNL Translator API API to access NL2CNL
functionalities

REST API

Requirements
Mapping

List of requirements covered by this component:
NL2CNL.01, NL2CNL.02, NL2CNL.03, NL2CNL.04

Interaction
with other

components

Interfacing Component Interface Description

Catalogue of controls
and metrics

NL2CNL Translator reads TOMs and metrics from
it

CNL Editor API NL2CNL Translator exploits CNL Editor API to
access the CNL Store functionalities, i.e., to store
the requirements and obligations information in
XML format

Relevant
sequence
diagram/s

Current TRL To be developed from scratch

Programming
language

Python 3.x

License Apache 2.0

WP and task WP2 Task 2.3

Workflow WF3

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 47 of 120

www.medina-project.eu

4.4.2.2 CNL editor

Component
Name

CNL Editor

Main
functionalities

The component provides the following functionalities:

• show a CNL document, i.e., a requirement description (metadata) with a
list of associated metrics in the form of a list of Obligations

• edit obligations parameters (operator, target value) based on the Editor
ontology

• delete metrics from an already filled CNL document

• map a requirement invoking DSL Mapper to convert CNL in Rego code

Sub-
components
Description

CNL Editor UI: Web GUI Interface for users, with authentication
OWL vocabulary: stores the Ontology used by the CNL Editor
Editor API: used to access CNL documents from external clients/components
Back Store Interface: to access internally the CNL Store
CNL Store: document-oriented storage

Main logical
Interfaces

Interface name Description Interface technology

CNL Editor UI CNL Editor Web GUI HTTP (browser)

Editor API API to access CNL documents REST API

Requirements
Mapping

List of requirements covered by this component
CNLE.01, CNLE.03, CNLE.04, CNLE.05, CNLE.06

Interaction
with other

components

Interfacing Component Interface Description

NL2CNL Translator CNL Editor reads CNL documents in XML format as
prepared by CNL Translator

DSL Mapper CNL Editor provides to DSL Mapper the finalised
CNL documents to be mapped

Relevant
sequence
diagram/s

Current TRL Based on exiting tools/components (HPE)

Programming
language

Java, Springboot, GWT

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 48 of 120

www.medina-project.eu

License Apache 2.0

WP and task WP2 Task 2.4

Workflow WF3

Component
Name

CNL Editor Ontology

Main
functionalities

The component provides the following functionalities:

• Ontology allows to write or change Metrics associated to a Requirements
respecting ontology rules and Vocabulary defined

Sub-
components
Description

OWL vocabulary: stores Ontology used by Editor

Main logical
Interfaces

OWL vocabulary is a file in RDF/XML format that is used on reading internally
from CNL Editor

Interface name Description Interface technology

Protégé11 Protégé Desktop is a feature rich
ontology editing environment
with full support for the OWL 2
Web Ontology Language and is
W3C Standard Compliant

Windows Desktop

Requirements
Mapping

List of requirements covered by this component:
CNLE.02, CNLE.04, CNLE.05

Interaction
with other

components

Interfacing Component Interface Description

CNL Editor CNL Editor reads vocabulary (OWL file)

Relevant
sequence
diagram/s

Current TRL Based on exiting tools/components (HPE)

Programming
language

n/a

License n/a

WP and task WP2 Task 2.4

Workflow WF3

4.4.2.3 DSL Mapper

Component
Name

DSL Mapper

Main
functionalities

The component provides the following functionalities:

• Mapping of the CNL obligations + metadata output to a DSL (e.g., Rego)

Sub-
components
Description

To be defined/ there are no sub-components

11 https://protege.stanford.edu/

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 49 of 120

www.medina-project.eu

Main logical
Interfaces

Interface name Description Interface technology

DSL Mapper API API to access DSL Mapper
functionalities

REST API

Requirements
Mapping

List of requirements covered by this component:
DSLM.01, DSLM.03

Interaction
with other

components

Interfacing Component Interface Description

CNL Editor The DSL Mapper is called from the CNL Editor,
which passes, as a parameter, an object in XML
format, including all the necessary requirement
metadata, metrics information, CNL obligations

Orchestrator The DSL Mapper maps the selected obligations +
metadata into a DSL (Rego) and pushes the
output to the Orchestrator by exploiting its API

Relevant
sequence
diagram/s

Current TRL To be developed from scratch

Programming
language

Python 3.x

License Apache 2.0

WP and task WP2 Task 2.5

Workflow WF3

4.4.3 Risk assessment and optimisation framework

This block is used as a decision-making instrument for the analysis of non-conformities of a cloud
service with a selected certification scheme12.

Component
Name

Risk Assessment and Optimisation Framework (aka Risk-based selection of
controls Framework, SATRA)

Main
functionalities

The component provides the following functionalities:

• Risk Assessment – a questionnaire-based risk assessment facility to
evaluate CSP-specific risk levels for predefined threats.

• Cost-Effective TOMs optimisation – selection the most cost-effective
requirements/TOMs (to optimise investment) in case Certification
Framework allows this (in contrast to rigid Frameworks).

• Risk-based analysis of deviations – risk-based evaluation of non-
conformity from the framework to determine if the deviation is major
or minor.

12 The interested reader is referred to Risk assessment technical specifications in the deliverable D2.7 [13].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 50 of 120

www.medina-project.eu

Sub-
components
Description

Risk Assessment Engine – computes risk levels using the pre-established
relations between asset types, threats, and requirements. Requires the list
of assets and implemented requirements as input.

Risk Assessment GUI – is the user-friendly front-end part of the Framework
which guides a user (compliance manager) through the steps for
identification of main input parameters and displays results of the analysis.

Risk Assessment API – is a set of APIs which collect the main input
parameters and provide the results of the analysis in a machine-readable
format. In case all interactions with MEDINA are performed through the
Compliance Manager Dashboard only, only API is relevant.

Risk optimiser Engine – selects the most cost-relevant TOMs to optimise the
expected expenditure (risk + cost) given the budget or to ensure compliance
with the selected Certification Framework (with, at most, minor non-
conformity).

Risk-based decision support - compares two risk assessment results (basic
and actual ones) and decides if the deviation is major or minor.

Risk storage – the storage of the current risk practices settings.

Main logical
Interfaces

Interface name Description Interface technology

Risk Assessment GUI Graphical user interface of
risk assessment

GUI

Risk Assessment APIs A set of machine-readable
APIs for risk assessment

Rest API

Non-conformity
reporting API

The API used for analysis
and reporting a detected
non-conformity.

Rest API

Requirements
Mapping

List of requirements covered by this component:
RBSCF.01, RBSCF.02, RBSCF.03, RBSCF.04, RBCA.01, RBCA.02

Interaction
with other

components

Interfacing Component Interface Description

Compliance manager
(Dashboard)

Invokes Risk Assessment and Optimisation
Framework for the selection of suggested
requirements to implement, analysis of (goal)
security configuration (e.g., for deviation from
the target security configuration set by a
certification framework), setting up resources
and possible impact.

Continuous
certification evaluation

Invokes Risk Assessment and Optimisation
Framework for the evaluation of the detected
non-conformity

Automated certificate
lifecycle management

Consumes the result of the risk-based non-
conformity evaluation.

Orchestrator
(Clouditor)

Notifies about creation/deletion of a Target of
Evaluation.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 51 of 120

www.medina-project.eu

Relevant
sequence
diagram/s

Current TRL
Based on exiting tools/components (TRL 4/5), but the tool should be tuned
for MEDINA’s needs

Programming
language

Java, Python

License Apache 2.0

WP and task WP2 (Task 2.6) and WP4 (Task 4.4)

Workflow WF4, WF6, WP7

4.4.4 Continuous Evaluation and Certification Life-Cycle

This block is responsible for the continuous evaluation of security assessments of cloud services,
including an approach for continuously aggregating assessment results, as well as deriving a
decision about the certificate state13.

4.4.4.1 Continuous certification evaluation

Component
Name

Continuous certification evaluation

Main
functionalities

Evaluates the compliance level on all levels of the certification hierarchy
(resources, requirements, controls, control groups, standard) based on the
aggregation of assessment results and configuration (weights of individual
tree nodes).

13 More details can be found in D4.2 [10] and D4.4 [14].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 52 of 120

www.medina-project.eu

Sub-
components
Description

The component consists of:

• CCE: the main back-end component which manages all the compliance
level calculations and interfaces with other components,

• CCE-frontend: a web UI interacting with the back-end to display
information to users,

• Mongo-DB document database: storing past states of evaluation trees.

Main logical
Interfaces

Interface name Description Interface technology

Security
assessment
input

Receiving security
assessments from the
Orchestrator.

gRPC

Web UI UI to display evaluation results
in a graphical way

HTTP

HTTP (REST) API Offering data about current
and past evaluation results to
other components

HTTP

Requirements
Mapping

CCCE.01, CCCE.02, CCCE.03, CCCE.04, CCCE.05, CCCE.06, CCCE.07

Interaction
with other

components

Interfacing Component Interface Description

Evidence orchestrator CCE continuously receives assessment results
from the orchestrator via gRPC.
It also obtains the configuration data about
targets of evaluation, their certification
schemas, and metrics.

Automated certificate
lifecycle manager

Lifecycle manager obtains the details about
current and past evaluation results from the
CCE by querying its API.

Risk assessment and
optimisation framework

CCE sends the calculated evaluation data to
RAOF when any significant change to the
evaluation occurs. An HTTP interface exposed
by RAOF is used.

Catalogue of controls
and security schemas

CCE obtains certification schema information
from the Catalogue.

Relevant
sequence
diagram/s

Current TRL TRL 3-4

Programming
language

Java, JavaScript

License Apache License v2.0

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 53 of 120

www.medina-project.eu

WP and task T4.1

Workflow WP6, WP7

4.4.4.2 Automation of the Cloud Security Certification Life-Cycle

Component
Name

Life-Cycle Manager (LCM)

Main
functionalities

The component provides the following functionalities:

• Consume information about minor or major deviations present in the
cloud system, as well as consume information about operational
effectiveness

• Translate above information into a certificate state

• Report changes to the SSI Framework

• Store changes in the Orchestrator database and display them in the
Orchestrator UI

Sub-
components
Description

No subcomponents exist in the LCM.

Main logical
Interfaces

Interface name Description Interface technology

Certificate
Maintenance

Allows the creation, update, and
deletion of certificates

REST

Deviation report Allows the report minor or major
of deviations

REST

UI User interface to see the state
and state history, as well as
certificate information
(integrated in the Orchestrator
UI)

gRPC, Typescript /
Svelte

Requirements
Mapping

List of requirements covered by this component
ACLM.01, ACLM.02, ACLM.03, ACLM.04, ACLM.06, ACLM.07, ACLM.08

Interaction
with other

components

Interfacing Component Interface Description

Continuous Cloud Security
Certification evaluation

The CCE provides operational
effectiveness data to the LCM.

SSI Framework The LCM sends certificate maintenance
reports to the SSI Framework to allow
auditors to review the decisions.

Orchestrator The LCM stores any certificate data in the
Orchestrator’s database.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 54 of 120

www.medina-project.eu

Relevant
sequence
diagram/s

Current TRL TRL3

Programming
language

Go

License Apache 2.0

WP and task W–4 - T4.3

Workflow WP6, WP7

4.4.4.3 SSI Framework

Component
Name

Self-Sovereign Identity Framework

Main
functionalities

The component provides the following functionalities:

• Provides a tool for appropriate entities (CAB) to issue/update/revoke and
sign security certifications for the cloud providers based on the updated
certificate state received from the Certificate Lifecycle Automation
component.

• Provides a tool for appropriate entities (CAB) to publish the certificate
state in a public registry.

• Provides a tool for appropriate entities (for example, cloud providers
clients) to ask for proofs about the state of different certifications of the
cloud providers.

• Provides a tool for cloud providers to see/list received certifications and
their associated state.

• Provides a tool for cloud providers to send proofs about the certificate
state to their clients.

Sub-
components
Description

The SSI Framework is composed of five main components.

• Public service for the CAB to receive certificates updates.

• Certificate signing application for the CAB to issue, update, or revoke
security certificates to a CSP as well as to save the signed security
certificates in a public registry.

• Application for CSP clients to request and verify proofs of security
certificates.

• Application for the CSPs to save the signed security certificates as well as to
generate verifiable proofs based on the signed security certificates.

• A blockchain network to record the different actors’ signatures.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 55 of 120

www.medina-project.eu

Main logical
Interfaces

Interface name Description Interface technology

Certificate Life
cycle automation

Provides the security certificate
state update.

REST API

CAB Sign and publicly publish security
certifications

Web (Provided aaS)

CSP List and proof generation of
security certifications

Web (Provided aaS)

CSP client Proof request and verification of
security certifications.

Web (Provided aaS)

Requirements
Mapping

List of requirements covered by this component SSI.01
SSI.02, SSI.03, SSI.04, SSI.05, SSI.06, SSI.07

Interaction
with other

components

Interfacing Component Interface Description

Certificate Life cycle
automation

It will provide the security certificate state
update (and other certificate features if
needed).

Relevant
sequence
diagram/s

Current TRL Based on exiting tools (Identity Builder-TECNALIA)

Programming
language

JavaScript (ReactJS)

License Proprietary. Copyright by TECNALIA.

WP and task WP4 – Task 4.3

Workflow WP6, WP7

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 56 of 120

www.medina-project.eu

4.4.5 Organizational evidence gathering and processing

This block is responsible for the assessment and management of organisational evidence that is
extracted from policy documents14.

Component
Name

Assessment and Management of Organizational Evidence (AMOE)

Main
functionalities

The component provides the following functionalities:

• Gathering and processing organizational evidence

• Providing evidence to the Clouditor for assessment

Sub-
components
Description

Organizational evidence is collected by applying NLP and organisational
metric to an uploaded document. The processing part transforms this
evidence in the form of technical evidence. This transformed evidence then
are provided to the security assessment of the Clouditor which can handle
such technical evidence.

Main logical
Interfaces

Interface name Description Interface technology

UI GUI to

• Upload documents

• Retrieve evidence

• Set assessment results

• Submit/forward
assessment results

webservice

API • Upload documents

• Retrieve evidence

• Set assessment results

• Submit/forward
assessment results

REST

Requirements
Mapping

OEGM.01, OEGM.02, OEGM.03, OEGM.04, OEGM.05

Interaction
with other

components

Interfacing Component Interface Description

Orchestrator Send collected evidence

14 More details can be found in D3.5 [14].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 57 of 120

www.medina-project.eu

Relevant
sequence
diagram/s

Current TRL TRL3-TRL4

Programmin
g language

Python

License Open source

WP and task WP3: Task 3.4

Workflow WP2, WP5

4.4.6 Orchestrator and databases

The Orchestrator is the central management component of MEDINA which manages database
access, cloud services and a user interface15.

Component
Name

Orchestrator

Main
functionalities

The component provides the following functionalities:

• Store evidence and assessment results and provide an API to the
databases

• Forward assessment results to the certificate evaluation

• Forward assessment result hashes to the trustworthiness system

• Inform other components about new/modified cloud services and
targets of evaluation

Sub-
components
Description

The Orchestrator mainly provides APIs to various components (see below). A
dedicated subcomponent is the ledger client which transforms evidence and
assessment results into the format required by the trustworthiness system
and stores them on the ledger.

15 More details can be found in D3.5 [14].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 58 of 120

www.medina-project.eu

Main logical
Interfaces

Interface name Description Interface
technology

Assessment
results storage

An interface to provide assessment
results which are then stored in the
relevant database, and forwarded to the
relevant components

REST /
gRPC

Database access An interface that provides access to
stored evidence and assessment results

REST /
gRPC

DLT storage An interface to the DLT through which
evidence and assessment result
checksums are stored to the
trustworthiness system.

REST

Configure metrics
and target values

An interface that provides access to
metrics and target values

REST /
gRPC

UI A graphical interface that presents
information about assessment results,
cloud services, etc.

Typescri
pt /
Svelte

Requirements
Mapping

List of requirements covered by this component:
ECO.01, ECO.02, ECO.03

Interaction
with other

components

Interfacing Component Interface Description

Assessment tools Receives assessment results from assessment
tools

Databases Stores and retrieves evidence/assessment
results from the relevant databases

Trustworthiness system Sends assessment result hashes to the
trustworthiness system

Metrics and target
values repository

Retrieves metrics and target values for the
assessment components and offers an API to
modify them

Continuous Certification
Evaluation (CCE)

Forwards assessment results to the CCE
component

Relevant
sequence
diagram/s

Current TRL TRL4

Programming
language

Go

License Apache 2.0

WP and task WP3: T3.1

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 59 of 120

www.medina-project.eu

Workflow WF5

4.4.7 Evidence Collection and Security Assessment

These components are responsible for gathering evidence of CSP’s fulfilment of technical
measures, perform initial processing of the evidence, and pass it on to other MEDINA
components16.

4.4.7.1 Evidence gathering tools

4.4.7.1.1 Wazuh

Component
Name

Wazuh

Main
functionalities

In general, Wazuh is a HIDS solution that provides the following
functionalities:

• Malware and intrusion detection

• Log data analysis

• File integrity monitoring

• Vulnerability detection

• Configuration assessment

• (Limited) monitoring of data about AWS & Azure infrastructure with
simple compliance assessment

In MEDINA, Wazuh will be offered to the users as a tool to help CSPs satisfy
compliance with certain EUCS controls as well as an evidence gathering tool.

Sub-
components
Description

It is composed of a Wazuh server and Wazuh agents. The agents are deployed
on the individual monitored machines and communicate information about
the detected anomalies to the server.

The server includes the Wazuh manager component along with the ELK
(ElasticSearch, Logstash, Kibana) stack for gathering, storing, and display of
data. Custom integrations are possible to send alerts from Wazuh to any
external component.

Agents communicate with the server using Rsyslog.

Wazuh is plugged into MEDINA with the Wazuh & VAT evidence collector
component, which is responsible for extracting the data, relevant for MEDINA
metrics, and transforming it into evidence, compatible with the security
assessment component. It also includes two-way communication with the
security assessment component (Clouditor).

Main logical
Interfaces

Interface name Description Interface technology

Wazuh WUI Main web UI Web, based on Kibana

ElasticSearch ElasticSearch HTTP API (REST)

Requirements
Mapping

TEGT.C.01, TEGT.C.02
TEGT.S.08

16 More details can be found in D3.5 [14].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 60 of 120

www.medina-project.eu

Interaction
with other

components

Interfacing Component Interface Description

Security assessment
(Clouditor)

Wazuh & VAT evidence collector component
forwards every generated evidence to Clouditor
through a gRPC interface.

Relevant
sequence
diagram/s

Current TRL
Based on existing open source Wazuh platform: TRL 9.
Connector for integration with MEDINA (Wazuh & VAT evidence collector) is
at TRL 4.

Programming
language

C, Python, C++, Javascript

License Open source: GNU GPL v2, Apache License v2.0.

WP and task Task 3.2

Workflow WP2, WP5

4.4.7.1.2 VAT

Component
Name

Vulnerability Assessment Tool (VAT)

Main
functionalities

The component provides the following functionalities:

• Detection of web vulnerabilities by running integrated vulnerability
scanners to scan web applications (OWASP ZAP17, w3af18)

• Network reconnaissance (running hosts, open ports – exposed services)
using integrated Nmap19

• Detection of vulnerable software (known vulnerable service versions)

• Running custom scripts for detection of specific vulnerabilities or
monitoring specific security metrics

• Scheduling repeating tasks (vulnerability scans, monitoring, etc.)

In MEDINA, VAT is offered to the users as a tool to help CSPs satisfy
compliance with certain EUCS controls and as an evidence gathering tool.

17 https://owasp.org/www-project-zap/
18 http://w3af.org/
19 https://nmap.org/

http://www.medina-project.eu/
https://owasp.org/www-project-zap/
http://w3af.org/
https://nmap.org/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 61 of 120

www.medina-project.eu

Sub-
components
Description

Scheduler: responsible for triggering scanning tasks according to the
configured schedules

Docker interface: a component managing the connection with the Docker
runtime, executing the tasks by running appropriate docker images and
obtaining their results

Frontend: web UI management interface

RabbitMQ: connection between the subcomponents

VAT-genscan: integrating and orchestrating some vulnerability scanning tools
and combining their results into a common report (based on Faraday
CSCAN20)

Wazuh & VAT evidence collector: a component responsible for extracting the
data, relevant for MEDINA metrics, and transforming it into evidence,
compatible with the security assessment component. It also includes two-
way communication with the security assessment component (Clouditor) to
send evidence and exchange configuration data.

Main logical
Interfaces

Interface name Description Interface technology

Scan reports
output

Pushing the results of scan
tasks (vulnerability reports)

RabbitMQ (AMQP),
JSON

Management UI Web UI to manage the
scanning tasks and review
their results

Web

Requirements
Mapping

TEGT.C.01, TEGT.C.02
TEGT.S.08

Interaction
with other

components

Interfacing Component Interface Description

Security assessment
(Clouditor)

Wazuh & VAT evidence collector component
forwards every generated evidence to Clouditor
through a gRPC interface.

Relevant
sequence
diagram/s

20 https://github.com/infobyte/faraday/tree/master/scripts/cscan

http://www.medina-project.eu/
https://github.com/infobyte/faraday/tree/master/scripts/cscan

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 62 of 120

www.medina-project.eu

Current TRL

Based on existing Vulnerability Assessment Tool component developed in the
scope of H2020 CYBERWISER. To be extended, adapted, and integrated in the
MEDINA workflow. Current TRL: 4.
Integrated vulnerability scanners used are separately developed components
by their respective owners. Their TRLs are higher (8-9).

Programming
language

Go, node.js, Javascript, Python, Bash.

License

The VAT platform is proprietary, closed-source (developed by XLAB). The VAT-
genscan core component that integrates third-party vulnerability scanners
and combines their results is released as open-source with Apache License
v2.0. The scripts for deployment of the demo solution are also released under
Apache License v2.0.
Some sub-components and integrated vulnerability scanning tools are open
source:

• OWASP ZAP: Apache License

• W3af: GNU GPL v2

• Nmap: Nmap Public Source License based on GNU GPL v2

• CSCAN framework to orchestrate scanners (part of Faraday): GNU GPL v3

WP and task Task 3.2

Workflow WP2, WP5

4.4.7.1.3 Cloud Evidence Collector

Component
Name

Cloud Evidence Collector

Main
functionalities

The component provides evidence gathering for cloud resources, like virtual
machines, etc.

Sub-
components
Description

The evidence gathering discovers resources in cloud systems, like Azure and
AWS, via their standard APIs and forwards this information to the
assessment.

Main logical
Interfaces

Interface name Description Interface technology

Assessment
interface

An interface for providing
evidence to be assessed against
suitable metrics

gRPC

UI A graphical user interface, e.g., for
triggering discovery of resources
(integrated with the Orchestrator)

Typescript / Svelte

Requirements
Mapping

TEGT.C.01, TEGT.C.02
TEGT.S.01, TEGT.S.02, TEGT.S.03, TEGT.S.04, TEGT.S.05, TEGT.S.09

Interaction
with other

components

Interfacing Component Interface Description

Orchestrator Send assessment results

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 63 of 120

www.medina-project.eu

Relevant
sequence
diagram/s

Current TRL TRL4

Programming
language

Go

License Apache 2.0

WP and task WP3: T3.1, T3.2

Workflow WP2, WP5

4.4.7.1.4 Codyze

Component
Name

Codyze

Main
functionalities

The component provides the following functionalities:

• Static code analysis

• Validation of compliance to EUCS requirements in source code
Thereby, Codyze maps findings from the source code to EUCS requirements.
The resulting assessment results and evidence specified in the MEDINA data
model are submit for storage and further interpretation to the Orchestrator.

Sub-
components
Description

MARK is a domain specific language to specify verifiable properties that
source code must adhere to. It can, for example, restrict possible data values
and their flow, or specify interactions between objects. A corresponding
software library build on top of Xtext21 provides the language grammar and
parser functionality. In addition, a generated Eclipse plugin provides MARK
specific editing support in Eclipse IDE.

CPG is a library implementing a code representation based on the concept of
a code property graph [15]. It’s responsible for parsing source code and
providing a graph-based code representation suitable for querying code
properties.

Codyze library provides the analysis engine for Codyze. It uses the CPG to
parse source code. In addition, it uses the MARK library to parse MARK files.
The Codyze library implements the analysis steps to interpret MARK rules and
identify rule violations in source code. Assessed rules generate a finding that
either certifies compliance or documents a rule violation.

21 https://www.eclipse.org/Xtext/

http://www.medina-project.eu/
https://www.eclipse.org/Xtext/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 64 of 120

www.medina-project.eu

Main logical
Interfaces

Interface name Description Interface technology

CLI Codyze provides a command line
interface. It can be used to call
Codyze to analyse a set of files
and produce results. It is suitable
for example for a CI/CD pipeline.
It generates reports in the SARIF
format.

stdin/std out; file;
format: SARIF (JSON)

REST Implementation of the OpenAPI
REST API to communicate with
the Orchestrator.

HTTP REST

Requirements
Mapping

TEGT.C.01, TEGT.C.02
TEGT.S.06, TEGT.S.07, TEGT.S.08

Interaction
with other

components

Interfacing Component Interface Description

Orchestrator Send evidence

Orchestrator Send assessment results

Relevant
sequence
diagram/s

Current TRL TRL4

Programmin
g language

Kotlin, Java, Xtext

License Apache 2.0

WP and task WP3: T.3.3

Workflow WP2, WP5

4.4.7.2 Security Assessment

Component
Name

Security Assessment

Main
functionalities

The component provides an API for evidence collectors to send evidence to,
and assesses them according to pre-defined metrics and target values.

Sub-
components
Description

The evidence gathering discovers resources in cloud systems, like Azure and
AWS, via their standard APIs and forwards this information to the assessment.
The assessment compares the received evidence against pre-defined metrics
and their target values and forwards the results to the orchestrator.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 65 of 120

www.medina-project.eu

Main logical
Interfaces

Interface name Description Interface technology

Assessment
interface

An interface for providing
evidence to be assessed against
suitable metrics

gRPC

UI A graphical user interface, e.g., for
triggering discovery of resources

Typescript / Svelte

Requirements
Mapping

EAT.01, EAT.02, EAT.03

Interaction
with other

components

Interfacing Component Interface Description

Orchestrator Send assessment results

Relevant
sequence
diagram/s

Current TRL TRL4

Programming
language

Go

License Apache 2.0

WP and task WP3: T3.1, T3.2

Workflow WP4

4.4.7.3 Evidence trustworthiness management

Component
Name

Evidence trustworthiness management system

Main
functionalities

The component provides the following functionalities:

• Maintain an improved audit trail of evidence and assessment results.

• Provide a record of information on a verifiable way (verification).

• Provide a record of information on a permanent way (traceability).

• Guarantee resistance to modification of stored data (integrity).

Sub-
components
Description

Blockchain dApp to be executed on the orchestrators for providing the
information (evidence/assessment results) to be saved on the Blockchain.

Smart contract deployed on Blockchain nodes for information
(evidence/assessment results) writing and reading operations as well as events
generation indicating the provision of new information.

Monitor tool for subscription to the Blockchain based events and notification
to the different monitors clients.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 66 of 120

www.medina-project.eu

Graphical monitor client for gathering all the information saved on the
Blockchain (and be able to check it, without needed any interaction with the
Blockchain).

Main logical
Interfaces

Interface name Description Interface technology

Blockchain dApp Provides the required
information to be saved on the
Blockchain.
Provides a way to check the
information sabed on the
Blockchain

API REST

Graphical
Monitor

Provides a graphical interface
to check information saved on
the Blockchain

WEB

Requirements
Mapping

List of requirements covered by this component:
ETM.01, ETM.02, ETM.03, ETM.04, ETM.05

Interaction
with other

components

Interfacing Component Interface Description

Orchestrator The Orchestrator will provide (and check, if
needed) the information (evidence/assessment
results) to be saved on the Blockchain by means
of the Blockchain dApp interface.

Auditors The auditors will check the information saved on
the Blockchain by means of the graphical
monitor interface.

Relevant
sequence
diagram/s

Current TRL Based on exiting tools (Brokel-Tecnalia)

Programming
language

Solidity, NodeJS

License Proprietary. Copyright by Tecnalia.

WP and task
WP3 – Task 3.5
WP4 – Task 4.2

Workflow WP5

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 67 of 120

www.medina-project.eu

4.4.8 Integrated User Interface

The goal of this component is to provide a primary point of access for MEDINA Framework: it
integrates with existing authentication and guides users based on their authorization level to
specific components UIs22.

Component
Name

Integrated User Interface (IUI)

Main
functionalities

The component provides the following functionalities:

• Provides a primary point of access for MEDINA framework

• Provides the integration with the existing authentication

• Provides the integration of all the separated components GUI into a
single point of access

• To guide the users based on their authorization level to specific
components UIs

Sub-
components
Description

No subcomponents exist in the IUI

Main logical
Interfaces

Interface name Description Interface technology

IUI Main point of access to the
framework, integrates all the
other micro frontends

HTTPS (browser)

Requirements
Mapping

List of requirements covered by this component
IUI.01, IUI.02, IUI.05, IUI.06

Interaction
with other

components

Interfacing Component Interface Description

Catalogue of controls and
metrics

Integrates the Catalogue of controls and
metrics UI

CNL Editor Integrates the CNL Editor UI

Continuous Certification
Evaluation

Integrates the Continuous Certification
Evaluation UI

Organizational evidence
gathering and processing

Integrates the Organizational evidence
gathering and processing UI

Orchestrator Integrates the Orchestrator UI

Static Risk Assessment and
Optimisation Framework

Integrates the Static Risk Assessment and
Optimisation Framework UI

Relevant
sequence
diagram/s

Current TRL TRL7

Programming
language

AngularJS

License Proprietary. Copyright by HPE

WP and task WP5 – Task 5.3

Workflow WP2, WP7

22 More details can be found in D5.3 [3].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 68 of 120

www.medina-project.eu

4.5 MEDINA Deployment Models

This section briefly classifies the MEDINA tools attending to the technological framework
required for its execution and deployment. It presents a classification of the KRs based on the
envisioned deployment models at this stage of the project. This analysis completes the
presented in previous version of this deliverable from the technical perspective and in
deliverable D7.6 [16] from the business model impact perspective. The selection of the
deployment model has been influenced by the requirements of the certification stakeholders
(i.e., auditors, CABs and NCCAs).

4.5.1.1 Web tools (SaaS)

These are tools accessible through any compatible browser. In MEDINA some of the tools will
be offered as service, which are invoked for performing different functionalities. Internally these
tools can be deployed following the multi-cloud approach. It is envisioned that the following
MEDINA Key Results, tools and components will be offered as Web Tools (SaaS):

• Catalogue of controls and metrics (KR1)

• Risk based selection of controls (KR2)

• Certification language (KR3)

• Cloud certificate evaluator (KR5)

• Risk-based Auditor Tool (KR6)

• Self-Sovereign Identity-based certificates management (KR6)

• The integrated MEDINA framework

4.5.1.2 Containerized tools

Containers are lightweight software components that bundle the application, its dependencies,
and its configuration in a single image, running in isolated user environments on a traditional
operating system on a traditional server or in a virtualized environment [17]. Containerization
of an application has several advantages as, for example:

• Portability between different platforms and clouds: write once, run anywhere. An

application in a container behaves the same regardless the environment where it is

deployed, avoiding issues with operating system versions.

• Efficiency through using far fewer resources than VMs and delivering higher utilization

of compute resources.

• Improved security by isolating applications from the host system and from each other.

• Faster app start-up and easier and cost-effective scaling.

• Flexibility to work on virtualized infrastructures or on bare metal servers.

• Easier management since install, upgrade, and rollback processes can be built into the

Kubernetes platform.

• It allows developers to integrate with their existing DevOps environment (more about

DevOps infrastructure can be read in Section 5.

In this case the web application can be installed locally. The selection between this case and the
SaaS model depends mainly on the exploitation strategy decided for each Key Result or
component, and also on the needs of the users with respect to the usage of the component
(e.g., the Evidence storage tool shall be internal (local) to the CSP)). The following tools fit into
this category:

• Catalogue of controls and metrics (KR1)

• Risk based selection of controls (KR2)

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 69 of 120

www.medina-project.eu

• Certification language tools (KR3)

• Cloud certificate evaluator (KR5)

• Risk-based Auditor Tool (KR6)

• Continuous evidence management tool (KR4)

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 70 of 120

www.medina-project.eu

5 MEDINA DevOps Infrastructure and CI/CD and Verification
Strategy

This section provides updates related to the design of the MEDINA infrastructure and the
definition of the CI/CD and verification strategy previously described in D5.1 [1].

We have added details for the design of the Jenkins pipelines to be used in the MEDINA
framework, with focus on the technologies adopted such as the containerization with Docker
and the use of the Kubernetes container orchestrator. Moreover, few changes in the CI/CD
supporting tools have been produced and we provided updates for the three environments
indicated in D5.1 concerning the resources and the status.

The unchanged parts, those that define the CI/CD strategy, quality and assurance methods, and
the containerization deployment model, have been moved to Appendix D. CI/CD Strategy.

5.1 Implemented CI/CD pipeline

This section describes the CI/CD pipeline focusing on the strategies adopted to make each
partner independent to create its own pipeline (Seed Jobs) and the adoption of the
containerization technology for the release of part of the CI/CD tools and environments.

The implemented pipelines are three: the Build pipeline, the Deploy pipeline and the Security
pipeline. As described in Appendix D. CI/CD Strategy, we make use of Jenkins as CI/CD
orchestration tool. This tool contains a particular plugin called Seed Job which aids to automate
the creation of the three ad-hoc pipelines designed for the MEDINA framework.

The process consists of filling in a form with parameters such as:

• Work Packages/Task folder where the Jenkins Jobs will be created

• Job basename, that typically is the component name

• GitLab URL, retrieved from the TECNALIA GitLab web interface

• Build template, chosen from a preconfigured template or customizing it manually

• Dockerfile, the name of the dockerfile to build the container image

• Image, the name of the container image pushed to the private Artifactory registry

• Kubernetes manifests, used for deployment into Kubernetes cluster

Once these details are provided, the Seed Job automatically creates the three standardized
pipelines for build, deploy and security. Figure 8 shows how these pipelines work.

Build pipeline

In the Build pipeline, the code is checked out from GitLab and a docker container is setup to
execute the other build stages. Then there is the compile, testing and package stages and
partners can customize them depending on the build tools used. The next three stages are
referred to the Docker image building and pushing to the Artifactory repository. By default, the
image is pushed with the “latest” tag but there is an optional phase to tag it in a different
manner. At last, if no errors occur the Deploy Job is automatically called.

Deploy pipeline

The Deploy pipeline deals with the release of the components in the Kubernetes cluster. As
described in the D5.3 (Section 2.1) [3], the Kubernetes cluster is divided in two isolated and
virtual environments, “dev” and “test”. Jenkins is configured to access to the Kubernetes cluster
with exchanged credentials to enable the application of Kubernetes manifests to release the
configuration to the environment. By default, the Deploy pipeline releases the component on

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 71 of 120

www.medina-project.eu

the “dev” environment. Partners can also use this pipeline to manually release the component
on the "test" environment changing it with one click on the Jenkins platform. The Security
pipeline is automatically triggered upon a successful Build and Deploy.

Figure 8. CI/CD Pipelines in MEDINA (source D5.3 [3])

Security pipeline

For assessing Quality & Assurance in the entire toolchain, the Security pipeline includes security
analysis of the software artefacts at different levels: Static Code analysis for checking the source
code, Container security for scanning vulnerabilities into the container packages and Software
Composition Analysis (SCA) for spotting security issues in third party libraries. Each type of
analysis is running by a specific tool. Concerning the first two types, the tools (respectively
Semgrep [18] and Anchore [19]) are running into containers called into the security pipeline.
After the analysis is done, these containers, in which the tools are installed, are destroyed but
the output file of the analysis persists. In this way, it can be easy and fast to update the tool to
the latest version, forcing the download of the latest tag of the container images. Regarding the
SCA, the tool is OWASP Dependency Check, installed via command line. The latest stage of this
implemented Security pipeline has foreseen a further step to make possible to see all the
analysis results of the security controls in a unique view thanks to the use of a vulnerability
report aggregator tool called DefectDojo [20], which will be described better in Section 5.2.1.

5.2 Infrastructure in MEDINA framework

This section describes the updates about the CI/CD tools chosen and the current state of the
Development, Test and Production environments.

5.2.1 CI/CD supporting tools

Table 9 presents a new updated toolset with respect to the list provided in D5.1 [1].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 72 of 120

www.medina-project.eu

Table 9. Software development tools

(*) The first change concerns the tool to perform Static Code Analysis. Despite the initial
selection of FindBugs and SonarQube, we now turn our choice to Semgrep [18] because it
supports many languages, and is easy to integrate with Jenkins. Semgrep [18] is a fast, open-
source, static analysis tool for finding bugs and enforcing code standards at editor, commit, and
CI time. Semgrep analyses code locally on the user’s PC or in its build environment, there is no
need to upload the code. It supports 20+ languages such as C#, Go, Java, Python, Ruby, etc.

(**) The second change is the addition the new vulnerability report aggregator tool named
DefectDojo [20]. DefectDojo is an open-source DevSecOps and vulnerability management tool.
DefectDojo streamlines the application security testing process by offering features such as
importing third party security findings, merging and de-duping, templating, report generation
and security metrics, maintaining product and application information, and pushing findings to
systems such as JIRA or Slack. Figure 9 shows an example of the DefectDojo dashboard.

Figure 9. DefectDojo Dashboard

MEDINA – Software Development Tools

Category Tool

Collaborative Code & Version Control GitLab

Build Automation Maven and Gradle

Artefact Repository Artifactory

Continuous Integration Jenkins

Testing JUnit and REST Assured

Bug Tracking GitLab issues

Q–A - static code analysis * Semgrep

Q–A - dynamic code analysis OWASP ZAP

Q–A - container security Anchore

Q&A- vulnerability report aggregator ** DefectDojo

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 73 of 120

www.medina-project.eu

5.2.2 Development and Test Environment

This section describes the updates to the MEDINA Development and Test environments. These
environments are implemented in a Kubernetes cluster and run on three VMs hosted by
TECNALIA and based on Ubuntu 20.04.

A dedicated VM hosts the CI/CD orchestration engine, the supporting tools, as well as the
Kubernetes cluster management. Its current resources status is:

• Memory: 16G

• Cores: 4

• HDD: 400G

The CI/CD is reachable at: cicd.medina.esilab.org.

The Development and Testing Environments are implemented on a 3-node container cluster
that virtualizes both environments making them independent and isolated (see Figure 10). Such
environments will run the MEDINA micro-services (containers) depending on their current
maturity level: development will be highly unstable, while testing will host the reference
implementation of MEDINA available for integration testing (a more stable codebase).

The resources dedicated to each machine have been increased to meet the needs of the
partners’ components. The current status is:

• Memory: 16G

• Cores: 8

• HDD: 200G

The 200G of storage of each node are organized as a distributed filesystem for data persistent
layer and managed by Rook/Ceph [21]: the Kubernetes cluster offers 200G of storage and the
data are duplicated among the three nodes as described in Section 2.1.1 of D5.3 with more
details [3].

Figure 10. Development and Testing Environments

5.2.3 Validation Environment

The components released in the Kubernetes “Test” environment are validated by the Fabasoft
and Bosch environments (see Sections 2.1.2 and 2.2.2). For this reason, the “Production
Environment”, as mentioned in Appendix D. CI/CD Strategy, will be replaced by a validation
environment that relies on the MEDINA framework deployed in “Test”.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 74 of 120

www.medina-project.eu

6 Conclusions

In this deliverable -D5.2- we have described the general MEDINA framework in month 24 of the
project. The document builds on the first version of the deliverable, D5.1 [1], produced a year
ago. The document maintains the same structure, but modifying and extending the content
where necessary.

The document presents the functional and non-functional requirements for each MEDINA
component. A total of 88 functional and 12 non-functional requirements are presented,
corresponding to 15 different components, being two of them new components defined in the
second year of the project. The evolution of the requirement status has been presented. An
overall of 21 new requirements have been defined in this period, for a total of 88 requirements.
On the other side, 6 of them have been discarded. Regarding the status of the implementation,
4% of the requirements are still to be started; in other words, 96% of the requirements are
already partially or fully implemented, and most of them (53%) are fully implemented.

The description of the architecture of MEDINA framework has also been updated. That includes
updated descriptions of the components, their structural and behavioural description, through
the use of the “component card” templates. Additionally, the latest version of the data model
of MEDINA has been presented, along with the general architecture, grouping the components
in eight groups or “building blocks” depending on the features and participation in the workflow.

Finally, the document describes the development and integration methodology followed in the
project since its inception, and the infrastructure employed to construct and demonstrate the
solution.

This is the second and final version of the requirements documentation in MEDINA. With the
project being at the end of its second year, not many changes are expected in the coming
months regarding components definition, general architecture, or communication interfaces.
The next steps will be dedicated to finalising the implementation of the requirements, to have
a complete set of components developed, and to integrate and test them in the MEDINA
infrastructure.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 75 of 120

www.medina-project.eu

7 References

[1] MEDINA Consortium, “D5.1 MEDINA Requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy,” 2021.

[2] MEDINA Consortium, "D6.3 Use cases development and validation prototypes," 2022.

[3] MEDINA Consortium, “D5.3 MEDINA integrated solution-v1,” 2022.

[4] ENISA, “EUCS – Cloud Services Scheme,” [Online]. Available:
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme. [Accessed
October 2022].

[5] MEDINA Consortium, “D6.2 Use cases specification and evaluation methodology v2,”
2021.

[6] ISO/IEC/IEEE International, “Systems and software engineering—Vocabulary,” 2017.

[7] MEDINA Consortium, “MEDINA Annex 1 Part B - GA Number 952633,” 2020.

[8] MEDINA Consortium, “D4.2 Tools and Techniques for the Management and Evaluation of
Cloud Security Certifications,” 2022.

[9] MEDINA Consortium, “D5.4 MEDINA integrated solution-v2,” 2023.

[10] MEDINA Consortium;, “D2.1 Continuously certifiable technical and organizational
measures and catalogue of cloud security metrics-v1,” 2021.

[11] MEDINA Consortium, “D2.4 Specification of the Cloud Security Certification Language -
v2,” 2022.

[12] MEDINA Consortium, “D2.7 Risk-based techniques and tools for Cloud Security
Certification-v2,” 2022.

[13] MEDINA Consortium, “D4.4 Methodology and tools for risk-based assessment and security
control reconfiguration-v1,” 2022.

[14] MEDINA Consortium, “D3.5 Tools and techniques for collecting evidence of technical and
organisational measures-v2,” 2022.

[15] F. Yamaguchi, N. Golde, D. Arp and K. Rieck, “Modeling and Discovering Vulnerabilities with
Code Property Graphs,” in 2014 IEEE Symposium on Security and Privacy.

[16] MEDINA Consortium, “D7.6 Exploitation and sustainability Report-v1,” 2022.

[17] IBM, “The Benefits of Containerization and What It Means for You,” 6 February 2019.
[Online]. Available: https://www.ibm.com/cloud/blog/the-benefits-of-containerization-
and-what-it-means-for-you. [Accessed 26 10 2021].

[18] “Semgrep,” [Online]. Available: https://semgrep.dev/docs/. [Accessed October 2022].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 76 of 120

www.medina-project.eu

[19] [Online]. Available: https://anchore.com/. [Accessed October 2022].

[20] “DefectDojo,” [Online]. Available: https://www.defectdojo.org/. [Accessed October 2022].

[21] “Rook/Ceph,” [Online]. Available: https://rook.io/docs/rook/v1.10/Getting-
Started/intro/. [Accessed October 2022].

[22] MEDINA Consortium;, "D6.1 Use cases specification and evaluation methodology," 2021.

[23] S. Madsen, "How to Prioritize with the MoSCoW Technique," October 2017. [Online].
Available: https://www.projectmanager.com/training/prioritize-moscow-technique.
[Accessed March 2018].

[24] F. Emily, in DevOps For Dummies, For Dummies, 2019.

[25] OWASP, “OWASP ORG,” [Online]. Available: https://owasp.org/. [Accessed October 2022].

[26] OWASP, “OWASP Top Ten Project,” [Online]. Available: https://owasp.org/www-project-
top-ten/. [Accessed October 2022].

[27] Mitre corporation, “Common Weakness Enumeration,” 14 10 2021. [Online]. Available:
https://cwe.mitre.org/. [Accessed October 2022].

[28] "CISQ Standard," [Online]. Available: https://www.it-cisq.org/standards/code-quality-
standards/. [Accessed October 2022].

[29] "Quality Assurance in the DevOps strategy," [Online]. Available:
https://virtualrealitybrisbane.com/quality-assurance-in-the-devops-strategy/. [Accessed
October 2022].

[30] "Docker," [Online]. Available: https://www.docker.com. [Accessed October 2022].

[31] "Gitlab," [Online]. Available: https://gitlab.com/gitlab-org/gitlab-foss/. [Accessed October
2022].

[32] "Subversion," [Online]. Available: https://subversion.apache.org/features.html. [Accessed
October 2022].

[33] "Maven vs Gradle," [Online]. Available: https://gradle.org/maven-vs-gradle/. [Accessed
October 2022].

[34] "Difference between gradle and maven," [Online]. Available:
https://www.geeksforgeeks.org/difference-between-gradle-and-maven/. [Accessed
October 2022].

[35] "Nexus Repository," [Online]. Available: https://www.sonatype.com/nexus/repository-
oss. [Accessed October 2022].

[36] "JFrog Artifactory," [Online]. Available: https://jfrog.com/artifactory/. [Accessed October
2022].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 77 of 120

www.medina-project.eu

[37] "Jenkins CI/CD server," [Online]. Available: https://jenkins.io. [Accessed October 2022].

[38] "Tekton," [Online]. Available: https://tekton.dev/. [Accessed October 2022].

[39] "Kubernetes," [Online]. Available: https://kubernetes.io/it/. [Accessed October 2022].

[40] "Argo-cd vs Tekton vs Jenkins X," [Online]. Available: https://platform9.com/blog/argo-cd-
vs-tekton-vs-jenkins-x-finding-the-right-gitops-tooling/. [Accessed October 2022].

[41] "Jenkins vs Gitlab CI/CD," [Online]. Available: https://www.lambdatest.com/blog/jenkins-
vs-gitlab-ci-battle-of-ci-cd-tools/. [Accessed October 2022].

[42] "JUnit," [Online]. Available: https://junit.org/junit5/. [Accessed October 2022].

[43] "TestNG," [Online]. Available: https://testng.org/doc/. [Accessed October 2022].

[44] "Rest Assured," [Online]. Available: https://rest-assured.io/. [Accessed October 2022].

[45] "Jira," [Online]. Available: https://www.atlassian.com/it/software/jira. [Accessed October
2022].

[46] "Track," [Online]. Available: https://trac.edgewall.org/. [Accessed October 2022].

[47] "Bugzilla," [Online]. Available: https://www.bugzilla.org/about/. [Accessed October 2022].

[48] “SpotBugs,” [Online]. Available: https://spotbugs.github.io/. [Accessed October 2022].

[49] “Find Security Bugs,” [Online]. Available: https://find-sec-bugs.github.io/. [Accessed
October 2022].

[50] “SonarQube,” [Online]. Available: https://www.sonarqube.org/. [Accessed October 2022].

[51] OWASP, “OWASP Dependency Check,” [Online]. Available: https://owasp.org/www-
project-dependency-check/. [Accessed October 2022].

[52] OWASP, “OWASP ZAP,” [Online]. Available: https://www.zaproxy.org/. [Accessed October
2022].

[53] [Online]. Available: https://www.aquasec.com/products/trivy/. [Accessed October 2022].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 78 of 120

www.medina-project.eu

8 Appendix A. Requirements Management in MEDINA

This section is devoted to explaining the process followed to collect, manage, prioritise, and
document requirements in MEDINA. It remains unchanged with respect to the previous version
in D5.1 [1]. Hence, it has been moved to an Appendix.

8.1 Methodology for requirements elicitation

In MEDINA a combined top-down and bottom-up approach is followed to implement the
requirements gathering process (see Figure 11). Therefore, the requirements are elicited in
parallel in two strands:

i) Generic functionalities of the MEDINA framework. That is, the functionalities MEDINA
aims to offer as its value propositions

ii) Use Cases (UC) requirements for MEDINA. That is, what UCs expect from MEDINA
components. Eventually, these two strands must merge.

Figure 11. Different requirements sources in MEDINA

The elicitation of requirements for the MEDINA framework will be fed through several sources:

• Requirements coming from the MEDINA action specification: The first version of the
requirements are elicited from the Description of Action (DoA [7]) by each responsible
technical partner, and detailed based on their knowledge and technical discussions held
during the requirements gathering process.

• Requirements coming from the Use Cases: The Use Cases propose functionalities for
the MEDINA framework, so that the offered features can cover their needs. This is done
in the context of WP6.

• Requirements from the technical providers. The technical providers may provide new
functional requirements based on the decisions made during the development of the
design of the different tools, the definition of the workflows in MEDINA and the set-up
of the MEDINA data model.

8.2 Requirements gathering and prioritization process

The process followed in MEDINA for the elicitation of requirements can be seen in Figure 12.
Legend for the figure is as follows:

• Activities performed in this work package (WP5) are marked in grey

• Activities marked in green are performed in WP6 (use cases validation).

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 79 of 120

www.medina-project.eu

Figure 12. Process followed in MEDINA for requirements gathering and prioritization

The process followed in MEDINA for the elicitation of requirements is described as follows:

• High-level requirements, that is, what MEDINA aims to offer, are elicited from what it is
written in the DoA [7]. These requirements involve both functional and non-functional
aspects that the MEDINA framework should provide.

• These initial list of requirements is enriched with the understanding on how the
workflow of information happens among the different components through the
description of the MEDINA workflow (for details of the workflow consult deliverable
D6.3 [22]) which ends up with the definition of the MEDINA data model (see details in
section 4.3).

• The result of the activities described beforehand have been decomposed into functional
and non-functional requirements.

• In parallel the Use Cases elicit their requirements for the MEDINA components. This is
done in the context of WP6.

• The technical partners then align the generic requirements elicited in previous steps
with the requirements gathered by the use cases, and reformulate them, when needed,
to end up with a consensus version.

• Based on the final set of requirements (agreed in the previous step), both use cases and
technical partners will prioritize them, taking into consideration not only use cases
needs but also baseline requirements that affect other requirements, and in the event,
it was not implemented, the related functionality would not be delivered in a successful
manner.

• The outcome of this activity results in a prioritization matrix (see Section 3.2.3), that
indicates for each release which requirements will be implemented and will therefore
be able to be validated by the use cases.

• Requirements will then be implemented into functionalities. The implementation
includes the architectural design, the coding, testing (unit and integration) and
deployment. During this phase, and especially during the testing activities, new
requirements or improved requirements may arise. These new requirements are
carefully analysed by the technical partners in order to avoid scope creep, before
deciding if they can or cannot be accepted. If they are accepted, the functional
requirements list will be updated.

• Use cases validate the functionalities following the evaluation plan defined in D6.1 [22].
The evaluation can result in new requirements, as well as in updated versions of the
current requirements. As in step 8, these new requirements are carefully analysed by

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 80 of 120

www.medina-project.eu

the technical partners in order to avoid scope creep, before deciding if they will or will
not be accepted.

Furthermore, several traceability matrixes are maintained, to keep all the relationships affecting
the requirements up to date. These matrixes are included in the Section 3.2.

8.3 Requirements documentation

Documenting requirements is a key issue in every software project. In the case of MEDINA, the
requirements are defined to provide an understanding of what will MEDINA do, i.e., the
functionalities.

For the prioritization of the requirements, the MoSCoW method [23] has been followed. The
MoSCoW method allows to define clear priority levels while also determining which
functionalities will be developed in each of the project iterations. The prioritization levels of
MoSCoW can be defined as follows:

• M (Must): mandatory requirements. These requirements will be included definitely in
the release.

• S (Should): requirements that should be included in the release or in the final version.
The inclusion of these type of requirements must not affect the ‘must’ requirements
and they will only be included in the case there is additional time of capacity.

• C (Could): requirements that could be included, because they provide nice-to-have
functionalities. These shall only be implemented when the M and S have been
successfully implemented.

• W (Won’t have): requirements that will not be included but they could be delivered
some time as additional or extended functionalities.

Must and Should requirements are prioritized for the first versions of the components, while
Could requirements are normally added towards the final versions of the components.

In MEDINA, requirements are reported in the requirements document, and are described as
follows:

• Requirement id: unique identifier of the requirement

• Short title: short description of the requirement

• Description: more detailed description of the requirement. This is especially
relevant for the creation of the test cases.

• Status: Proposed / Accepted / Rejected / Work in Progress / Fully implemented

• Priority: Must have / Could have / Should have / Won’t have

• Related KR: which MEDINA result is affected by this requirement

• Reference: Source of the requirement

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 81 of 120

www.medina-project.eu

9 Appendix B. Use Cases Definition

9.1 UC1: European Certification of Multi-cloud backends for IoT
solutions

Bosch’s validation use case (European Certification of Multi-cloud backends for IoT solutions)
applies the MEDINA’s framework to the multi-cloud architecture shown in Figure 13. Currently,
UC1 has been rolled out leveraging the approach and testbed presented in Sections 2.1.1 and
2.1.2 respectively.

Figure 13. High-level view of Use Case 1 deployment.

9.2 UC2: European Cloud Service Provider SaaS public & private cloud

Fabasoft is a European software manufacturer and cloud provider. The software products and
cloud services from Fabasoft ensure the consistent capture, sorting, process-oriented handling,
secure storage, and context-sensitive finding of all digital business documents. These functions
are used in both on-premises installations, as well as in Software as a Service (SaaS) cloud
solutions. Beyond that, the Fabasoft appliance concept offers a direct way to provide customers
with standardized complete systems (hardware and software) for use in their own data
processing centres.

Fabasoft is already compliant with the following relevant standards or certifications: ISO 9001;
ISO 20000-1; ISO 27001 including ISO 27018 controls; BSI C5:2017 (C5:2020 audit is currently in
progress); ISAE 3402 Type 2; and ISAE 3000 SOC 2 Type 1.

The motivation of Fabasoft to participate in MEDINA and to provide this use case is the business
driver of cost efficiency behind the idea of a successful automated, continuous audit approach.
Currently, an audit for a BSIC5:2020 attestation at Fabasoft follows the traditional conventions
and splits into three phases: set-up, compliance-evaluation, and re-evaluation.

1. Set-up-Phase: This phase is a one-time activity for each new compliance framework that
Fabasoft applies for. The Compliance Manager—responsible for organizing the compliance
process—has to select the applicable categories of the BSI C5:2020 framework. Together
with a system description, this comprises the Statement of Applicability (SoA).

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 82 of 120

www.medina-project.eu

In a next step, the Compliance Manager delegates all Security Controls collected in the SoA
internally to key-experts and -employees who are able to provide compliance-solutions for
a sub-set Security Controls to meet their requirements and implement the evidence
collection. These implementations are called Internal Controls and thus the responsible
person for such a control is called Internal Control Owner (ICO).

The combination of SoA and implementation of Internal Controls is forwarded to the Auditor
and assessed for first feedback and starting point of the next phase.

2. Compliance-Evaluation-Phase: This phase is defined to be a one-time activity for each new
Security Control Framework that Fabasoft applies for.

For a BSI C5:2020 attestation this phase follows an annual standard and evidence is collected
over the course of 12 months for each Internal Control and then audited over the course of
approximately 3 – 4 weeks between the Auditors, the Compliance Manager and all
responsible ICOs to verify the correctness of the controls and the management of incidences
if they occurred.

3. Re-Evaluation-Phase: This phase is defined to be a yearly repetition of the Compliance-
Evaluation-Phase. The difference is that it also involves verification and updates of controls
in place and checks the correctness of responsibilities of ICOs. It is a plan-do-check-act cycle
and culminates in a 3 – 4 weeks audit with all responsible persons every 12 months.

Problem Statement: By looking at the three described phases, it becomes obvious that this is
not only a costly undertaking with respect to the service costs of the auditing instance but also
very resource intensive for a company like Fabasoft. For comparison, at early 2021, Fabasoft has
had about 300 employees and involved nearly 12 people in a 4-week audit for BSI C5: 2020.
These figures indicate a recurring high-cost involvement for a CSP when it comes to this
framework. Currently there is no reason to believe that this will be any different for the
upcoming EUCS.

The ultimate goal for Fabasoft in this project is to achieve a framework that allows for an
(almost) automated, continuous audit process when applying a scheme like BSI C5 or EUCS. To
achieve that we expect MEDINA to offer methods and tools to analyse information either
directly – via tools like Clouditor – or indirectly by being able to process output from their
internal monitoring tools or currently active scripts we implemented for the traditional BSI C5
evidence collection. We also expect MEDINA to offer us tools and methods to fetch information
about Security Controls from some kind of repository that are translated into a rule-based
language so that an internal expert can implement the security measures necessary to comply
to the rules stated in that Security Control. This is, offer a framework that is less prone to
different interpretation for Security Controls and offers more clear instruction on what to report
for each Security Controls to achieve compliance to a framework like EUCS.

9.3 List of Use Cases requirements

This section offers the list of the Use Cases requirements collected in WP6. As mentioned before,
they are extracted from deliverable D6.3 [2], where a more detailed description of each of these
requirements can be found. The table includes actual requirements only. For clarity, the
discarded ones with respect to previous versions (D6.1 [22] and D6.2 [5]) have been removed,
and the new requirements have been added. The possible changes in the list itself or in the
status of the requirements will be reflected in future versions of the WP6 deliverables.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 83 of 120

www.medina-project.eu

The requirements are divided into “Common Requirements” i.e., those not directly related to
one of the use cases or that might occur in both, and “Use Case Specific Requirements” i.e.,
those only related to one use case and do not directly or indirectly apply to the other use case.

Table 10. List of Use Case requirements

Type Req. ID Short Title

Common

UC00.01 MEDINA Audit API

UC00.02 Repository of Security Controls

UC00.04 Secure Evidence Storage

UC00.05 Evidence Mapping

UC00.06 Security Controls Translator

UC00.07 Define Measurement Targets

UC00.08 Add Traditional Audit results to MEDINA results

UC00.09 Request for Change on Assessment Rules

UC00.13 Auditor access to Assessment Results

UC00.14 Compliance Status notification

UC00.16 MEDINA Measurement Target run-time change

UC00.17 MEDINA complies to EUCS

UC00.18 MEDINA tool modularity

UC00.19 Mapping of Frameworks

UC00.20 Scalable Framework

UC00.21 Interoperability API

UC00.22 Data collection extent

UC00.23 Retention of evidence

UC00.24 Compliance Certification Status

UC00.25 Efficiency Improvements (Automation)

UC00.26 Efficiency Improvements

UC00.27 Monitoring of Organizational Measures

UC00.28 Report Generation

UC00.29 Unified Graphical User Interface

UC00.30 Internal Regulation Checks Support

UC00.31 Trustworthiness of Evidence

UC1
(BOSCH)

UC01.1 Compliance Status Aggregation on Corporate Level

UC01.2 Compliance Dashboard on Corporate Level

UC01.3 Misconfiguration Monitoring on Corporate Level

UC01.4 Non-compliance Monitoring on Corporate Level

UC01.5 Aggregate Attribution of Non-Compliances

UC01.6 Graphical User Interface

UC01.7 Misconfiguration Tracking

UC01.9 Compliance Certification Status on Corporate Level

UC01.10 Compliance Status Aggregation on Domain Level

UC01.11 Compliance Status Aggregation on Domain Level

UC01.12 Compliance Status Aggregation on Domain Level

UC01.14 Compliance Certification Status on Domain Level

UC01.15 Misconfiguration Monitoring on Product Level

UC01.16 Non-compliance Monitoring on Product Level

UC01.17 Feedback on Remediation Actions

UC01.18 Provision of Remediation Guidance

UC01.19 Configuration

UC01.20 Compliance Certification Status on Product Level

UC01.21 Compliance and Certification Status in Product Composition

UC01.22 Integration with Asset Management

UC01.23 Framework Tools Setup and Configuration Automation

UC01.24 User Interface Single Pane of Glass

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 84 of 120

www.medina-project.eu

Type Req. ID Short Title

UC01.25 User Interface Time and Product Scope Adjustability

UC01.26 Selectable Certification Schemes and Security Frameworks

UC01.27 Selectable Controls in Compliance Dashboard

UC01.28 Identification of Compliance Issues in Composed Products / Services

UC01.29 Integration with Cloud-native Security Posture Management

UC01.30 Interfaces for the Provision of Organizational Evidence

UC01.31 Product-specific Customization of Certification Scheme

UC2
(FABASOFT)

UC02.01 Dashboard for the Compliance Manager

UC02.02 Delegation of compliance tasks from Compliance Manager to Internal Control
Owner

UC02.03 Set up of Internal Control by Compliance Manager

UC02.04 Mapping of Internal Controls to Security Controls by Compliance Manager or ICO

UC02.05 Application to the same Security Control Framework to different Subsidiaries or
Projects of the Corporation

UC02.06 Tracking of Internal Controls by Compliance Manager

UC02.07 Comprisal of Implementation Report by Compliance Manager for Auditor

UC02.08 Comprisal of Report by Compliance Manager

UC02.09 Elimination of risk for non-compliance

UC02.10 Sleek UI

UC02.11 Verify correspondence of Internal Controls and Persona Ref. TOMS to Internal
Control System Policy

UC02.12 Accept or decline ownership of Security Control

UC02.13 Change status of Internal Control

UC02.14 Assessment Results return value

UC02.15 Attribution of Security Controls

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 85 of 120

www.medina-project.eu

10 Appendix C. List of Requirements

As explained earlier in the document, in this Appendix we include the full list or requirements,
while in Section 3 we only include those that are new, have changed or have been discarded. To
make it easier for the reader to understand the changes, the following colour coding has been
used in the requirement tables.

A white table means the requirement has not changed.
It remains the same as in the previous version of the document.

An orange table means the requirement has significantly changed its definition, which
affects the meaning, provides more clarity, or modifies the scope.

A red table means the requirement has been definitively rejected.
The reason of the rejection is provided along with the status.

A green table means the requirement is new in this second version, so a new functionality
is defined for the component.

10.1 Functional requirements

10.1.1 Catalogue of controls and metrics

Requirement id RCME.01

Short title Catalogue of metrics, controls and TOMs

Description The repository shall contain a catalogue of elements (categories, TOMs
and reference implementations, controls and controls objectives,
assurance levels) associated to the security control frameworks (see
RCME.02 for the list of frameworks to be included), including:

1) clear definition of the categories of each security control
framework included in the catalogue

2) clear definition of the security controls inside each category
3) clear definition of the TOMs (aka security requirements) for each

control relevant for cloud service providers if relevant23. This
definition shall contain guidance in the techniques and tools to be
used for the evidence

4) clear definition of the assurance level corresponding to each
security requirement if relevant

5) clear identification of evidence that would comply with the
security controls and requirements

6) clear definition of the reference implementations of TOMs. These
references implementations shall be selected by the CSP for each
cloud service.

7) corresponding quantitative and qualitative metrics for each TOM

Status Partially implemented

Priority Must

Related KR KR 1

Reference DoA part B Annex 1 page 6
DoA part B Annex 1 page 7
DoA part B Annex 1 page 10
For point 4) technology provider

23 Not all security certification schemes have requirements defined. Some, such as BSI C5 and ISO 27001
remain at the level of security control.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 86 of 120

www.medina-project.eu

Requirement id RCME.02

Short title Metrics and TOMs in the repository

Description (*) The repository should include realizable metrics for at least for the 70% of
the TOMs referenced in EUCS-High assurance requiring “continuous
(automated)” monitoring

Status Partially implemented

Priority Must

Related KR KR 1

Reference DoA part B Annex 1 page 7

(*) This requirement has been modified due to the reformulation of KPI 1.1 based on the new
scope of the MEDINA technical metrics, which focus on the high-level requirements of the ENISA
Cloud Security Certification Scheme.

Requirement id RCME.03

Short title Metrics and TOMs for different assurance levels

Description The repository should include metrics for TOMs for basic (Y3), substantial
(Y2) and high assurance levels(Y1)

Status Fully implemented

Priority Must

Related KR KR 1

Reference DoA part B Annex 1 page 7

Requirement id RCME.04

Short title Technology agnostic security controls

Description The definition of the security controls in the repository should be
technology agnostic, that is, they must be valid for a number of different
implementations and cannot be technology specific.

Status Fully implemented

Priority Must

Related KR KR 1

Reference DoA part B Annex 1 page 15

Requirement id RCME.05

Short title Interfaces to the continuous auditing tools

Description The repository should be accessible by the continuous evaluation tools.

Status Fully implemented

Priority Must

Related KR KR 1

Reference DoA part B Annex 1 page 15

Requirement id RCME.06

Short title Homogenization of the certification schemes

Description The repository as part of the MEDINA framework should support the
homogenization of certification schemes, by aligning to the EUCS. Thus,
the repository must include information about the coverage of the
different similar controls24 in the different (national) schemes.

24 In a preliminary comparative analysis of the security control frameworks, it has been confirmed that
the minimum level to compare the frameworks is the controls. See D2.1 for more detail [11].

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 87 of 120

www.medina-project.eu

Status Partially implemented

Priority Must

Related KR KR 1

Reference DoA part B Annex 1 page 31

Requirement id RCME.07

Short title Interface to risk assurance

Description When the certification scheme changes in some way (partial changes,
requirements, new versions), the risk assurance component has to be
notified, or be able to know that something has changed.

Status Partially implemented

Priority Should

Related KR KR1 +

Reference New in V2

Requirement id RCME.08

Short title Catalogue GUI

Description The Catalogue has a GUI to search and show the different content it stores.
This GUI is going to be part of the MEDINA Integrated-UI.
Enhancements and adaptation to changes in data model are foreseen until
the final version of the catalogue.

Status Partially implemented

Priority Must

Related KR KR 1

Reference New in V2

Requirement id RCME.09

Short title Questionnaire for self-assessment

Description The Catalogue shall contain a questionnaire that helps a Cloud Service
Provider to make a self-assessment of the fulfilment degree of the EUCS
standard. This questionnaire will have the following features:

1) Allow the user to select the assurance level for the assessment
2) Include one or more questions for every requirement, of each

control in each EUCS category
3) Provide an easy-to-use scale of support (fully/partially/not

supported)
4) Allow to enter comments related to a question
5) Allow the user to include textual references for locating the

evidence that support the response given to a specific question
6) Provide a dashboard that summarizes the result of the

assessment, and provides quantitative values to reflect the degree
of fulfilment

Status Partially implemented

Priority Could

Related KR KR 1

Reference New in V2

Requirement id RCME.10

Short title Questionnaire for auditors

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 88 of 120

www.medina-project.eu

Description The questionnaire can be used by an auditor to help him in the audit
process. For that purpose, the tool can provide some extra functionalities
like:

1) Allow to enter non-conformities regarding a question
2) Provide a dashboard that summarizes the result of the audit,

including the related comments/non-conformities for each
question, as well as quantitative values to reflect the degree of
fulfilment

Status Partially implemented

Priority Could

Related KR KR 1

Reference New in V2

10.1.2 Certification Language

10.1.2.1 NL2CNL Translator

Requirement id NL2CNL.01

Short title Translation from natural language to controlled natural language

Description (*) The tool shall be able to translate in a semi-automatic way the
requirements selected from a security certification scheme – originally
expressed in natural language (English), into a set of obligations expressed
in a controlled natural language.
The output of the tool will be checked manually to verify if the obligations
generated by the tool are correctly linked to the selected requirement.

Status Partially implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

(*) The description has been polished and completed. About the input, it now refers to translate
“requirements” and not “most relevant aspects” of a security scheme. About the output, it says
“into a set of obligations expressed in a CNL” instead of “into a controlled natural language”. It
has been added a sentence about the output checking.

Requirement id NL2CNL.02

Short title Based on NLP and ontologies

Description Given natural sentences taken from the cloud certification schema, the
tool will rely on NLP techniques to link these sentences to a list of
recommended metrics.

Status Partially implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

Requirement id NL2CNL.03

Short title Translation of organizational measures and technical measures

Description (*) NL2CNL translator will be able to translate some of the organizational
measures specified in the chosen EU cloud certification schemas, and
some of the technical measures.

Status Partially implemented

Priority Should

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 89 of 120

www.medina-project.eu

Related KR KR3

Reference DoA, KR3 description

(*) Scope has been moderated. It now talks about translate “some”, not “all the organizational
measures”.

Requirement id NL2CNL.04

Short title Compliant with the CNL editor language

Description The controlled natural language output of NL2CNL translator will be
compliant with the format used by the CNL Editor to represent the
obligations

Status Partially implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

Requirement id NL2CNL.05

Short title XML compliant

Description The controlled natural language output of NL2CNL translator will be
compliant with the XML based format supported by the CNL Editor.

Status DISCARDED: duplicates the requirement NL2CNL.04

Priority Must

Related KR KR3

Reference DoA, KR3 description

10.1.2.2 CNL Editor

Requirement id CNLE.01

Short title CNL Editor GUI

Description The controlled natural language Editor will have an interface accessible by
web browser.

Status Fully implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

Requirement id CNLE.02

Short title CNL Editor policies authoring

Description The CNL Editor will allow creating statements for security controls.

Status DISCARDED: workflow changed during project discussions respect to the
initial idea, as a consequence the CNL Editor must not create Obligations.

Priority Must

Related KR KR3

Reference DoA, KR3 description

Requirement id CNLE.03

Short title CNL Editor input format

Description The CNL Editor will accept as input NL2CNL translator format (XML based).

Status Fully implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 90 of 120

www.medina-project.eu

Requirement id CNLE.04

Short title CNL Editor policies changing

Description The CNL Editor will allow changing input (policies) from NL2CNL translator.

Status Fully implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

Requirement id CNLE.05

Short title CNL Editor vocabulary

Description The CNL Editor will use an ontology-based vocabulary to model security
controls. Ontology will be the same used by NL2CNL translator and based
on W3C Web Ontology Language (OWL) standard format.

Status Partially implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

Requirement id CNLE.06

Short title CNL Editor output format

Description The CNL Editor will generate security controls with an XML format suitable
for DSL mapper.

Status Fully implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

10.1.2.3 DSL Mapper

Requirement id DSLM.01

Short title Translation to selected DSLs

Description The controlled natural language output of NL2CNL translator and further
edited— when needed— with the CNL editor, will be semi-automatically
mapped (meaning, with little human intervention) to the enforceable
languages (aka, Domain Specific Languages, DSLs) inputs to tools such as
Clouditor, or whatever will be the chosen DSL in MEDINA.

Status Partially implemented

Priority Must

Related KR KR3

Reference DoA, KR3 description

Requirement id DSLM.02

Short title Mapping elements

Description The mapping process will consider relevant elements of the target
certification framework, including (some) technical and organizational
measures, quantitative/qualitative security metrics, complex compliance
conditions, and cloud supply chain elements. The mapping process will
prioritize the translation of those requirements in CNL that can
automatically be enforced by WP4 and that are considered highly relevant
by the EU authorities at stage.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 91 of 120

www.medina-project.eu

Requirement id DSLM.03

Short title DSL output compliancy

Description The tool will output REGO rules, compliant with the input required by the
orchestrator.

Status Partially implemented

Priority Must

Related KR KR3

Reference

10.1.3 Risk based selection of controls framework

Requirement id RBSCF.01

Short title Risk assessment tool

Description The tool shall be based on a risk-assessment methodology and in order to
help CSP, as well as an auditor, to identify the key assets, threats, and
existing weaknesses of the cloud system.

Status Partially implemented

Priority Must

Related KR KR2

Reference DoA. Page 8

Requirement id RBSCF.02

Short title Risk assessment tool and TOMs

Description Identification of key assets, threats and existing weaknesses should
support stakeholders in reflecting their chosen TOMs in accordance with
their risk strategy, along with risk treatment options.

Status Fully implemented

Priority Must

Related KR KR2

Reference DoA. Page 8

Requirement id RBSCF.03

Short title Implementation selection functionality

Description Provide a tool-supported methodology for risk-based proposition of TOMs
to ensure at most minor non-conformity with the selected certification
schema within the target budget.

Status Partially implemented

Priority Must

Related KR KR2

Reference DoA. Page 8

Requirement id RBSCF.04

Short title Interface to the auditor

Description Auditor follows a risk-based approach which provides flexibility to the
certification process: since an ever-changing threat landscape often
requires timely reaction from the security team provoking changes in the

Status DISCARDED: Already contained in the rest of requirements

Priority Must

Related KR KR3

Reference DoA, KR3 description

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 92 of 120

www.medina-project.eu

security configurations. These could be efficient from the risk treatment
point of view, but will affect the previously obtained certificate, in the
worst case, invalidating it.

Status DISCARDED: The component provides the possibility to access the input
parameters and results of the assessment to a Compliance Manager (role).
An Auditor will have access to the component using the same
functionality. In other words, there is no need to develop a separate
interface for an auditor, as it will use the same interface that a Compliance
Manager uses. In short, the requirement is automatically fulfilled by
granting the auditor the rights of the compliance manager.

Priority Must

Related KR KR6

Reference DoA. Page 9

10.1.4 Evidence gathering tools

10.1.4.1 Evidence Orchestrator

Requirement id ECO.01

Short title Provision of Interfaces

Description The evidence orchestrator must provide standard interfaces for the
evidence collection and assessment tools (T3.2-T3.4) to securely store
their results.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id ECO.02

Short title Conformity to selected assurance level

Description The evidence orchestrator must ensure that the evidence collection (T3.2-
T3.4) is performed according to the selected assurance level, i.e., it must
trigger the evidence collection of the respective tools.

Status Partially implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id ECO.03

Short title Secure Transmission to evidence storage

Description The evidence orchestrator must securely transmit evidence to the
evidence storage.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id ECO.04

Short title Transmission of evidence checksums

Description The evidence orchestrator should integrate a Ledger client that stores
checksums of evidence in a DLT.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 93 of 120

www.medina-project.eu

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

10.1.4.2 MEDINA Evidence Trustworthiness management

Requirement id ETM.01

Short title Trustworthiness of evidence

Description The evidence orchestrator must integrate reasonable safeguards for
guaranteeing the trustworthiness of collected evidence.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 18-19

Requirement id ETM.02

Short title Transmission of evidence checksums

Description The evidence orchestrator should integrate a Ledger client that stores
checksums of evidence in a DLT.

Status Fully implemented

Priority Should

Related KR KR4

Reference DoA part A Annex 1 pages 18-19

Requirement id ETM.03

Short title Trustworthiness guaranteeing capabilities

Description Enable trustworthiness guaranteeing capabilities by extracting checksums
from DLT and comparing with current checksums to detect modifications.

Status Partially implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 18-19

Requirement id ETM.04

Short title Tamper-Resistance

Description The developed tool must provide a tamper-proof way of storing evidence
in the considered attacker model.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 18-19

Requirement id ETM.05

Short title Tamper-Resistance

Description The DAT must provide a tamper-proof way of storing audit information in
the considered attacker model.

Status Fully implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 pages 22

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 94 of 120

www.medina-project.eu

Requirement id ETM.06

Short title Compliance with existing standards

Description The design and implementation of the DAT should comply with the
requirements of existing standards regarding the certification chain (ISO-
based approach, ISAE3402 and evidence-based).

Status DISCARDED: Certification standards are not directly applicable to the
MEDINA Evidence Trustworthiness Management System as it is not
involved in the certification process. It is just a component that provides
extra security features.

Priority Should

Related KR KR5

Reference DoA part A Annex 1 page 22

10.1.4.3 Technical evidence gathering tools: Clouditor, Codyze/CPG, Automated
vulnerability monitoring / detection

10.1.4.3.1 Common requirements for all the tools

Requirement id TEGT.C.01

Short title Continuous collection

Description The developed tools must be able to collect evidence continuously, i.e., in
(high)-frequency intervals.

Status Partially implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id TEGT.C.02

Short title Provision to defined interfaces

Description (*) The developed tools must provide collected evidence to the central
evidence orchestrator via its offered APIs.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

(*) More specific definition. The destination to which to send the collected evidence has changed
from “a security assessment tool” to “the central evidence orchestrator”.

10.1.4.3.2 Specific tool requirements

Gathering evidence from cloud interfaces

Requirement id TEGT.S.01

Short title Collect evidence from cloud interfaces

Description The developed tool must be able to collect evidence of cloud workloads,
e.g., virtual machines, containers, and serverless functions.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 95 of 120

www.medina-project.eu

Gathering evidence from application source code

Requirement id TEGT.S.02

Short title Collect evidence from source code via CPG

Description The developed tool must be able to parse the source code of cloud
applications written in different programming languages and transform
into the agnostic representation of the CPG, and derive evidence from its
analysis.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id TEGT.S.03

Short title Implement information and data flow analysis

Description The developed tool must be able to perform information and data flow
analysis on a cloud application.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id TEGT.S.04

Short title Support expression of security requirements

Description The developed tool must be able to support the expression of security
requirements to be checked on application code. Requirements come for
example from WP2.

Status Partially implemented

Priority Must

Related KR KR1, KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id TEGT.S.05

Short title Verify security requirements

Description The developed tool must be able to verify security requirements and raise
warnings/errors with respect to secure coding practices and secure
information and data flows.

Status Partially implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id TEGT.S.06

Short title Retrieve source code of cloud applications

Description The developed tool should be able to retrieve (semi-)automatically the
source code of cloud applications requiring analysis.

Status Partially implemented

Priority Should

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 96 of 120

www.medina-project.eu

Requirement id TEGT.S.07

Short title Support for common programming languages, libraries, cloud services

Description The developed tool should support common programming languages,
libraries, and cloud services. Support for all programming languages,
libraries and cloud services is infeasible.

Status Partially implemented

Priority Should

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Requirement id TEGT.S.10

Short title Connect infrastructure- and application-level security analyses

Description The developed tool should be able to bridge the gap between
infrastructure- and application-level security analysis by extending graph-
based code analysis to the cloud resources, allowing to identify data flows
across cloud resources.

Status Fully implemented

Priority Can

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Gathering evidence from computing resources (VMs, containers, software)

Requirement id TEGT.S.08

Short title Provision of malware, intrusion, and vulnerability detection tools

Description Tools for malware detection, intrusion detection, and vulnerability
scanning must be provided to assist CSPs with satisfying related
requirements of security standards or to verify the compliance with such
requirements.

Status Partially implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

Gathering evidence from CSP-native services

Requirement id TEGT.S.09

Short title Collect evidence from CSP-native services

Description The developed tool should be able to query findings from CSP-native
services, like Azure Policy, to integrate them in MEDINA by querying the
respective cloud API.

Status Proposed

Priority Could

Related KR KR4

Reference DoA part A Annex 1 pages 8-9

10.1.4.4 Organizational evidence gathering tools: AMOE

Requirement id OEGM.01

Short title Continuous collection of organizational evidence

Description The developed tool using NLP must be able to collect evidence.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 97 of 120

www.medina-project.eu

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 page 18-19

Requirement id OEGM.02

Short title Provision to defined interfaces

Description The developed tool using NLP must provide collected evidence to the
central evidence collection component (T3.1) via its offered APIs.

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 page 18-19

Requirement id OEGM.03

Short title Usability for auditors

Description The evidence management component should provide easy-to-use
functionalities for auditors to search through relevant evidence. The
assessment is handled manually though the UI. The assessment can be
adjusted via API (should be checked/verified by a human beforehand).

Status Fully implemented

Priority Should

Related KR KR4

Reference DoA part A Annex 1 page 18-19

Requirement id OEGM.04

Short title Minimum evidence storage

Description The evidence management component must be able to store and provide
evidence at least back to the last assessment (if needed).

Status Fully implemented

Priority Must

Related KR KR4

Reference DoA part A Annex 1 page 18-19

Requirement id OEGM.05

Short title Evidence Assessment results

Description The assessment results of evidence assessments must be submitted to the
evidence orchestrator via the API it provides.

Status Fully implemented

Priority Must

Related KR KR4

10.1.5 Evidence Assessment tool

Requirement id EAT.01

Short title Evidence assessment target

Description The target values for the evidence assessment must be retrieved from a
central repository of target values (WP2).

Status Fully implemented

Priority Must

Related KR KR5

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 98 of 120

www.medina-project.eu

Reference DoA part A Annex 1 pages 8-9

Requirement id EAT.02

Short title Continuous evidence assessment

Description All evidence collection tools must forward evidence and measurement
results (according to the data format defined in MEDINA) to the respective
assessment components.

Status Fully implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 pages 8-9

Requirement id EAT.03

Short title Evidence assessment results

Description The assessment results of evidence assessments must be submitted to the
evidence orchestrator via the API it provides.

Status Fully implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 pages 8-9

Requirement id EAT.04

Short title Assess CSP-native evidence

Description The developed tool should be able to assess the CSP-native evidence or
translate CSP-native assessment results to the MEDINA data model.

Status Proposed

Priority Could

Related KR KR5

Reference DoA part A Annex 1 pages 8-9

10.1.6 Continuous Evaluation and Certification Life-Cycle

10.1.6.1 Continuous certification evaluation

Requirement id CCCE.01

Short title Continuous Evaluation of Assessment Results

Description The evaluation component must be able to continuously evaluate
incoming assessment results and integrate them into the overall
certification evaluation.

Status Fully implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 page 22

Requirement id CCCE.02

Short title Evaluate the fulfilment degree per TOM

Description The evaluation component must be able to evaluate continuously
generated assessment results according to previously defined TOMs to
calculate the degree of fulfilment per individual audited resource and for
the TOM in general.

Status Fully implemented

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 99 of 120

www.medina-project.eu

Requirement id CCCE.02

Priority Must

Related KR KR5

Reference DoA part A Annex 1 page 22

Requirement id CCCE.03

Short title Configuration of needed metrics for requirements

Description The evaluation component must be able to receive a selection of metrics
needed to be satisfied for a particular requirement (as selected by the CSP)
and consider it in the evaluation of requirements’ fulfilment values.

Status Fully implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 page 22

Requirement id CCCE.04

Short title Evaluate the fulfilment degree per control, control group, and entire
certification

Description The evaluation component must be able to aggregate the TOMs’ fulfilment
degrees to calculate the degree of fulfilment for controls, control groups,
and the entire certification scheme.

Status Fully implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 page 22

Requirement id CCCE.05

Short title Evaluate the temporal fulfilment degree per TOM

Description The evaluation component should be able to evaluate continuously
generated assessment results according to previously defined TOMs to
calculate a degree of fulfilment over time.

Status Fully implemented

Priority Should

Related KR KR5

Reference DoA part A Annex 1 page 22

Requirement id CCCE.06

Short title Evaluate the time-to-fix indicator per TOM

Description The evaluation component should be able to evaluate continuously
generated assessment results to calculate a time-to-fix indicator.

Status Fully implemented

Priority Should

Related KR KR5

Reference DoA part A Annex 1 page 22

Requirement id CCCE.07

Short title APIs of the Continuous Certification Evaluation Component

Description The evaluation component must provide APIs to the relevant components
(security assessment tools) to receive assessment results, as well as to the

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 100 of 120

www.medina-project.eu

digital audit trail and the certificate lifecycle management component to
exchange relevant data.

Status Fully implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 page 22

10.1.6.2 Automation of the Cloud Security Certification Life-Cycle

Requirement id ACLM.01

Short title Cloud security certification issuance

Description Based on the quality evaluation results, the system will push appropriate
entities (CAB) to issue and sign security certifications for the cloud
providers.

Status Partially implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 page 9

Requirement id ACLM.02

Short title Automatic cloud security certification update

Description Based on the quality evaluation results, the system will push appropriate
entities (CAB) to update the security certifications for the cloud providers.

Status Partially implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 page 9

Requirement id ACLM.03

Short title Cloud security certification revocation

Description Based on quality evaluation results, the system will push appropriate
entities (CAB) to revoke the security certifications for the cloud providers.

Status Partially implemented

Priority Must

Related KR KR5

Reference DoA part A Annex 1 page 9

Requirement id ACLM.04

Short title Continuous update of the certificate state

Description The certificate lifecycle management component must continuously, i.e.,
in high-frequency intervals, convert the evaluation results from the CCE to
the corresponding certificate state.

Status Partially implemented

Priority Must

Related KR KR6

Reference DoA part A Annex 1 page 9

Requirement id ACLM.06

Short title Compliance with EUCS assurance levels and certificate states

Description The certificate lifecycle management component must map the certificate
states and assurance levels defined in the EUCS scheme.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 101 of 120

www.medina-project.eu

Status Partially implemented

Priority Must

Related KR KR6

Reference DoA part A Annex 1 page 9

Requirement id ACLM.07

Short title Interface for a public registry

Description The lifecycle management component must provide an interface for
publishing the certificate status in a public registry by the corresponding
entities (CAB).

Status Partially implemented

Priority Must

Related KR KR6

Reference DoA part A Annex 1 pages 9

Requirement id ACLM.08

Short title Secure lifecycle management

Description The lifecycle management component can be implemented in a smart
contract to ensure a tamper-proof execution.

Status DISCARDED: based on the evaluation of smart contracts for the automatic
management of certificates25, it was considered that they introduce too
many risks compared to the potential benefits.

Priority Could

Related KR KR6

Reference DoA part A Annex 1 pages 9

10.1.6.1 SSI Framework

Requirement id SSI.01

Short title Cloud security certificate issuance

Description The system should provide a way for appropriate entities (CAB) to issue
and sign security certifications for the cloud providers as indicated by the
automated certificate Life-Cycle Manager.

Status Partially implemented

Priority Should

Related KR KR6

Reference D4.2 & D5.4

Requirement id SSI.02

Short title Cloud security certificate update

Description The system should provide a way for appropriate entities (CAB) to update
security certifications for the cloud providers as indicated by the Life-Cycle
Manager.

Status Partially implemented

Priority Should

Related KR KR6

Reference D4.2 & D5.4

25 For more details, see deliverable D4.2 [11]

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 102 of 120

www.medina-project.eu

Requirement id SSI.03

Short title Cloud security certificate revocation

Description The system should provide a way for appropriate entities (CAB) to revoke
security certifications for the cloud providers as indicated by the Life-Cycle
Manager.

Status Partially implemented

Priority Should

Related KR KR6

Reference D4.2 & D5.4

Requirement id SSI.04

Short title Cloud security certificates listing

Description The system must list the historical cloud security certificates issued,
updated, and revoked.

Status Fully implemented

Priority Must

Related KR KR6

Reference D4.2 & D5.4

Requirement id SSI.05

Short title Cloud security certificate verifiable public proofs generation

Description The system must generate verifiable proofs of the security certificate state
on request.

Status Fully implemented

Priority Must

Related KR KR6

Reference D4.2 & D5.4

Requirement id SSI.06

Short title Cloud security certificate confidential proofs generation

Description The system should generate verifiable confidential proofs of the security
certificate private parameters on request.

Status Fully implemented

Priority Should

Related KR KR6

Reference D4.2 & D5.4

Requirement id SSI.07

Short title Cloud security certificate proofs request and verification

Description The system should provide a way for appropriate entities (potential
clients) to request and verify proofs of the security certificates to the cloud
service providers.

Status Fully implemented

Priority Should

Related KR KR6

Reference D4.2 & D5.4

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 103 of 120

www.medina-project.eu

10.1.6.2 Risk-Based continuous assessment

Requirement id RBCA.02

Short title Interface to the continuous evidence management tools

Description Requires consuming the current status of the system configuration to re-
adjust risk profile.

Status Partially implemented

Priority Must

Related KR KR6

Reference DoA. Page 9

10.1.7 Integrated User Interface

Requirement id IUI.01

Short title Authentication integration via Keycloak Adapter

Description Every component must implement an adapter that allows it to
authenticate with Catalogue’s Keycloak Authentication Service in order to
prevent unauthenticated users to access its resources

Status Fully implemented

Priority Should

Related KR KR6

Reference WP5 Technical discussions

Requirement id IUI.02

Short title Authorization integration via Keycloak

Description Every component that has resources that should only be accessed by
specific user roles must enforce authorization on its internal logic (e.g., in
a REST API, define at controller level that a specific endpoint can be
accessed only with Product Engineer Role). This can be obtained by
defining appropriate configuration on Catalogue’s Keycloak (Role
Mapping).

Status Fully implemented

Priority Should

Related KR KR6

Reference WP5/WP6 Technical discussions

Requirement id IUI.03

Short title Allow frame embedding into Integrated UI

Description Every component UI that needs to be embedded in an iframe inside the
Integrated UI must define a header “X-Frame-Options: ALLOW-FROM
integrated-ui-url” in order to allow it.

Requirement id RBCA.01

Short title Dynamic risk assessment

Description Timely adjust the CSP’s risk profile and re-evaluate efficiency of security
configuration

Status Partially implemented

Priority Must

Related KR KR6

Reference DoA. Page 9

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 104 of 120

www.medina-project.eu

Requirement id IUI.03

Status DISCARDED: we are currently sticking to the micro frontend strategy with
iframes only.

Priority Should

Related KR KR6

Reference WP5 Technical discussions

Requirement id IUI.04

Short title Allow CORS for Integrated UI

Description Every component backend that needs to be programmatically REST called
via Integrated UI frontend must define a header “Access-Control-Allow-
Origin: <integrated-ui-url>” in order to allow it.

Status DISCARDED: At the moment, no REST API integration with the IUI is
planned. With this approach CORS is not needed.

Priority Should

Related KR KR6

Reference WP5 Technical discussions

Requirement id IUI.05

Short title External Identity Provider Configuration

Description Users should be able to authenticate using their existing enterprise
identity provider once it has been configured to do so. Ideally, MEDINA
Generic Roles should be inherited from existing claims / roles.

Status Fully implemented

Priority Should

Related KR KR6

Reference WP5/WP6 Technical discussions

Requirement id IUI.06

Short title Homogeneous look and feel

Description Each component micro-frontend embedded into IUI should abide to a set
of graphical constraints and rules that the consortium agreed on in order
to homogenize look and feel.

Status Partially implemented

Priority Should

Related KR KR6

Reference WP5 Technical discussions

10.2 Non-functional requirements

10.2.1 NF Requirements for the development of CI/CD tools

The NFRs refer about the features that the CI/CD tools should/must have in order to effectively
meet the needs of the CI/CD strategy for the MEDINA project.

These requirements have been discussed with the partners and all have agreed. Therefore, we
intend to follow this methodology based on this NFRs to make decision for the CI/CD
tools/products. The assessment resulted in the requirements listed in the following tables.

Requirement id CICD.01

Short title Code repository

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 105 of 120

www.medina-project.eu

Description The development environment has a Revision Control System for storing
the source code of the project’s components

Status Fully implemented

Priority Must

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.02

Short title Automate software build

Description Speed up the build process by automating the steps necessary to produce
executable and deployable software artefacts

Status Fully implemented

Priority Must

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.03

Short title Automate test suite

Description Make the build process self-testing in order to spot early software defects,
both at component/unit and at integration level

Status Fully implemented

Priority Should

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.04

Short title Software bugs tracking

Description Facilitate the collection and monitoring of software issues in order to fix
them with discipline

Status Fully implemented

Priority Should

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.05

Short title Deploy automation

Description Automate the process of delivering the software in installable form in a
bug-per-bug reproducible way

Status Fully implemented

Priority Should

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.06

Short title Free tools

Description Selected tools are free or open-source software, in order to allow the easy
setup of the self-hosted development environments

Status Fully implemented

Priority Must

Related KR Supporting Integration of KR1-KR5

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 106 of 120

www.medina-project.eu

Reference DoA

Requirement id CICD.07

Short title Commercially friendliness tools

Description The license is commercially friendly (i.e., Apache) and not copy-left, such
in a way it does not impact on the developed software artefacts
commercialization

Status Partially implemented

Priority Should

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.08

Short title Java support

Description Support Java programming language for MEDINA framework

Status Fully implemented

Priority Done

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.09

Short title Python support

Description Support Python programming language for MEDINA framework

Status Fully implemented

Priority Done

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.10

Short title C language support

Description Support C/C++ programming language for MEDINA framework

Status Fully implemented

Priority Must

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.11

Short title GO Lang support

Description Support GO programming language for MEDINA framework

Status Fully implemented

Priority Must

Related KR Supporting Integration of KR1-KR5

Reference DoA

Requirement id CICD.12

Short title JavaScript support

Description Support JavaScript/Typescript programming language for MEDINA
framework

Status Fully implemented

Priority Must

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 107 of 120

www.medina-project.eu

Related KR Supporting Integration of KR1-KR5

Reference DoA

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 108 of 120

www.medina-project.eu

11 Appendix D. CI/CD Strategy

DevOps (short for Development and Operations) is an approach based on lean and agile
principles in which business owners and the development, operations, and quality assurance
departments collaborate to deliver software in a continuous manner that enables the business
to seize market opportunities more quickly and reduce the time to include customer feedback
[24].

“Develop and test against production-like systems” is one of the principles that stems from the
DevOps concept shift left. The shift left concept moves operations earlier in the development
life cycle. The goal of this principle is that it can be seen how the application behaves and
performs well before it is ready for deployment, anticipating issues that are easier and less
expansive to address earlier than in more advanced stages.

A required element to support the DevOps is to automate. Automation is essential to create
processes that are iterative, frequent, repeatable, and reliable. Iterative process means that it
can be represented by a well-defined series of steps; this enables the implementation of a
repeatable process which is reproducible, consistent, and finally reliable. Only a reliable
automated process can be used very frequently, with the assurance that it will not break. To
apply these principles, organizations must create a so called “delivery pipeline” that allows for
continuous, automated deployment and testing of reliable software artefacts. This is the
“Continuous Integration/Continuous Delivery pipeline” or “CI/CD pipeline” concept.

At an abstract level, a delivery pipeline is an automated process for releasing software from the
version control system (e.g., GitLab) to the end users. Every change to the software goes through
a multi-stage process on its way to being released. That process starts from building the software
and is followed by the progress of these builds through multiple stages of testing and
deployment. Continuous integration and continuous delivery allow to see and control the
progress of each change as it moves, from version control through various sets of tests and
deployments, to release to users.

Continuous Integration (CI) is the phase in the software development lifecycle where code from
different developers is integrated together. This usually involves merging code (integration
phase), building the application (build), and carrying out basic tests (test phase), all within an
ephemeral environment. In the test phase, every element of the entire application is examined,
from classes to functions. If a conflict is found between the new and existing code, the
continuous integration helps to correct it.

The adoption of CI involves the introduction of some practices:

• Use of version control: every part of the project like source code, test cases, database
definitions, build and deployment scripts, and anything else needed to create, install,
run, and test the application must be checked into a single version control repository. A
Version Control System (VCS) makes it possible to record the different revisions of the
project artefacts, and allows to answer the question of who changed what and when,
and permits, if necessary, to step back to revert unwanted changes.

• Check-in regularly: checking-in means submitting changes of software artefacts into the
VCS. Doing this regularly brings lots of benefits: mistakes are easier to spot and correct;
it is easy to revert to a recent known-good version if something goes wrong; it avoids
altering too many files among versions.

• Create a comprehensive automated test suite: for frequent check-ins to work best, it is
essential to have some level of automated testing to provide confidence that the
application is actually working. There are three kinds of tests which are usually executed:

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 109 of 120

www.medina-project.eu

unit tests, integration tests, and acceptance tests. Unit tests are meant to test the
behaviour of small pieces of the application (a method, a function, or the interactions
between a small set of them). Integration tests do the same but for several components
of the application together, typically developed by different groups of people.
Acceptance tests verify if the application meets the acceptance criteria decided by the
business and is a formal phase in the software development lifecycle. These three sets
of tests, combined, provide a high-level of confidence in the application.

CD can take several meanings. CD as Continuous Delivery automates the release of validated
code into a repository (software artifacts). CD as Continuous Deployment automates the release
of the app into production without waiting for the explicit approval of the developer. The goal
of continuous delivery is to have a base code that is always ready to be deployed in a production
environment. Continuous deployment means that the changes made by a developer can
become active within minutes, provided it passes the automated testing phase. This allows
receiving and integrating the feedback of the end users easier.

The delivery pipeline consists of the stages an application goes through from development to
production. These stages may vary from one organization to another, and the level of
automation also vary. Some organizations fully automate their delivery pipelines; others
maintain manual checks and gates due to company requirements.

Typical stages of the CI/CD pipeline are the following (see Figure 12):

• Develop: In which developers write the source code and scripts. This stage includes tools
for source control management, collaboration, and project planning. Tools in this stage
are typically cross-platform and cross-technology.

• Build: The build stage is where the code is compiled/processed to create executable

binary programs and where unit testing is performed.

• Package repository: A package repository (also referred as artefact repository) is a

common storage mechanism for the binaries created during the build stage. These

repositories also need to store the assets associated with the binaries to facilitate their

deployment, such as configuration files, and deployment scripts.

• Test: A test stage is where development/testing teams do the quality testing and user

acceptance. These tests include integration, functional, performance, and security tests.

Automated tools are available for each of these types of tests. These tools are commonly

integrated within a test asset management tool, that allows also to trace test results.

• Release: In this phase the final application artefacts are made available on a repository.
• Deploy: At this stage the code is deployed from the repository to the operating

environment.

Figure 14. CI/CD pipeline

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 110 of 120

www.medina-project.eu

11.1 Quality & Assurance

In our project, we will extend the DevOps approach by adding quality and security checks, hence
we will talk about “SecDevOps”. The term reflects the fact that the role of quality and assurance
(QA) in DevOps processes is increasingly important.

In traditional DevOps, a separate security team is responsible for security testing and its role is
limited to the final phase. If the security team finds a security concern, the application must be
corrected and go through the entire process again: this is not an agile principle and may cause a
delay on the release.

Instead, SecDevOps means integrating application and infrastructure security early in the
development lifecycle, and automating security control to prevent slowing down the DevOps
workflow. Putting quality and assurance at the heart of the software lifecycle can actually save
time, and can accelerate delivery and deployment.

In a SecDevOps approach, vulnerabilities are prevented and managed proactively. The Open
Web Application Security Project (OWASP) [25] is a non-profit foundation dedicated to
improving the security of software. OWASP is like a community in which everyone can
participate and where all materials and information are free and available on the website.
OWASP provides an online document called OWASP Top 10 [26] where the top 10 most critical
web application security risks are listed, and is updated every 2-3 years in accordance to
advancements and changes in the application security market. The purpose of the document is
to offer developers and web application security professionals, recommendations about the
most prevalent security risks in order to adopt security practices that minimize the presence of
these risks in applications. The risks are ranked and based on the frequency of discovered
security defects, the severity of the vulnerabilities, and the magnitude of their potential impacts.
OWASP’s importance lies in the actionable information it provides; it serves as a key checklist
and web application development standard for many organizations. Integrating the Top 10 into
the software development lifecycle (SDLC) demonstrates a commitment to improve secure
development practices. For example, let’s take one of the risks from the list: A9-Using
Components with Known Vulnerabilities; it states that applications and APIs using components
with known vulnerabilities may undermine application defences and enable various attacks and
impacts. This leads to use tools that verify security vulnerabilities in third parties’ dependencies,
like OWASP Dependency-Check [26].

Instead of testing the entire product for gaps and bugs, each developer or team is encouraged
to check the newly created code for such problems. Development teams can use code quality
standards to evaluate the structural quality of software ahead of each release. By applying
standards earlier in the software development lifecycle, a codebase can be developed further,
or open sourced with greater confidence, resulting in less complexity. These measures are
designed to be automated on source code through static analysis tools.

In ana analogous way, the Consortium for Information & Software Quality (CISQ) developed
Automated Source Code measurement standards for Reliability, Security, Performance,
Efficiency and Maintainability, which were approved as OMG standards. Each code quality
measure is comprised by a set of weaknesses in the Common Weakness Enumeration (CWE).
The CWE [27] is a reference point for developers and codifies over 900 known software
weaknesses. The coding rules contained in CISQ standards [28] include CWEs as SQL Injection
and Buffer Overflow. In fact, CISQ considers the security principle as one of the aspects of good
software quality practices.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 111 of 120

www.medina-project.eu

11.2 Containerization deployment model

Nowadays, modern applications are developed and packaged by following the concept of micro-
services. This is an architectural software pattern that enables clear Application Programming
Interfaces (API) to foster an easy integration among different application’s components that are
loosely coupled. Micro-services provide their functionalities as a service (like in a service-
oriented architecture) and typically are specialised to perform a very specific job or task.

Micro-services are usually packaged in software containers, as the unit of deployment on a
platform. A container is a lightweight form of virtualization at operating system level, where
each container is isolated from the others, bundles all its needed software and libraries, and can
communicate only through well-defined channels. Among its advantages, containerization
allows building a reproducible software package, and this is why it successfully matches the
principles of CI/CD and fits well for micro-services. An application, packaged in a container,
behaves the same regardless the environment where it is deployed; avoids issues with operating
system versions and tools that could hinder the smooth execution of the software; and eases a
reproducible and secure deployment.

It is thus easy to understand that the Package Repository stage we described earlier could be
fed with containers created for micro-services applications during the execution of the CI/CD
pipeline.

Infrastructure as Code (IaC) refers to the fact that the environment in which the software runs
should be software itself. Containers offer one such approach. In fact, developers can create the
container descriptor file, that includes all the steps to package a micro-service in the container.
This descriptor (software code) can be versioned and deployed according to the defined CI/CD
pipeline stages. Containers allow fast and cost-effective scaling, can be secured more easily, and
can be quickly duplicated, reassembled, or replaced. A container needs to be booted up on an
already existing server structure or cloud service. In addition, one instance can be developed
while the other is already running [29]. Docker containers are the most common
implementation available today [30].

Since containers are packaged applications that includes many third-party tools, such as OS
libraries and software, it is not uncommon to face security issues on these minimal OSs that are
bundled along with the developed micro-service. For example, a micro-service written in Java
needs a Java run-time execution environment, which in turns requires several libraries at
operating system level: through this software chain, software bugs and security vulnerabilities
can be nested or can be discovered as time goes by. Hence, hardening these so-called container
images becomes imperative. Developers needs to be aware of known CVEs that affects some
components before containers are deployed, reducing the overall risk profile. Furthermore, this
needs to be iterative since new vulnerabilities and bugs can be discovered over time once the
container image was designed. Some vendors provide CVE scanning tools for container images,
which can be integrated as a stage in the CI/CD pipeline to assess the container security at every
build.

11.3 CI/CD supporting tools

In this section we describe the tools we intend to utilize with the aim to set up a continuous
integration service following the CI/CD strategy outlined in Section 5.1. The tools can be grouped
in the following categories according to literature:

• Version control system: Version control, also known as source control, source code
management, or revision control, is a mechanism for keeping multiple versions of
software files, so that when a developer modifies a file s/he can still access the previous

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 112 of 120

www.medina-project.eu

versions. These tools also provide mechanisms to people involved in software delivery
to collaborate.

• Build Automation system: its first use is to convert the source code in a machine-
understandable code that can be executed. All build tools have a common core in order
to support build reproducibility: to model a dependency network (e.g., software
libraries). A build tool must also ensure that for a given goal, each prerequisite must be
executed exactly once. If a prerequisite is missed, the result of the build process will be
wrong.

• Artefact repository: The outputs of the Build Automation system —reports and
binaries— need to be stored somewhere for reuse in later stages of the CI/CD pipeline.
That is, in the repository.

• Continuous Integration software: It is the orchestrator of the whole build process that
integrates with all the other solutions and enables automation of the cycle. The
orchestration goes through all stages, from fetching the code from the Revision Control
system, through compiling it with the Build Automation, until storing it on the Artefact
repository and evaluating the solution for quality and security issues.

• Testing system: Verify code changes through testing, preferably automated testing. This
system supports the automation of both unit testing and integration testing.

• Bug Tracking system: It is a system to trace software defects or improvements that are
found for the systems components in development and/or related to the deployment
environments.

11.3.1 Analysis of CI/CD Tools

In this section, we evaluate a list of tools that could be selected for the building of the CI/CD
pipeline in the MEDINA project and highlight their advantages and disadvantages in order to
guide the final choice(s).

First of all, we have defined the methodology to search and select these tools. On one hand we
have collected the tools from the MEDINA partners, listing the tools they provided or already
knew; on the other hand, we have analysed other tools in the market, attending to the
requirements. All tools were grouped in classes by their role in the CI/CD pipeline.

The result of this survey was summarized in the NF requirements we proposed and agreed by
the consortium, already described in Section 10.2.1.

In addition, to improve the effectiveness of the analysis, we make use of a free instrument called
OpenHub26, where we can find useful information about some key aspects of software tools like
the license, the activity of community and the current or past vulnerabilities.

A license is typically permissive or not permissive. In the first case we can release software in an
open-source manner without copy-left; in the second case we cannot use it without copy-left,
so it is more restrictive. Permissive licenses allow you to copy, modify, recombine, and
redistribute the work with minimal restrictions. Copy-left requires that to release any derivative
works done it is needed the same copy-left license. If you release a software library under a
copy-left license like the GPL, and someone else wants to write a program using both your library
and a proprietary library, hey would not be allowed to do so. The purpose of GPL-like license is
to force continuing the open-source nature of the piece of software and its open development.
On the other hand, the permissive licenses are preferred by the industrial partners, who need
to protect their intellectual property resulting from software development. Some typical
examples are Apache or BSD licenses.

26 https://www.openhub.net/tools

http://www.medina-project.eu/
https://www.openhub.net/tools

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 113 of 120

www.medina-project.eu

The activity of the community is another important parameter to decide if a tool is good. If it
has a lively community, measured by the number of commits in a month and the number of
contributors, we can have a fair degree of confidence in that there would always be someone
to fix bugs and improve the software overtime.

Regarding vulnerabilities tracking, that a tool presented a lot of vulnerabilities in the past is not
necessarily a bad sign, especially if the owners were able to solve them and the community is
big. On the contrary, can be a guarantee that there is an active development team and a
particular focus on security.

To conclude, we can merge this information with the requirements already identified to have a
more complete view for the selection of tools and decide which are more suitable for MEDINA
development. We list next list of candidate tools in each class.

11.3.1.1 Code & Version Control systems

1. GitLab CE

GitLab CE [31] is an open-source software to collaborate on source code development. GitLab
offers a git version control repository management, code reviews, issue tracking, activity feeds
and wikis. Git is a distributed versioning tool, not necessarily with a single centralised repository,
and for this reason it tends to be more complex for beginners with respect to centralised tools
(e.g., Subversion). Apart from source code repository, it can be used for tracking software
defects and enhancement thanks to its build-in issue tracking mechanism.

It is strongly established, and has a mature codebase maintained by a very large development
team and few high vulnerabilities reported during the years as shown on OpenHub. It uses an
open-source MIT License that is commercially friendly.

2. Apache Subversion

Apache Subversion [32] is a full-featured version control system that boasts of a model, design,
and interface that is said to be more advanced than other Code Versioning Systems (CVS). The
open-source revision control and software versioning platform’s primary solutions include
interactive conflict resolution, merge tracking, and file locking, with the most recent updates,
containing features for path-based authorization, interactive resolvers, compression, and
shelving.

CVS users attest to Subversion’s centralized version control capabilities, which are said to be a
reliable repository of valuable data and is easy enough to be learned and used even by those
with only beginner’s knowledge of software development. Subversion supports various types of
users and projects, either individuals or enterprise-level organizations.

It is mostly written in C and uses the Apache License 2.0.

Analysis

Subversion adopts a centralized approach, while Git leverages on the distributed approach. This
means that on Subversion there is a single repository where all developers commit their changes
and retrieve updates. With Git, every repository can trace the changes and in fact every
developer has a full Git repository on his or her development machine: typically, by convention,
a repository hosted on a server is logically promoted in a way that developers push all their local
changes which are there merged together. Git allows having multiple remote repositories, for
example, a developer can push the changes to a public Git repository while pushing them also
to his or her company internal Git repository.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 114 of 120

www.medina-project.eu

As a result of their structure, Subversion tends to be easier to use for new developers, while Git
has a steeper learning curve.

Subversion is usually used as the single tool, while Git is very frequently packaged in
comprehensive environments that provides more than versioning only, like a well-structured
web interface and other added-value services.

11.3.1.2 Build Automation system

1. Apache Maven

Maven is a build automation tool used primarily for Java projects. The Maven project is hosted
by the Apache Software Foundation. Maven addresses two aspects of building software: how
software is built, and how its dependencies are managed.

Maven provides a quite rigid model that makes customization difficult. It is based on an external
DSL written in XML, which can be extended by writing code for plug-ins. Maven is, in its default
configuration, self-updating and downloads its own plugins from the Internet. This can be an
advantage, but also a point of attention, since as a result we can have an unwanted upgrade of
its plugins and we could hinder the process of reproduceable builds. Nevertheless, it manages
software dependencies (e.g., third-party libraries) by automatically downloading them from the
Maven Central repository over the Internet.

2. Gradle

Gradle is a build automation tool for multi-language software development. It controls the
development process in the tasks of compilation and packaging, testing, deployment, and
publishing. Supported languages include Java (and other Java-based languages like Kotlin,
Groovy, and Scala), C/C++, and JavaScript. It supports a light DSL (not XML-based but based on
the Groovy language) and manage software dependencies by automatically downloading them
from the Internet.

Gradle is distributed as open-source software under the Apache License 2.0 and was first
released in 2007.

Analysis

About the user experience, a large number of users prefer to execute build operations through
a command-line interface. For this, Gradle provides a modern CLI for this reason.

Both build systems provide built-in capability to resolve dependencies from configurable
repositories. Both can cache dependencies locally and download them in parallel.

As a library consumer, Maven allows to override a dependency, but only by version. Gradle
provides customizable dependency selection and substitution rules that can be declared once
and handle unwanted dependencies project-wide. This substitution mechanism enables Gradle
to build multiple source projects together to create composite builds.

Maven has few, built-in dependency scopes. There is no separation between unit and
integration tests, for example. Gradle allows custom dependency scopes, which provides better-
modelled and faster builds.

Maven is simpler to learn than Gradle and, being more mature, has a larger set of plugins for
several needs [33] [34].

http://www.medina-project.eu/
https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Kotlin_(programming_language)
https://en.wikipedia.org/wiki/Groovy_programming_language
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/JavaScript
https://docs.gradle.org/current/userguide/dependency_management.html#component_selection_rules
https://docs.gradle.org/current/userguide/dependency_management.html#sec:module_substitution
https://docs.gradle.org/current/userguide/composite_builds.html
https://docs.gradle.org/current/userguide/dependency_management.html#sub:configurations

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 115 of 120

www.medina-project.eu

11.3.1.3 Artefact repository

1. Nexus

Nexus [35] is an open-source repository that supports many artefact formats, including Java
binary artefacts and Docker images. With the Nexus tool integration, pipelines in the CI/CD can
publish and retrieve versioned components and their dependencies by using a central
repository.

Nexus OSS has a broad support for many tools:

• Store and distribute Maven/Java, npm, Docker and more.

• Manage components from dev through delivery: binaries, containers, assemblies, etc.

• Advanced support for the Java Virtual Machine (JVM) ecosystem, including Gradle, Ant,
Maven, and Ivy.

• Compatible with popular tools like Eclipse, IntelliJ, Jenkins, Puppet, Chef, Docker, and
more.

Nexus OSS provides security features to centralise user accounts (e.g., on LDAP) and provides
the capability to handle authorisations of users (or group of users, even LDAP groups) to the
different archived artefacts.

2. JFrog Artifactory

JFrog Artifactory [36] is a scalable, universal, binary repository manager that automatically
manages artefacts and dependencies throughout the application development and delivery
process. Artifactory supports Kubernetes, the de facto orchestration tool in the industry, for
automating deployment, scaling, and management of micro-services and containerized
applications.

With the JFrog Artifactory it is possible to:

• Achieve a high availability with active/active clustering and multi-site replication for
DevOps setup to support scaling.

• Release faster and automate CI/CD pipeline via powerful REST APIs.

• Deploy Artifactory as repository manager on-prem, in the cloud, or in a hybrid model.

Analysis

Both Nexus and Artifactory support integration with external authentication systems, like LDAP,
which is a much-requested enterprise feature. However, Nexus has a quite difficult
authorization mechanism to protect the different repositories, while Artifactory has a cleaner
interface to allow assigning permissions to users and roles for protecting the access to the
available repositories and individual paths.

The auditing mechanism provided by Artifactory seems to be easier to use, because there is a
dedicated UI that allows seeing logins and accesses to the repositories. Nexus provides some of
this information, but only through log files.

Both products support the setup of a Docker registry with virtual registry capability, which allows
combining two or more Docker registries in a single registry. The web interface for Docker
registry of Artifactory supports previewing the Dockerfile descriptor, while Nexus does not, and
it seems more complete than that of Nexus also in regard to searching capabilities.

http://www.medina-project.eu/
https://www.sonatype.com/products-overview
https://jfrog.com/start-free/#hosted
https://jfrog.com/artifactory/cloud-automation/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 116 of 120

www.medina-project.eu

11.3.1.4 Continuous Integration software

1. Gitlab CI/CD

GitLab CI/CD is a free and self-hosted Continuous Integration server. GitLab CI/CD has a
community edition and provides Git repository management, issue tracking, code reviews, wikis,
and activity feeds. Companies can install GitLab CI/CD on-premises and can connect it with a
corporate directory server (e.g., LDAP) for secure authorization and authentication. GitLab CI/CD
is written in Ruby and Go and released under an MIT license. Since GitLab CI/CD provides Git
repositories, the integration of the CI/CD pipelines are quite simple and straightforward.

2. Jenkins

Jenkins [37] is a Continuous Integration server, allowing to automatically monitor source code
repositories, build software, run tests and deploying software. Through the installation of
plugins, Jenkins integrates with a huge set of tools in the continuous integration and continuous
delivery toolchain, including GitLab CE and JFrog Artifactory. It has several dashboards for
controlling the status of the unit and integration tests (e.g., JUnit compatible) and dashboards
for visualising the status of the quality and security tests performed on code artefacts. Jenkins
is made available via an open-source MIT License and has a strong community of developers.

3. Tekton

Tekton [38] was originally part of the Knative project and is now under the umbrella of the
Continuous Delivery Foundation. Tekton was released in 2018 under the Apache 2.0 license.

Tekton takes a modular approach to cloud-native CI/CD by implementing components that form
the building blocks needed to create a complete CI/CD ecosystem. Due to its nature, Tekton is
extremely powerful, and it provides the ability to customize entities which can then be shared
and reused as needed.

A great advantage of Tekton is its modularity, which allows for componentization,
standardization, and reusability within the CI/CD pipelines. The steps are operations in the CI/CD
workflow that are execute in containers, and they are organized into tasks that run as pods on
a container cluster orchestration engine (i.e., Kubernetes [39]). Tasks can be assembled and
ordered within pipelines in any way needed [40].

Analysis

With the aid of GitLab CI/CD, it is possible to control Git repositories with total control over
branches and several other facets to keep the code safe from sudden threats. However, in the
Jenkins case, it is possible to control repositories but up to a few extents only. For example, it
does not allow complete control over branches, but Jenkins supports many types of source code
repositories others than Git, including Subversion.

In GitLab CI/CD, every single project has a tracker that will track problems and carry out code
reviews to improve efficiency. On the other hand, Jenkins has a simple procedure for installation
as well as configuration, and a huge set of plugins to integrate many different developers’ tools.
Jenkins is also able to automate non-software build pipelines (e.g., connect to machines to
perform some tasks), while GitLab CI/CD cannot [41].

Tekton is the youngest project among those analysed and it is specifically tailored to use
containers as its running mechanism, which helps managing scalability. Pipelines building blocks
can be factored and reused among different pipelines, fostering components reusability. Also,

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 117 of 120

www.medina-project.eu

Jenkins provides the ability to create libraries where functionalities can be factored out and
reused between different jobs.

11.3.1.5 Testing system (unit and integration)

1. JUnit

JUnit [42] is a mature unit testing framework for the Java programming language. JUnit is an
open source (Eclipse Public License 1.0) framework used to write and run repeatable automated
tests. It integrates with Jenkins for reporting the testing outcomes and with build tools such as
Maven and Gradle for executing the tests.

2. TestNG

TestNG [43] is a testing framework for the Java programming language, inspired by JUnit and
NUnit (for Microsoft .NET framework) and it is released under Apache 2.0. It is a testing
framework designed to simplify a broad range of testing needs, from unit testing (testing a class
in isolation of the others) to integration testing (testing entire systems made of several classes,
several packages and even several external frameworks, such as application servers).

3. REST Assured

REST Assured [44] is a Java DSL framework for simplifying testing of REST based services. It
supports all the different HTTP verbs (e.g., POST, GET, PUT, DELETE, OPTIONS, PATCH and HEAD)
and can be used to validate and verify the response of these requests. Since RESTful services are
used by micro-services API, this is a good candidate for testing such applications. REST Assured
is released via the permissive Apache License 2.0.

Analysis

JUnit, in particular its version 4, is a very wide-spread tool, used by many Java developers. JUnit
introduced a reporting testing format based on XML that has become recognized in many tools,
including Jenkins, to represent the outcome of the testing activities. Such XML format has been
also employed by tools other than Junit, as a testing framework for non-Java languages. TestNG
also uses this XML format.

On the other hand, TestNG is not very used even if it provides some more features compared to
JUnit. REST Assured, instead, is more focused on the definition of end-to-end test cases for
RESTful web services: it uses a declarative way that uses the Java programming language. Since
the MEDINA framework is being developed as a set of interacting micro-services, the use of the
REST Assured framework is highly recommended.

11.3.1.6 Bug Tracking system

1. Gitlab Issues

Gitlab Issues is a free tool built into GitLab CE that makes it easier to track software development
progress. It supports many of the same features as commercial competitors like Atlassian Jira
[45], while being easier to use since it is integrated in the GitLab CE software. GitLab CE also
provides an integrated Wiki platform. It uses the same license as GitLab CE.

2. Trac

Trac [46] is an enhanced wiki and issue tracking system for software development projects. Trac
uses a minimalistic approach to web-based software project management. It provides an
interface to Subversion and Git version control systems, an integrated Wiki and convenient

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 118 of 120

www.medina-project.eu

reporting facilities. Trac provides an integrated Wiki system and a timeline showing all current
and past project events in order, making the acquisition of an overview of the project, and
tracking progress easy. It is released under a BSD-like license.

3. Bugzilla

Bugzilla [47] is a robust and mature defect-tracking system. It allows teams of developers to
effectively keep track of outstanding bugs, problems, issues, enhancements, and other change
requests for the application being developed. Bugzilla is free software released under a Mozilla
Public License.

Analysis

GitLab Issues is the ideal choice for those using GitLab CE for code versioning since it is very well
integrated. It is tied to each specific Git project, but you can report on groups of projects as well.

Trac is not a very sophisticated tool, but simple to use. However, Trac has a small community
compared to GitLab CE users and developers.

 Bugzilla is the oldest tool, once quite widespread, but with an old user interface and quite
difficult to customize. Also, Bugzilla community does not release frequent updates and did not
report many security issues over time.

11.3.2 Quality and Assurance Tools

This section provides an analysis for the tools split between static code analysers and dynamic
analysers. In static code analysis, we perform an off-line verification of the source code to spot
both issues that affects software quality and security; this analysis works at the programming
language level and software code descriptors (e.g., build files) in a white-box fashion.

On the contrary, dynamic analysis verifies on-line the piece of software when it is running on a
compute node. This type of analysis can detect issues by considering the running software as a
black box. It is useful to spot, for example, security attacks at application level like input
validation problems. Testing of live RESTful web services falls into dynamic analysis testing, as
well.

Since MEDINA is going to be developed as a micro-services application running on containers, in
addition to the analysis described, we can consider specific testing activities for assessing the
security of the containers that will run MEDINA: we refer to these further testing as container
security.

STATIC CODE ANALYSIS TOOLS:

1. SpotBugs

SpotBugs [48] is a program which uses static analysis to look for bugs in Java code. It is free
software, distributed with a GNU Lesser GPL. SpotBugs can be used standalone and through
several integrations, including Maven and Gradle. It is extensible through plugins and the most
popular for our purposes are FindSecurityBugs and FindBugs Contrib.

In particular, FindSecurityBugs is a plugin for security audits of Java web applications. It can
detect more than a hundred different vulnerability types including Command Injection, XML
Injection, SQL Injection, and Cryptography weaknesses [49].

2. SonarQube

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 119 of 120

www.medina-project.eu

SonarQube [50] is an open-source tool for code quality and code security, distributed under
GNU Lesser GPL. It performs source code reviews with static analysis to detect bugs, code smells,
and security vulnerabilities on more than 20 programming languages, including Java, GO, and
Typescript. SonarQube provides integration with Maven, Gradle and continuous integration
tools like Jenkins.

3. OWASP Dependency-Check

OWASP Dependency-Check [51] is a Software Composition Analysis (SCA) tool that tries to
detect well-known disclosed vulnerabilities contained within the dependencies of program. The
tool extracts the Common Platform Enumeration (CPE) identifiers of the third-parties software
libraries that the developed program depends on. It then uses such list to match against the
Common Vulnerabilities and Exposures (CVE) public database to retrieve, when available, the
correspondent security vulnerabilities. Dependency-Check integrates with Maven, Gradle, and
Jenkins. It is released under the Apache Software License 2.0.

DYNAMIC CODE ANALYSIS TOOLS:

4. OWASP Zed Attack Proxy

OWASP ZAP [52] is one of the most popular open-source tool for the dynamic analysis. A very
active and mature community supports the project. OWASP ZAP supports a wide range of
scripting languages (e.g., JavaScript, Ruby, Python, etc.). ZAP provides several functionalities like
intercepting proxy, passive scanner, forced browsing and provides a REST API to interact
programmatically with the tool. Using such API, ZAP can be integrated with continuous
integration servers, like Jenkins, to programmatically start a security scan against a deployed
and running software components. ZAP can be used to test both web sites by URL and RESTful
web services methods. ZAP is release under an Apache 2.0 License.

CONTAINER SECURITY TOOLS:

5. Anchore

Anchore [19] is a scanning tool that inspects container images to unpack and analyse everything
inside. It can be easily integrated into the CICD workflow thanks to its Jenkins plugin. During the
pipeline, if the scanning of the container image doesn’t meet the security requirements, it fails
and returns back a report or an alert via webhook notification. It allows to detect both CVEs and
customizable policy rules. It is released as an open source under the Apache license.

6. Clair

Clair is a popular open-source container static vulnerability analyser. It periodically collects data
and stores them into a database. If a vulnerability is found, it produces alerts, reports, or block
release in production. It has an Apache license. Unfortunately, it does not provide integration
with Jenkins.

7. Trivy

Trivy [53] is a tool that analyses operating system packages and application dependencies in
container images. It is easy to install, suitable for CICD and integrates with Jenkins in the latest
versions. It produces reports about the vulnerabilities detected, illustrating for each library the
CVE id and a CVSS score assigned. It is open source under an Apache license.

http://www.medina-project.eu/

D5.2 – MEDINA requirements, Detailed architecture,
DevOps infrastructure and CI/CD and verification strategy-v2 Version 1.0. Date: 04.11.2022

© MEDINA Consortium Contract No. GA 952633 Page 120 of 120

www.medina-project.eu

11.3.3 Selection of tools

Table 11 enables to check what tool is in line with the corresponding non-functional
requirements described in Section 10.2.1

Table 11. Mapping of CI/CD tools with NF requirements.

C
IC

D
.0

1

C
IC

D
.0

2

C
IC

D
.0

3

C
IC

D
.0

4

C
IC

D
.0

5

C
IC

D
.0

6

C
IC

D
.0

7

C
IC

D
.0

8

C
IC

D
.0

9

C
IC

D
.1

0

C
IC

D
.1

1

C
IC

D
.1

2

GitLab √ √ √ √ √ √

Subversion √ √ √ √ √ √

Maven √ √ √ √

Gradle √ √ √ √

Nexus √ √ √

Artifactory √ √ √

GitLab CI/CD √ √ √ √ √ √

Jenkins √ √ √ √ √ √ √

Tekton √ √ √ √ √ √

JUnit √ √ √ √

TestNG √ √ √ √

RestAssured √ √ √ √ √ √ √ √

Gitlab issues √ √ √

Trac √ √ √

Bugzilla √ √ √

SpotBugs √ √

SonarQube √ √ √ √ √

OWASP ZAP √ √ √ √ √ √ √

Anchore √ √

Clair √ √

Trivy √ √

A first selection of tools was made in the first version of this deliverable (D5.1). The final selection
of tools for each class is presented in Section 5.2.1.

http://www.medina-project.eu/

	Table of contents
	List of tables
	List of figures
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure
	1.3 Update from D5.1

	2 MEDINA Use Cases
	2.1 UC1: European Certification of Multi-cloud backends for IoT solutions
	2.1.1 Integration Approach
	2.1.2 Testbed

	2.2 UC2: European Cloud Service Provider SaaS public & private cloud
	2.2.1 Integration Approach and Expected Benefits (after MEDINA)
	2.2.2 Testbed

	3 MEDINA Framework Requirements
	3.1 Functional requirements
	3.1.1 Catalogue of control and metrics
	3.1.2 Certification Language
	3.1.2.1 NL2CNL Translator
	3.1.2.2 CNL Editor
	3.1.2.3 DSL Mapper

	3.1.3 Risk assessment and optimisation framework
	3.1.4 Evidence gathering tools
	3.1.4.1 Evidence Orchestrator
	3.1.4.2 MEDINA Evidence Trustworthiness Management System
	3.1.4.3 Technical evidence gathering tools: Clouditor, Codyze/CPG, Automated vulnerability monitoring / detection
	3.1.4.3.1 Common requirements for all the tools
	3.1.4.3.2 Specific tool requirements

	3.1.4.4 Organizational evidence gathering tools: AMOE

	3.1.5 Evidence Assessment tool
	3.1.6 Continuous Evaluation and Certification Life-Cycle
	3.1.6.1 Automation of the Cloud Security Certification Life-Cycle
	3.1.6.2 SSI Framework

	3.1.7 Integrated User Interface

	3.2 Analysis of Requirements
	3.2.1 Mapping of Requirements to KRs
	3.2.2 Mapping of WP5 requirements to WP6 requirements
	3.2.3 Prioritization and status of requirements
	3.2.4 Requirements Summary Dashboard

	4 MEDINA Framework Architecture
	4.1 MEDINA workflows
	4.2 MEDINA framework
	4.3 MEDINA data model
	4.4 MEDINA components structural and behavioural description
	4.4.1 Catalogue
	4.4.2 Certification language
	4.4.2.1 NL2CNL Translator
	4.4.2.2 CNL editor
	4.4.2.3 DSL Mapper

	4.4.3 Risk assessment and optimisation framework
	4.4.4 Continuous Evaluation and Certification Life-Cycle
	4.4.4.1 Continuous certification evaluation
	4.4.4.2 Automation of the Cloud Security Certification Life-Cycle
	4.4.4.3 SSI Framework

	4.4.5 Organizational evidence gathering and processing
	4.4.6 Orchestrator and databases
	4.4.7 Evidence Collection and Security Assessment
	4.4.7.1 Evidence gathering tools
	4.4.7.1.1 Wazuh
	4.4.7.1.2 VAT
	4.4.7.1.3 Cloud Evidence Collector
	4.4.7.1.4 Codyze

	4.4.7.2 Security Assessment
	4.4.7.3 Evidence trustworthiness management

	4.4.8 Integrated User Interface

	4.5 MEDINA Deployment Models
	4.5.1.1 Web tools (SaaS)
	4.5.1.2 Containerized tools

	5 MEDINA DevOps Infrastructure and CI/CD and Verification Strategy
	5.1 Implemented CI/CD pipeline
	5.2 Infrastructure in MEDINA framework
	5.2.1 CI/CD supporting tools
	5.2.2 Development and Test Environment
	5.2.3 Validation Environment

	6 Conclusions
	7 References
	8 Appendix A. Requirements Management in MEDINA
	8.1 Methodology for requirements elicitation
	8.2 Requirements gathering and prioritization process
	8.3 Requirements documentation

	9 Appendix B. Use Cases Definition
	9.1 UC1: European Certification of Multi-cloud backends for IoT solutions
	9.2 UC2: European Cloud Service Provider SaaS public & private cloud
	9.3 List of Use Cases requirements

	10 Appendix C. List of Requirements
	10.1 Functional requirements
	10.1.1 Catalogue of controls and metrics
	10.1.2 Certification Language
	10.1.2.1 NL2CNL Translator
	10.1.2.2 CNL Editor
	10.1.2.3 DSL Mapper

	10.1.3 Risk based selection of controls framework
	10.1.4 Evidence gathering tools
	10.1.4.1 Evidence Orchestrator
	10.1.4.2 MEDINA Evidence Trustworthiness management
	10.1.4.3 Technical evidence gathering tools: Clouditor, Codyze/CPG, Automated vulnerability monitoring / detection
	10.1.4.3.1 Common requirements for all the tools
	10.1.4.3.2 Specific tool requirements

	10.1.4.4 Organizational evidence gathering tools: AMOE

	10.1.5 Evidence Assessment tool
	10.1.6 Continuous Evaluation and Certification Life-Cycle
	10.1.6.1 Continuous certification evaluation
	10.1.6.2 Automation of the Cloud Security Certification Life-Cycle
	10.1.6.1 SSI Framework
	10.1.6.2 Risk-Based continuous assessment

	10.1.7 Integrated User Interface

	10.2 Non-functional requirements
	10.2.1 NF Requirements for the development of CI/CD tools

	11 Appendix D. CI/CD Strategy
	11.1 Quality & Assurance
	11.2 Containerization deployment model
	11.3 CI/CD supporting tools
	11.3.1 Analysis of CI/CD Tools
	11.3.1.1 Code & Version Control systems
	11.3.1.2 Build Automation system
	11.3.1.3 Artefact repository
	11.3.1.4 Continuous Integration software
	11.3.1.5 Testing system (unit and integration)
	11.3.1.6 Bug Tracking system

	11.3.2 Quality and Assurance Tools
	11.3.3 Selection of tools

