

Deliverable D5.3

MEDINA integrated solution-v1

Editor(s): Debora Benedetto, Daniele Garbagnati, Mirko Manea, Claudia
Zago

Responsible Partner: Hewlett Packard Italiana, SRL

Status-Version: Final – v1.1

Date: 30.09.2022

Distribution level (CO, PU): PU

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 2 of 80

www.medina-project.eu

Project Number: 952633

Project Title: MEDINA

Title of Deliverable: MEDINA integrated solution-V1

Due Date of Delivery to the EC 31.01.2022

Workpackage responsible for the
Deliverable:

WP5 - MEDINA Framework Integration

Editor(s):
Debora Benedetto, Daniele Garbagnati, Mirko Manea,
Claudia Zago (HPE)

Contributor(s): TECNALIA, Bosch, CNR, Fabasoft, FhG, XLAB

Reviewer(s): Leire Orue-Echebarria, Cristina Martínez (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP4, WP6

Abstract: This deliverable will integrate all the components
developed by the other technical WPs in the MEDINA
Framework. Different versions of the solution will be
provided following an incremental approach. The first
version will be an initial prototype with the core
functionalities implemented (at M15); the second
version (at M27) will augment these functionalities
taking into consideration the feedback coming for the
use cases and the final version (M33) will include
corrections and feedback coming from the
implementation of the use cases. The software will be
accompanied by a Technical Specification Report. This
set of deliverables is the result of Task 5.3.

Keyword List: Architecture, Workflows, Components Integration,
CI/CD, Integrated UI

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 3 of 80

www.medina-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 17.11.2021 Initial TOC HPE

v0.2 23.12.2021 Comments and suggestions received
by consortium partners.

ALL

v0.3 14.01.2022 HPE and all the partners contributing
completed their assigned section.

TECNALIA, Fabasoft,
FhG, HPE, CNR, Bosch,
XLAB

v0.4 17.01.2022 Integrated document ready for
internal review

HPE

v0.5 19.01.2022 Internal review execution to return to
HPE for final consolidation

TECNALIA

v0.9 25.01.2022 Consolidated version returned to
TECNALIA for submission

HPE

v1.0 31.01.2022 Ready for submission TECNALIA

v1.01 28.07.2022 Comments from EU review
implemented. Ready for QA review

HPE, TECNALIA

v1.02 21.09.2022 Received comments from QA review TECNALIA

v1.03 22.09.2022 Addressed all comments received in
the internal QA review

HPE

v1.1 30.09.2022 Ready for submission TECNALIA

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 4 of 80

www.medina-project.eu

Table of contents

Terms and Abbreviations .. 7

Executive Summary ... 8

1 Introduction ... 9

1.1 About this deliverable .. 9

1.2 Document structure ... 9

2 MEDINA Test Bed and Secure DevOps Infrastructure ... 11

2.1 Test Bed Environment .. 11

2.1.1 Hardware Infrastructure .. 11

2.1.2 Operating Environment.. 12

2.1.3 Components Integration Methodology ... 16

2.2 Design of the CI/CD Solution .. 22

3 Generic Architectural Workflows ... 24

3.1 WF1 - Preparation of Target of Certification (ToC) .. 25

3.1.1 Related Architectural Components .. 25

3.1.2 Workflow .. 27

3.2 WF2 - Preparation of MEDINA Components .. 27

3.2.1 Related Architectural Components .. 27

3.2.2 Workflow .. 29

3.3 WF3 - EUCS deployment on ToC .. 30

3.3.1 Related Architectural Components .. 30

3.3.2 Workflow .. 32

3.4 WF4 - EUCS Preparedness – ToC Self-Assessment ... 33

3.4.1 Related Architectural Components .. 33

3.4.2 Workflow .. 35

3.5 WF5 - EUCS Compliance Assessment ... 36

3.5.1 Related Architectural Components .. 36

3.5.2 Workflow .. 38

3.6 WF6 - EUCS – Maintenance of ToC certificate ... 39

3.6.1 Related Architectural Components .. 40

3.6.2 Workflow .. 42

3.7 WF7 - EUCS –Report on ToC Certificate ... 43

3.7.1 Related Architectural Components .. 43

3.7.2 Workflow .. 45

4 MEDINA Framework Components and Integration ... 46

4.1 Catalogue (block #1) ... 48

4.1.1 Catalogue of Controls & Security Schemes .. 48

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 5 of 80

www.medina-project.eu

4.2 NLP Technique (block #2) ... 53

4.2.1 CNL Translator .. 53

4.2.2 CNL Editor... 53

4.2.3 DSL Mapper .. 55

4.3 Risk Assessment and Optimisation Framework (block #3) .. 55

4.3.1 Risk Assessment and Optimisation Framework (RAOF) (block #3) 55

4.4 Continuous Evaluation and Life Cycle Manager (block #4) .. 56

4.4.1 Continuous Certification Evaluation .. 56

4.4.2 Life Cycle Manager ... 56

4.5 Organizational Evidence Gathering and Processing (block #5) 57

4.6 Orchestrator and Databases (block #6) .. 57

4.6.1 Orchestrator and Databases .. 57

4.6.2 Trustworthiness System ... 57

4.7 Evidence Collection and Security Assessment (block #7) .. 61

4.7.1 Evidence Collection .. 61

4.7.2 Security Assessment (Clouditor) .. 62

4.7.3 SSI-based certificate management System .. 62

5 MEDINA User Interface (block #8) ... 64

5.1 Implementation .. 64

5.1.1 Functional description .. 64

5.1.2 Technical description ... 64

5.1.3 Delivery and usage ... 68

6 Conclusions .. 70

7 References ... 71

APPENDIX A: Published APIs ... 73

Section: Catalogue of Controls & Security Schemes .. 73

Section: CNL Translator and DSL Mapper .. 77

Section: CNL Editor ... 77

Section: Risk Assessment and Optimisation Framework ... 78

Section: Continuous Evaluation ... 78

Section: Life Cycle Manager ... 78

Section: Orchestrator ... 79

Section: Trustworthiness System ... 80

Section: Evidence Collection (Cloud Discovery) ... 80

Section: Security Assessment (Clouditor) .. 80

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 6 of 80

www.medina-project.eu

 List of tables

TABLE 1. POINT TO POINT COMMUNICATION TESTS ... 21
TABLE 2. GENERIC MEDINA WORKFLOWS .. 24
TABLE 3. WF1 DESCRIPTION .. 27
TABLE 4. WF2 DESCRIPTION .. 29
TABLE 5. WF3 DESCRIPTION .. 32
TABLE 6. WF4 DESCRIPTION .. 35
TABLE 7. WF5 DESCRIPTION .. 38
TABLE 8. WF6 DESCRIPTION .. 42
TABLE 9. WF7 DESCRIPTION .. 45
TABLE 10. INTEGRATION STRATEGY FOR THE DIFFERENT MEDINA COMPONENTS 65
TABLE 11. INTEGRATION TESTED ENDPOINTS .. 68
TABLE 12. PACKAGE STRUCTURE .. 68

List of figures

FIGURE 1. KUBERNETES CLUSTER INSTALLATION WITH RKE ... 12
FIGURE 2. EXCERPT OF MEDINA’S DOCKER REGISTRY ... 13
FIGURE 3. URL NAMING CONVENTION FOR DEV/TEST ENVIRONMENTS ... 14
FIGURE 4. SERVICE ACCOUNT TYPE USED FOR THE KUBERNETES DASHBOARD... 14
FIGURE 5. KUBERNETES DASHBOARD .. 15
FIGURE 6. SPRING SWAGGER TEMPLATE ON GITLAB .. 17
FIGURE 7. SAMPLE PROJECT DEPLOYMENT STEPS ... 17
FIGURE 8. DEMO PROJECT IN THE TEST ENVIRONMENT ... 18
FIGURE 9. K8S DASHBOARD: COMPONENTS DEPLOYED IN DEV ENVIRONMENT ... 19
FIGURE 10. STATUS OF THE FIRST INTEGRATION OF COMPONENTS ... 20
FIGURE 11. CI/CD PIPELINES ... 22
FIGURE 12. WF1 - PREPARATION OF TARGET OF CERTIFICATION ... 26
FIGURE 13. WF2 - PREPARATION OF MEDINA COMPONENTS ... 28
FIGURE 14. WF3 - EUCS DEPLOYMENT ON TOC .. 31
FIGURE 15. WF4 - EUCS PREPAREDNESS – TOC SELF-ASSESSMENT .. 34
FIGURE 16. WF5 - EUCS COMPLIANCE ASSESSMENT .. 37
FIGURE 17. CERTIFICATE MAINTENANCE (SOURCE: EUCS VERSION 2020) .. 40
FIGURE 18. WF6 - EUCS – MAINTENANCE OF TOC CERTIFICATE .. 41
FIGURE 19. WF7 - EUCS – REPORT ON TOC CERTIFICATE ... 44
FIGURE 20. MEDINA ARCHITECTURE AND DATA FLOW ... 47
FIGURE 21. WINDOW OF LIST OF SECURITY CONTROLS .. 50
FIGURE 22. LIST OF TOMS .. 51
FIGURE 23. DETAILS PAGE OF A SECURITY CONTROL .. 52
FIGURE 24. CNL EDITOR ARCHITECTURE (ADAPTED FROM [15]) .. 54
FIGURE 25. TRUSTWORTHINESS SYSTEM GENERAL DASHBOARD .. 59
FIGURE 26. TRUSTWORTHINESS SYSTEM SPECIFIC DASHBOARD FOR EACH ORCHESTRATOR 60
FIGURE 27. MEDINA UI ARCHITECTURE ... 64
FIGURE 28. KEYCLOAK LOGIN PAGE .. 66
FIGURE 29. FULL SCREEN FRAME EMBEDDING - CATALOGUE AND INTEGRATED UI 67
FIGURE 30. RESPONSIVE IFRAME EMBEDDING - CATALOGUE AND INTEGRATED UI 67
FIGURE 31. EXAMPLE: FRAME BUTTON IS HIDDEN IN NAVIGATION BAR FOR USER WITHOUT ROLE ADMIN AND

ROUTING IS INHIBITED ... 68

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 7 of 80

www.medina-project.eu

Terms and Abbreviations

API Application Programming Interface

CI/CD Continuous Integration / Continuous Delivery

CAB Conformance Assessment Body

CNL Controlled Natural Language

CSA or EU CSA Coordination and Support Action

CSP Cloud Service Provider

DoA Description of Action

EC European Commission

GA Grant Agreement to the project

gRPC Google Remote Procedure Call

GUI Graphical User Interface

HDD Hard Disk Drive

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

JSON JavaScript Object Notation

JWT Java Web Token

KPI Key Performance Indicator

KR Key Results

NCCA National Cybersecurity Certification Authority

NL Natural Language

OS Operating System

PaaS Platform as a Service

RAOF Risk Assessment and Optimisation Framework

RKE Rancher Kubernetes Engine

SaaS Software as a Service

SSL Secure Sockets Layer

SSO Single Sign-On

SW Software

SWForum.eu European forum of the software research community

ToC Target of Certification

TOM Technical and Organizational Measure

UI User Interface

WF Workflow

VM Virtual Machine

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 8 of 80

www.medina-project.eu

Executive Summary

The first version of this deliverable, D5.3, is the result of the Task 5.3 of WP5 delivered in M15.
In this first version, the goal is to have an initial prototype of the MEDINA Framework integrating
all components developed by the other technical WPs with the core functionalities
implemented. The document contributes to pursuing the following objectives of the work
package:

• The definition, set up and maintenance of the Secure DevOps infrastructure to support
the CI/CD approach.

• To perform the appropriate continuous integration activities of the components and KRs
developed in WP2 – WP4.

The next versions of the deliverable will provide an improved solution by following an
incremental approach. The second version at M27 will present increased functionalities
considering the feedback coming for the use cases and the final version at M33 will put in place
revisions coming from the implementation of the use cases.

The document starts describing the Test Bed environment with hardware and operating details,
its installation and configuration. The environment is based on a three-node Kubernetes Cluster
that orchestrates all components in the MEDINA Framework. In this deliverable it has been
defined the methodology to be adopted during the whole phase of the integration of the
components in the MEDINA Framework exploiting webinars and workshops. Then, it goes on
the description of MEDINA CI/CD designed solution, how it will support the automation of the
processes implementing standardized pipelines. A generic workflow is presented which
comprise the MEDINA architecture and data model and consisting of seven different
scenarios/interactions identified. Afterwards, the document reports the status of the
integration activities. Starting from the most recently version of the general architecture with
building blocks, it analyses all components for each block giving a short description of their
current status and their published APIs, except for the components of the block five that are still
in development. The latest part is dedicated to the MEDINA User Interface, that has not been
introduced in any deliverable before, and it is a component of the last building block of the
MEDINA Framework.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 9 of 80

www.medina-project.eu

1 Introduction

1.1 About this deliverable

The first version of this deliverable, D5.3, aims to have an initial prototype of the MEDINA
Framework integrating all components developed by the other technical WPs with the core
functionalities implemented by M15.

The document contains, first, the definition of the hardware equipment used to setup the Test
Bed environment, and how the environment is implemented going deep in the resources
needed for the installation and the configuration. The Test Bed environment is setup with a
three nodes Kubernetes cluster, where Kubernetes orchestrates all MEDINA microservices
running in Docker containers. The Kubernetes cluster can be reached through the Dashboard,
which has been properly installed. In this document it is introduced the methodology through
which a component must be integrated in the MEDINA environment. For this purpose, it has
been delivered a webinar and a workshop. The webinar consisted of a theoretical explanation
of the tools utilized in the Test Bed environment and an example of how to manually integrate
a component in this first phase. In the workshop instead partners integrated their components
in the MEDINA environment.

Secondly, the document describes the overall design of the CI/CD solution that will be put in
place for supporting the MEDINA Framework development and integration activities. This
solution foresees to have three pipelines of build, deploy and security to realize the automation
of the integration component.

This document also includes the description of the generic Architectural Workflow with seven
scenarios, while an entire chapter is dedicated to all the component blocks of the MEDINA
Framework, reporting their current integration status. At the end, in this deliverable the MEDINA
User Interface is introduced as component that is part of the block eight of the MEDINA
Framework.

A second release of the deliverable is foreseen at the beginning of the third year of the project
(M27), that will describe an infrastructure with augmented functionalities, and which will
leverage the information received from the first implementation of the Use Cases as feedback
to review the solution.

This deliverable is the result of Tasks 5.3 - System Continuous Integration and Optimization.

1.2 Document structure

The rest of the document is structured as follows:

Section 2 presents the Test Bed Environment, describing the Hardware Infrastructure used, the
Kubernetes cluster configuration illustrating the several resources, the implementation of the
Kubernetes Dashboard, the description of the methodology adopted for the component
integration, through the Docker and Kubernetes webinar and workshop delivered in this first
round.

Section 3 describes the generic workflows based on seven example scenarios with related
architectural components and describing step-by-step the iterations between architectural
components and the generic role(s) being involved.

Section 4 presents the MEDINA Framework component integration. There is a sub section for
each block describing all component inside, except for the block five that has components in

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 10 of 80

www.medina-project.eu

development. In particular, the main functionalities of the component, its actual state and the
APIs it exposes are reported.

Section 5 is dedicated to the MEDINA User Interface that takes part of the building block eight
of the MEDINA Framework and is described as in the section before.

Finally, section 6 reports the conclusions.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 11 of 80

www.medina-project.eu

2 MEDINA Test Bed and Secure DevOps Infrastructure

2.1 Test Bed Environment

The MEDINA framework is available on a Test Bed environment to test and verify all the
functionalities provided before releasing it to production.

The Test Bed environment is setup with a three nodes Kubernetes [1] cluster with two different,
independent and isolated virtual environments:

• Development: it is usually unstable, which is necessary for developers to test their
modules with not fear if errors or disservice occur. This environment does not affect the
end users and is used to improve the code of the MEDINA micro-services in order to
deploy them to the Test environment.

• Test: it is more stable, used by the developers and users for integration testing and
quality assessment activities. The main purpose here is to ensure that all the updates
done on the different modules work as expected before releasing them to production.

All the micro-services on the Test Bed environment are containerized and communicate each
other with RESTful API over HTTPS secure protocol.

Finally, the production environment will be hosted at Fabasoft and Bosch, each of them having
their instances as reported in D5.1 [2].

2.1.1 Hardware Infrastructure

This section describes the list of the hardware equipment used to setup the Test Bed
environment. The environment is composed by several Virtual Machines (VM) located in the
server infrastructure of TECNALIA.

The domain for all the machines is medina.esilab.org. The access to the virtual machines is
provided via SSH (Secure Shell) protocol, using digital certificates. Concretely, the list of VMs is
the following:

• 3 nodes for the integration/deployment tasks (integration, production,

cicd.medina.esilab.org) with these specifications:

o RAM: 4G

o Cores: 4

o HDD: 40GB

o OS: Ubuntu 18.04

• 3 nodes for the Kubernetes cluster (k8s00, k8s01, k8s02.medina.esilab.org). These VMs
share the same specifications:

o RAM: 8GB
o Cores: 8
o HDD: 120 GB + 200GB
o OS: Ubuntu 20.04

• An additional VM used for the CNL Editor (cnl.medina.esilab.org). Characteristics:

o RAM: 8G

o Cores: 4

o HDD: 60GB

o OS: Ubuntu 20.04

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 12 of 80

www.medina-project.eu

These specifications can be scaled up as needed. Further VMs can also be created on-demand,
according to the needs of the project.

Moreover, an additional VM used for Wazuh and VAT will be provided to simulate running
these services to produce fake data for the MEDINA Framework.

2.1.2 Operating Environment

The MEDINA framework functionalities are made up by the collaboration of all the micro-
services, which communicate each other through REST API, are packaged in Docker images and
run in Docker containers. Kubernetes orchestrates all these containers in a virtual environment
running on high-available cluster.

 Kubernetes Installation and Configuration

This section illustrates the container orchestration solution that is executed over the setup
infrastructure described previously.

Different resources are needed to proceed with the installation and configuration of the cluster.
We used RKE [3] for the installation of Kubernetes [1] in the three nodes, Rook/Ceph [4] for the
configuration of storage and MetalLB [5] for the network configuration.

The Kubernetes cluster is configured and managed by Rancher Kubernetes Engine (RKE) [3], an
open-source distribution that simplifies the installation and operations of Kubernetes. The RKE
client is installed on a console host at the cicd.medina.esilab.org VM and communicates with
the nodes of the cluster through SSH (Secure Shell protocol [6]). Through RKE, we have
configured each cluster node to be both Master and Worker, guaranteeing fault-tolerance and
high availability. To do so, RKE creates on each of them the control plane, kubelet and kube-
proxy resources in Docker containers.

Figure 1. Kubernetes cluster installation with RKE

All the micro-services can store their data in an easy and secure way thanks to the configuration
of a distributed filesystem. Indeed, each node of the cluster provides 200 GB of storage,
managed by Rook/Ceph [4] and exposed as a single, unified cluster filesystem.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 13 of 80

www.medina-project.eu

Ceph is an open-source distributed storage solution for delivering block storage, object storage
and shared filesystem in a single, unified system. It ensures cluster state monitoring and handles
data replication, recovery and rebalancing.

Ceph is deployed to the Kubernetes cluster by Rook that is an open-source cloud-native storage
orchestrator enabling Ceph to easily run on Kubernetes cluster. The Rook operator is a
Kubernetes resource that automates the Ceph management and installation and turns Ceph into
a self-scaling, self-managing and self-healing storage service.

Thanks to this configuration, the data are replicated across the three nodes, 200 GB of storage
and fault-tolerance and high availability are assured.

The micro-services running on the Kubernetes cluster are packaged in Docker images and stored
on a private Docker Registry running on Artifactory by JFrog [7].

In order to have Kubernetes access the Docker Registry, a specific integration has been done: a
secret has been created with the registry credentials. This allows Kubernetes to pull the micro-
service image and then run it on the cluster.

The images are pushed to the Docker registry according to the following structure that we
agreed for the project:

<medina_registry_url>/<work_package>/<task >/<image>:<tag>

Figure 2. Excerpt of MEDINA’s Docker registry

The REST API exposed by each micro-service is reachable from the Internet using the
“*.k8s.medina.esilab.org” URL, corresponding to the static public IP 172.26.124.120. In
particular, on the Kubernetes cluster a nginx [8] service is configured as a proxy to redirect all
the requests to the correct micro-service component. The binding between the nginx service
and the public IP is setup with MetalLb. MetalLb [5] is a network load-balancer implementation
that associates the public IP to the nginx service and uses standard routing protocols to make
available (part of) the network behind the Kubernetes cluster. It is essential for the MEDINA
cluster because, unlike a public cloud provider cluster, this one has no load balancer and
Kubernetes does not provide it by itself.

The user can address the environment s/he wants using this URL naming convention:

 <component_name>-<environment [test or dev]>.k8s.medina.esilab.org

For example, if the user needs to refer to the API exposed by the “api-swagger” component
running on the Kubernetes test environment, s/he will address it as:

 api-swagger-test.k8s.medina.esilab.org

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 14 of 80

www.medina-project.eu

Figure 3. URL naming convention for dev/test environments

 Kubernetes Dashboard

Kubernetes Dashboard is a web-based User Interface for the Kubernetes cluster. It is helpful to
deploy containerized applications to a Kubernetes cluster, troubleshoot them, and manage the
cluster resources. We installed K8s Dashboard using the Helm package manager [9].

To have access to the Dashboard it is needed to generate a Service Account token by creating a
service account. We have two service account with different permissions: one is “dashboard-
admin” that has access to all cluster resources and the other is “partner-user” for the partners
access that has restricted permissions only to dev and test namespaces. We must copy the token
to sign into the Dashboard.

Figure 4. Service Account type used for the Kubernetes Dashboard

The Dashboard is exposed over HTTPS at https://dashboard.k8s.medina.esilab.org/#/login
[internal use only - authentication required]

http://www.medina-project.eu/
https://dashboard.k8s.medina.esilab.org/#/login

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 15 of 80

www.medina-project.eu

Figure 5. Kubernetes Dashboard

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 16 of 80

www.medina-project.eu

We have a secure Dashboard since we used certificates to expose it over HTTPS. These
certificates are installed using cert-manager [10].

Cert-Manager automates the provisioning of certificates and provides a set of custom resources
to issue certificates and attach them to services.

One of the most common use cases is securing web apps and APIs with SSL certificates from
“Let’s Encrypt”. Basically, we installed Cert-Manager using the manifest file, created an issuer
that uses the “Let’s Encrypt” API for the specific domain “dashboard.k8s.medina.esilab.org” and
exposed the Dashboard over HTTPS.

2.1.3 Components Integration Methodology

Once the Test Bed environment has been correctly configured and all the installations needed
done, the next steps is the deployment of all the components into the cluster.

In order to better organize the work of the integration we have adopted the following
methodology presenting the actions to do up to the complete release of the MEDINA
framework:

1. Each component must be available on the internal private GitLab repository
2. Each component must be containerized into a docker image, the docker image must be

available on the internal private docker registry Artifactory
3. Deployment of each component into the development environment in the MEDINA

Kubernetes cluster, named “dev”
4. Standalone tests to check each component has been correctly deployed in the

development environment
5. Point to point tests for the communication in pairs of the components in the

development environment
6. Test end to end in the development environment verifying that the workflows described

in Chapter 3 below have been correctly implemented
7. Deploy the stable version of each component into the test environment in the MEDINA

Kubernetes cluster, named “test”
8. Standalone tests to check each component has been correctly deployed in the test

environment
9. Point to point tests for the communication in pairs of the components in the test

environment
10. Test end to end in the test environment verifying that the workflows described in

Chapter 3 below have been correctly implemented
11. Release of all the components into the production environment

The methodology is implemented through two instruments: workshops and webinars. The
overall integration consists of three rounds: M15, M27, and M33. Currently we are at the first
round at M15 and the components integration is done manually by each partner. For this first
round, we have delivered a webinar and a workshop. During the webinar we illustrated the
Docker and Kubernetes main concepts and functionalities and showed a sample project
integration in the MEDINA operating environment. During the workshop we supported the
partners for the implementation of the first five actions of the methodology: integration in
GitLab, build and push of the docker images into Artifactory, and deployment and tests in the
development environment of the MEDINA Kubernetes cluster.

Moreover, the integration status of each component and the advancements of the methodology
actions are tracked using a stylesheet available on the Fabasoft shared repository and we check
and update it during the WP5 meetings.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 17 of 80

www.medina-project.eu

The following sections describe the webinar and the workshop conducted in the first round.

 Docker and Kubernetes Webinar with Sample Component Integration example

The components’ cluster integration in this initial phase is done manually by all partners, then it
will be automated in the next MEDINA framework versions.

To support all partners in this integration, a webinar presenting an example project has been
organised. The webinar included a part dedicated to the explanation of the main aspects and
operations of Docker and Kubernetes and another part for the demonstration of all the needed
steps to deploy a sample project in the MEDINA environment.

The sample project, that is a spring swagger application, is available on the project’s private
GitLab located at TECNALIA. It exposes a REST API and stores data on PostgreSQL database while
the Dockerfile, the Kubernetes manifests files and the README instructions are available on the
repository.

Figure 6. Spring Swagger Template on GitLab

The demo of the sample project illustrates step by step all the actions to do for the correct
configuration and deployment of it, starting from the build and up to the release of it in the k8s
cluster.

Figure 7. Sample project deployment steps

First of all, the project is packaged with Maven [11] and an executable jar is created.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 18 of 80

www.medina-project.eu

This jar is included in the Dockerfile for the docker image creation. Then, after the login on the
private Docker Registry Artifactory, the docker image is pushed following the path convention
at:

optima-medina-docker-dev.artifact.tecnalia.com/wp5/t52/springswagger-
template:latest

The final step is the deployment of the docker image in the k8s cluster through the Kubernetes
Dashboard.

Once applied the Kubernetes manifests, the application is reachable from the internet according
to this URL convention:

<component_name>-<namespace {dev, test}>.k8s.medina.esilab.org

For example, the access to the application in the dev environment is at:

http://api-swagger-dev.k8s.medina.esilab.org/swagger-ui/index.html#/ [public]

Figure 8. Demo project in the test environment

 First integration Workshop

The aim of the workshop for this first round is to release the first version of the MEDINA
Framework in the development environment of the cluster. The integration and release of
components is done manually by the partners, however it will be automated through the CI/CD
pipelines in the next rounds.

To carry out the integration of the components, the partners were provided with access
credentials to GitLab, Docker Registry Artifactory and to the Kubernetes Dashboard.

http://www.medina-project.eu/
http://api-swagger-dev.k8s.medina.esilab.org/swagger-ui/index.html#/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 19 of 80

www.medina-project.eu

During the workshop the first five actions foreseen by the defined methodology were
successfully completed by all partners: first of all, each project was uploaded to GitLab, then the
Docker images were pushed on the Artifactory registry and finally the Kubernetes manifest files
were created and applied to the development environment via the Kubernetes Dashboard.

At the end of the workshop, all components planned for this round were successfully released
in the development environment, as shown in Figure 9.

Figure 9. K8s Dashboard: Components deployed in dev environment

Figure 10 shows all the components of the MEDINA Framework: the green ones are released on
the development environment, the yellow one will be deployed in the next round and the blue
ones will not be released in the Kubernetes cluster.

The Codyze component will be integrated in the MEDINA Security pipeline and the Wazuh and
VAT components will run on a dedicated standalone VM provided by TECNALIA.

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 20 of 80

www.medina-project.eu

Figure 10. Status of the first integration of components

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 21 of 80

www.medina-project.eu

Furthermore, partners performed point to point tests to verify the communication in pairs of
the released components and Table 1 shows in green the working ones.

Table 1. Point to point communication tests

Component Name Component Name Status

Orchestrator
Continuous Certification

Evaluation
CONNECTED

Orchestrator Blockchain Monitoring Tool CONNECTED

Orchestrator Security Assessment CONNECTED

Orchestrator Metrics and Measures Catalogue NEXT ROUND

Cloud Evidence Collector Security Assessment CONNECTED

Security Assessment WAZUH + VAT Evidence Collector CONNECTED

DSL Mapper Orchestrator NEXT ROUND

DSL Mapper Metrics and Measures Catalogue NEXT ROUND

NL2CNL Translator Metrics and Measures Catalogue NEXT ROUND

CNL Editor DSL Mapper NEXT ROUND

CNL Editor NL2CNL Translator NEXT ROUND

CNL Editor Metrics and Measures Catalogue NEXT ROUND

Organisational Evidence
Management Tool

Metrics and Measures Catalogue NEXT ROUND

Static Risk Assessment and
Optimisational Framework

Metrics and Measures Catalogue NEXT ROUND

Continuous Certification
Evaluation

Metrics and Measures Catalogue NEXT ROUND

Continuous Certification
Evaluation

Dynamic Risk Assessment and
Optimisation Framework

NEXT ROUND

Dynamic Risk Assessment and
Optimisation Framework

Life Cycle Manager NEXT ROUND

Integration UI
Metrics and Measures Catalogue

Keycloak
CONNECTED

Integration UI Metrics and Measures Catalogue CONNECTED

Integration UI NL2CNL Translator CONNECTED

Integration UI Orchestrator NEXT ROUND

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 22 of 80

www.medina-project.eu

Component Name Component Name Status

Organisational Evidence
Management Tool

Orchestrator NEXT ROUND

Integration UI
Organisational Evidence

Management Tool
NEXT ROUND

2.2 Design of the CI/CD Solution

Starting from the CI/CD strategy outlined in D5.1 [2], this section describes the overall design of
the CI/CD solution that will be put in place for supporting the MEDINA Framework development
and integration activities.

Our infrastructure is built in a multi-node Kubernetes cluster that orchestrates all the
components of the MEDINA Framework. In the first round, the integration has been done
manually but in the next round all the components release steps, starting from the build of the
project and up to the deployment in the Kubernetes cluster, will be automated. Our solution will
use Continuous Integration (CI), Continuous Deployment (CD) practices implemented by the
Build, Deploy and Security pipelines designed ad-hoc for MEDINA.

The Continuous Integration practice includes the management of the software source code
through a versioning control system, and for this purpose all the MEDINA projects are available
on GitLab. For the CI/CD Orchestrator, we installed the open-source Jenkins tool running on
cicd.medina.esilab.org node.

As shown in the Figure 11, the Build pipeline can be triggered automatically at every push of the
project in Gitlab and it automatizes the build of the project, the creation of the Docker image
and its push on the Artifactory. Then, if the previous pipeline succeeded, the second Deploy
pipeline is triggered and will automatically deploy the component to the development
environment. Finally, the Security pipeline is triggered if the Build and the Deploy pipelines
succeed.

Figure 11. CI/CD pipelines

To make all the deployment process more automated, we use the Jenkins Seed Jobs for
automating the creation of the three pipelines. This utility permits to fill out a form by entering
parameters such the software repository URL where to retrieve the source code, the container
file descriptor (in Docker format), the generated container image for publishing to an internal
private registry and a list of one or more Kubernetes deployment manifest files. Once these
details are provided, the Seed Job that automatically creates the three standardized pipelines
for build, deploy and security can be run.

The build pipeline will be created by default out of the packaged templates (e.g., a template for
standard Java build steps), that can be further tuned with user customizations to address specific

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 23 of 80

www.medina-project.eu

build phases or tools, while the deployment and security pipelines typically can be used as they
are.

To guarantee Quality & Assurance into the overall workflow, we will put into the security
pipeline three types of security analysis: Static Code Analysis, Vulnerability Analysis and Dynamic
Analysis that are performed by different tools.

The aforementioned pipelines will be implemented in the next version and the MEDINA
component Codyze [12], described in Section 4.7.1 as tool for static code analysis by FhG
partner, will be added in the Security pipeline.

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 24 of 80

www.medina-project.eu

3 Generic Architectural Workflows

This section presents the generic workflows (WF from now on) which comprise the MEDINA
framework (in particular the architecture and data model), and consisting of the seven different
scenarios/interactions shown in Table 2. These workflows cover different data flow paths of the
architecture described in D5.1 [2] as it will be shown in the corresponding section, each of them
using different components of the MEDINA framework.

Table 2. Generic MEDINA workflows

Workflow Comment Other/Dependency

WF1 -
Preparation of
Target of
Certification
(ToC)

Setup, configure and deploy the cloud
service to certify (ToC) on top of the
chosen hyperscaler(s). This process
includes configuring the underlying
PaaS/IaaS.

Prerequisite
Mandatory workflow
CSP Responsibility
Dependencies: None

WF2 -
Preparation of
MEDINA
components

Setup, configure and deploy the MEDINA
components. Only related to those
components under the responsibility of
the CSP.

Prerequisite
Mandatory workflow
CSP Responsibility
Dependencies: WF1

WF3 - EUCS
deployment on
ToC

Setup, configure and deploy the
corresponding EUCS framework (for the
chosen assurance level
basic/substantial/high) on the ToC.

Prerequisite
Mandatory workflow
CSP Responsibility
Dependencies: WF1, WF2

WF4 - EUCS
Preparedness –
ToC Self-
Assessment

Self-assess preparedness for EUCS
certification based on the chosen
assurance level. This is a risk-based
approach.

Optional workflow
CSP Responsibility
Dependencies: WF1, WF2,
WF3

WF5 - EUCS –
compliance
assessment

Performs a point-in-time (discrete) EUCS
compliance assessment for the ToC.
When such discrete assessment is
periodically executed, then we achieve
the MEDINA notion of “continuous”.

Mandatory workflow
CAB Responsibility
Dependencies: WF1, WF2,
WF3

WF6 - EUCS –
maintenance of
ToC certificate

Start certificate maintenance life-cycle
for the ToC. Based on current EUCS, the
maintenance process comprises the
following stages: (issuance1), renewal,
continuation, update, re-issuance (new
certificate), withdrawal, and suspension.

Mandatory workflow
CAB Responsibility
CSP Responsibility
Dependencies: WF1, WF2,
WF3, WF5

WF7 - EUCS –
report on ToC
certificate

Reports on EUCS certificate status for a
ToC. The report can be obtained by the
CAB and the CSP, in which case the level
of provided details might vary.

Optional workflow
CAB Responsibility
CSP Responsibility
Dependencies: WF1, WF2,
WF3, WF5

In principle, more complex workflows can be built based on the seven ones presented in this
section. Creating and instantiating real-world scenarios based on the generic workflows are
goals to be achieved in WP6.

1 Despite initial certificate’s issuance is not mentioned in the maintenance process defined by the core
EUCS document, for the purposes of MEDINA this discussion is part of the life-cycle manager (WP4).

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 25 of 80

www.medina-project.eu

The rest of this section presents further details about the generic workflows shown in Table 2,
and structured in the following manner:

• Related architectural components, which are based on the MEDINA architecture at the
time of writing.

• Workflow, which describes step-by-step the iterations between architectural
components and the generic role(s) being involved.

3.1 WF1 - Preparation of Target of Certification (ToC)

This initial workflow, despite not invoking any of the MEDINA components, is an evident pre-
requisite for the CSP to fulfil before the certification process starts. Its main goal is for the CSP
to prepare the Target of Certification (ToC), both from a technical (e.g., deploying the actual
cloud service in the hyperscaler) and organizational (e.g., gather the operational manuals in
electronic format) perspectives.

3.1.1 Related Architectural Components

As mentioned above, this workflow does not involve any of the MEDINA components. However,
it setups the ToC elements shown in Figure 12, namely:

• ToC’s organizational evidence (electronic format)

• Cloud services comprising the ToC (e.g., IaaS/PaaS/SaaS), which can be deployed in one
or more hyperscalers

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 26 of 80

www.medina-project.eu

Figure 12. WF1 - Preparation of Target of Certification

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 27 of 80

www.medina-project.eu

3.1.2 Workflow

Table 3 describes the steps associated to this workflow.

Table 3. WF1 description

Step Description Role Comments

1 Documentation related to
organizational measures
implemented by the Cloud
Service is gathered and made
available in electronic format.

CSP2 The documentation can be made available
in portable formats like PDF.

2 All Resources that comprise
the Cloud Service/ToC (VMs,
SQL, Web Apps, SaaS, etc.) are
assigned to an impact level,
technically configured and
deployed in the hyperscaler.

CSP The impact level will be further used in
subsequent workflows for the purposes of
risk management. For characterizing the
Resources, the current data model in D5.1
[ref] considers three impacts levels
corresponding to each of confidentiality,
integrity and availability.

3.2 WF2 - Preparation of MEDINA Components

The second generic workflow of the architecture (WF2) refers to the actual configuration and
deployment of those MEDINA components which are needed for certifying the Cloud Service.
This WF2 does not perform any actual assessment, but it is a required set of deploying actions
before the certification process is triggered by WF3.

3.2.1 Related Architectural Components

This workflow involves the components highlighted in Figure 13, namely:

• Catalogue of Controls and Security Schemes

• Organizational Evidence Gathering and Processing

• Security Assessment (CS Level and OS) – Clouditor Assessment

• Evidence Collection / Security Assessment CS level and CSP Native (Azure Policies)

• Evidence Collection / Security Assessment Application Level (Codyze)

• Evidence Collection Wazuh

• Evidence Collection VAT

• Company Compliance Dashboard / Integrated UI

2 In this generic context, CSP means the entity responsible of the ToC (EUCS requestor).

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 28 of 80

www.medina-project.eu

Figure 13. WF2 - Preparation of MEDINA Components

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 29 of 80

www.medina-project.eu

3.2.2 Workflow

Table 4 describes the steps associated to this workflow.

Table 4. WF2 description

Step Description Role Comments

1 Configuring the following settings in the
Company Compliance Dashboard /
Integrated UI:

a. SSO integration
b. Setup users and roles

CSP The Integrated UI provides
the entry point to the
MEDINA framework, and as
such it needs to become
integral part of the CSP’s
systems. Therefore, actions
like SSO integration are
needed. A role-based
authorization model allows
MEDINA users to only
perform specific actions.

2 Setting up the Catalogue of Controls and
Security Schemes:

a. Configure the EUCS catalogue with all
assurance levels, and including
corresponding
controls/requirements/metrics.

MEDINA3 The Catalogue of Controls
and Security Schemes is
prefilled with EUCS
information, so it comes out-
of-the-box for the CSP (see
WF3).

3 Configure the Security Assessment (CS-
Level and OS) – Clouditor Assessment:

a. Clouditor’s OS-agent is deployed in
VMs Resources from the ToC

b. Clouditor’s CS-level is configured in
PaaS Resources from the ToC

CSP The MEDINA framework
guarantees that
corresponding agents can be
deployed at-scale on the
corresponding Resources.

4 Configuration of (Technical) Evidence
Collection / Security Assessment CS level
and CSP Native (Azure Policies):

a. CSP-Native is configured to
automatically collect compliance data
from Azure

CSP In analogy to the collector
described in Step 3, this CSP-
Native one is used to gather
evidence from technical
measures.

5 Configuration of (Technical) Evidence
Collection / Security Assessment
Application Level (Codyze):

a. Codyze is configured

CSP Used to gather evidence
from technical measures
(code-level).

6 Configuration of (Technical) Evidence
Collection Wazuh:

CSP Used to gather evidence
from technical measures.

3 This role means the actual MEDINA framework (non-human role).

http://www.medina-project.eu/

 D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 30 of 80

www.medina-project.eu

Step Description Role Comments

a. Wazuh is configured

7 Configuration of (Technical) Evidence
Collection VAT:

a. VAT is configured

CSP Used to gather evidence
from technical measures.

8 Configuration / activation of the
Trustworthiness Evidence Management
system (DLT) for the evidence
management and security assessment
results management

CSP This component is linked to
the Orchestrator, and only
Keycloak must be
configured.

3.3 WF3 - EUCS deployment on ToC

After the ToC has been deployed on the hyperscaler (WF1) and the corresponding MEDINA
components were configured/deployed by the CSP (WF2), then it is possible to use the later for
certifying the Cloud Service. That is the goal of this WF3.

3.3.1 Related Architectural Components

This workflow involves the components shown in Figure 14, namely:

• Catalogue of Controls and Security Schemes

• CNL Editor

• Organizational Evidence Gathering and Processing

• Orchestrator / Clouditor Orchestrator

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 31 of 80

www.medina-project.eu

Figure 14. WF3 - EUCS deployment on ToC

-

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 32 of 80

www.medina-project.eu

3.3.2 Workflow

Table 5 describes the steps associated to this workflow.

Table 5. WF3 description

Step Description Role Comments

1 The Company Compliance
Dashboard / Integrated UI
is used to perform the
following actions:

a. Each Resource
comprising the Cloud
Service is registered in
MEDINA as part of the
ToC.

CSP Required information from the Resource
include the impact level mentioned in WF1.
Additional attributes of the Resource are
populated as needed and based on the
MEDINA data model.

2 The Catalogue of Controls
and Security Schemes (UI)
is used to:

a. Select EUCS Assurance
level for the ToC to
certify

CSP The default value being “High” (which is the
one requiring continuous monitoring in
EUCS), but also “Basic” and “Substantial” can
be selected.

3 The UI from the CNL Editor
is used to:

a. Select suitable built-in
Metrics as provided by
the Metrics
Recommender (or
accept the ones pre-
selected by default)

b. Customize Target
Values4 on the selected
built-in Metrics.

c. Add CSP-custom
Metrics as needed

CSP Once the corresponding Obligations have
been selected and configured with a Target
Value (including the corresponding Metric),
then they are ready to be stored along with
the ToC information in MEDINA’s
Orchestrator.

4 The Organizational
Evidence Gathering and
Processing is used to
upload the collected
documentation (see WF1)

CSP These documents are stored directly on the
database of the component, and not on the
Orchestrator’s.

5 The Orchestrator stores the
configured ToC information
(see steps 1-3) in its
corresponding database.

MEDINA n/a

4 In the form of Obligations

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 33 of 80

www.medina-project.eu

3.4 WF4 - EUCS Preparedness – ToC Self-Assessment

This workflow relates to the component in charge of performing the static risk management as
documented by “D2.6 - Risk-based techniques and tools for Cloud Security Certification-v1”.
Although this component implements a “stand alone functionality”, which does not need to be
technically deployed in the Cloud Service (cf. WF3), it is integrated into the whole MEDINA
framework thanks to the unified UI.

3.4.1 Related Architectural Components

This workflow involves the components shown in Figure 15, namely:

• Risk Assessment and Optimization Framework

• Catalogue of Controls and Security Schemes

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 34 of 80
www.medina-project.eu

Figure 15. WF4 - EUCS Preparedness – ToC Self-Assessment

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 35 of 80

www.medina-project.eu

3.4.2 Workflow

The related activities in WP4 are described in Table 6.

Table 6. WF4 description

Step Description Role Comments

1 Risk Assessment and
Optimization Framework:

a. ToC information and
Impact level (per-
Resource type) are
entered into the tool

b. If applicable, the
underlying Hyperscaler is
configured as an
additional Resource
(along with its associated
Impact level)

c. Targeted EUCS assurance
level is selected, as
required for the
preparedness assessment

CSP The ToC information required for the
static risk assessment is manually entered
into the tool (contrary to the automated
discovery of Resources in WF3), mostly
because less granular details are needed
for the preparedness assessment. For
example, details about the actual
Resources’ configuration are not needed
for this static assessment.

2 Catalogue of Controls and
Security Schemes:

a. Based on selected EUCS,
the self-assessment
questionnaire is retrieved
and shown to the CSP, so
it can proceed to answer
about the
implementation of
requirements

MEDINA The preparedness tool is based on a
questionnaire interface containing
requirements from EUCS, just as
described in the referenced D2.6

3 Risk Assessment and
Optimization Framework:

a. CSP provides answers to
the questionnaire (cf.
Step 2), based on any of
the following potential
answers:

a. Implemented
(CSP
Responsibility)

b. Not Implemented
(CSP
Responsibility)

c. Not Applicable

CSP A close set of possible answers
guarantees the computation of a degree
of compliance, which represents the
CSP’s level of preparedness for obtaining
an EUCS certificate. The preparedness
report includes the identification of major
and minor non-conformities, and
comparison between the ideal
conformity case and the provided CSP
answers. More details are presented in
D2.6

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 36 of 80

www.medina-project.eu

Step Description Role Comments

d. Unknown
(Hyperscaler
Responsibility)

b. Degree of compliance is
automatically computed
and reported to the CSP

3.5 WF5 - EUCS Compliance Assessment

MEDINA proposes the notion of “continuous audit-based certification”, which departs from the
EUCS definition of “continuous (automated) monitoring” referring to periodically assessing the
ToC. This WF5 describes discrete compliance assessments, which should then be periodically
executed for the MEDINA framework to start the certification lifecycle (cf. WF6).

Further information about the underlying evidence collection mechanisms can be found in “D3.1
Tools and techniques for the management of trustworthy evidence-v1” [13].

3.5.1 Related Architectural Components

This workflow involves the components shown in Figure 16, namely:

• Organizational Evidence Gathering and Processing

• Security Assessment (CS Level and OS) – Clouditor Assessment

• Evidence Collection / Security Assessment CS level and CSP Native (Azure Policies)

• Orchestrator / Clouditor Orchestrator

• Evidence trustworthiness management (DLT)

• Evidence Collection / Security Assessment Application Level (Codyze)

• Evidence Collection / Clouditor Discovery

• Evidence Collection Wazuh

• Evidence Collection VAT

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 37 of 80

www.medina-project.eu

Figure 16. WF5 - EUCS Compliance Assessment

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 38 of 80

www.medina-project.eu

3.5.2 Workflow

The different interactions corresponding to this WF5 are shown in Table 7.

Table 7. WF5 description

Step Description Role Comments

1 Organizational Evidence
Gathering and Processing:

a. Automatically assesses
the uploaded
organizational
documentation from the
ToC based on the selected
Metrics.

MEDINA MEDINA supports EUCS auditors in their
currently manual/time-consuming
activity of assessing organizational
evidence of the CSP (e.g., operation
manuals). The automated assessment of
such organizational evidence is
expected to release auditors from most
of this time-consuming activity,
although a minimum level of human
interaction is still expected (e.g, to
confirm the assessment results of the
tool, or to provide training data which is
CSP-specific).

2 Evidence Collection / Security
Assessment Application Level
(Codyze):

a. Assesses code-level
Resources from the ToC
based on selected Metrics

MEDINA D3.1 [13] already includes an analysis of
the high assurance level requirements
covered by the MEDINA tools. This
includes not only the current coverage,
but also the expected coverage once the
extensions of the tools / new
functionalities are included.

3 Evidence Collection /
Clouditor Discovery:

a. Assesses cloud service-
level Resources from the
ToC based on selected
Metrics

MEDINA Please refer to D3.1 [13] for further
details on metrics’ coverage.

4 Evidence Collection Wazuh:

a. Assesses cloud service-
level Resources from the
ToC based on selected
Metrics

MEDINA Please refer to D3.1 [13] for further
details on metrics’ coverage.

5 Evidence Collection VAT:

a. Assesses cloud service-
level Resources from the
ToC based on selected
Metrics

MEDINA Please refer to D3.1 [13] for further
details on metrics’ coverage.

6 Evidence Collection / Security
Assessment CS level and CSP
Native (Azure Policies):

MEDINA Please refer to D3.1 [13] for further
details on metrics’ coverage.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 39 of 80

www.medina-project.eu

Step Description Role Comments

a. Assesses cloud service-
level Resources from the
ToC based on selected
Metrics

7 Orchestrator / Clouditor
Orchestrator:

a. Assessment Results from
organizational
assessments are stored

b. Evidence from
organizational
assessments is stored

MEDINA Organizational and technical evidence
are managed by MEDINA in the same
manner, so they can be postprocessed
homogeneously by the rest of
components (cf. WF6 and WF7).

8 Evidence trustworthiness
management (DLT):

a. Digest/hash of relevant
information related to
organizational
assessments results and
evidence are stored

MEDINA Please refer to comment above.

9 Orchestrator / Clouditor
Orchestrator:

a. Assessment Results from
technical assessments
are stored

b. Evidence from technical
assessments is stored

c. Assessment Results are
sent to Continuous
Certification Evaluation

MEDINA n/a

10 Evidence trustworthiness
management (DLT):

a. Digest/hash of relevant
information related to
technical assessment
results and evidence are
stored

MEDINA n/a

3.6 WF6 - EUCS – Maintenance of ToC certificate

This WF6 departs from the current definition of certificate maintenance in the EUCS core
document (see Figure 17) and, for the purposes of MEDINA, it also adds an initial stage of
“certificate issuance”. The main objective of WF6 is to take the “discrete/point in time”

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 40 of 80

www.medina-project.eu

assessments from WF5 in order to trigger the different statuses of the corresponding EUCS
certificate.

Figure 17. Certificate maintenance (source: EUCS version 2020)

3.6.1 Related Architectural Components

This workflow involves the components shown in Figure 18, namely:

• Continuous Certification Evaluation

• Risk Assessment and Optimization Framework

• Automated Certificate Lifecycle Management

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 41 of 80

www.medina-project.eu

Figure 18. WF6 - EUCS – Maintenance of ToC certificate

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 42 of 80

www.medina-project.eu

3.6.2 Workflow

The different interactions corresponding to this WF6 are shown in Table 8.

Table 8. WF6 description

Step Description Role Comments

1 Continuous Certification
Evaluation:

a. Assessment Results
(point-in-time
assessment) are received
from Orchestrator /
Clouditor Orchestrator

b. Tree-based evaluation is
performed with received
Assessment Results
(which are received per-
Resource)

c. Tree-based evaluation
results are stored in
Certification Evaluation
Storage

d. If a non-compliance is
found5, then the Risk
Assessment and
Optimization Framework
is invoked (see Step 2
below)

MEDINA This component automatizes the
currently manual audit process for
analysing set of evidence (in particular
when operational efficiency is in scope,
like in the case of EUCS High).

2 Risk Assessment and
Optimization Framework:

a. In analogy to WF4, the
degree of non-
compliance is computed
based on the (point-in-
time) assessments
obtained from the
Continuous Certification
Evaluation

b. The degree of non-
compliance is
communicated to the
Certificate Lifecycle
Manager (see Step 4
below)

MEDINA As mentioned in WF4, the “degree on
non-compliance” is computed
comparing the real (e.g., based on
monitored/declared status of
requirements) risk level and ideal one
(i.e., with all requirements satisfied). A
threshold is to be set which determines
if the difference is higher (major non-
conformity) or lower (minor non-
conformity). See D2.6 for more details.

3 Automated Certificate
Lifecycle Manager:

MEDINA The core EUCS document defines the
basis for MEDINA to implement the

5 Compliances are not reported to the Risk Assessment and Optimization Framework

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 43 of 80

www.medina-project.eu

Step Description Role Comments

a. Based on the Operational
Effectiveness Criteria
defined by EUCS, the
certificate maintenance
lifecycle is triggered.

b. The status of the
certificate can be updated
to any of New Certificate,
Renewal, Continuation,
Update, Withdraw, or
Suspension.

 automation of the certificate lifecycle
management.

5 Automated Certificate
Lifecycle Manager:

a. Certificate status is
published/updated on
the Public Registry

MEDINA This is a required step in EUCS to provide
transparency to the certification
process.

3.7 WF7 - EUCS –Report on ToC Certificate

The goal of this WF7 is to report about the status of an EUCS certificate corresponding to the
ToC and at different levels of detail, depending on the targeted audience (CAB, CSP, etc.). This
WF7 consider for example, the case where a CAB needs to verify the technical/organizational
evidence which resulted on the suspension of a certificate.

3.7.1 Related Architectural Components

This workflow involves the components shown in Figure 19, namely:

• Automated Certificate Lifecycle Management

• Evidence trustworthiness management (DLT)

• Continuous Certification Evaluation

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 44 of 80

www.medina-project.eu

Figure 19. WF7 - EUCS – Report on ToC Certificate

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 45 of 80

www.medina-project.eu

3.7.2 Workflow

The different interactions corresponding to this WF7 are shown in Table 9.

Table 9. WF7 description

Step Description Role Comments

1 Automated Certificate
Lifecycle Management:

a. A lookup on the Public
Registry(-ies) is
performed to search for a
specific criterion (e.g.,
Certificate_ID, ToC, CSP,
period of time, etc.).

b. If found on the Public
Registry, the
corresponding EUCS
certificate is shown.

CAB

CSP

NCCA

Details to display include certificate’s
history, ToC, degree of non-compliance,
etc.

2 (Optional) Evidence
trustworthiness management
(DLT):

a. For a selected EUCS
certificate, the gathered
evidence are validated,
and the status is then
reported.

CAB

CSP

NCCA

A role like the CAB will have the option to
check if the gathered evidence (used in the
certificate’s life cycle management) have
not been tampered with. For this purpose,
the DLT component is invoked.

3 Continuous Certification
Evaluation:

a. For the selected EUCS
certificate/ToC, the
degree of non-
compliance is reported.

CAB

CSP

NCCA

The degree of non-compliance is further
discussed in D2.6 [14]

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 46 of 80

www.medina-project.eu

4 MEDINA Framework Components and Integration

This section describes the status of the integration activities of the MEDINA components.

Figure 20 represents an evolution of the architecture shown in D5.1 [2]. It depicts the status of
the architecture in M15. Other changes can be made during the course of the project, and they
will be reported in subsequent versions.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 47 of 80

www.medina-project.eu

Figure 20. MEDINA Architecture and data flow

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 48 of 80

www.medina-project.eu

4.1 Catalogue (block #1)

4.1.1 Catalogue of Controls & Security Schemes

The component provides the following functionalities [15]:

• Endorsement of Security Control Frameworks and related attributes: Security
requirements, categories, controls, reference TOMs, metrics, evidence types and
assurance levels.

• Provision of guidance for the (self-)assessment of the requirements.

• Filtering of the information based on some values for the attributes:
o Selection of requirements of a certain assurance level
o Selection of requirements from a certain framework
o Selection of metrics related to reference TOM

• Homogenization of the certification schemes: Provision of information about related
requirements from different frameworks especially referenced to the EUCS.

The catalogue is composed by the following components:

• Registry: The Catalogue registry will store the available list of Frameworks and the
related info for a specific CSP. This component will also include the corresponding
database. A MySQL database provides the data persistence.

• Back-end: The Catalogue backend is the core sub-component of the Catalogue. It will
perform the actual discovery of the requirements, evidence, etc. from the Catalogue
registry, considering the set of filters established by the user through the UI/ API.

• Frontend: This sub-component is the graphical user interface of the Catalogue. This
frontend will allow the user to indicate his requirements to filter and select a set of
information related to the existing frameworks, i.e., requirements of a certain assurance
level, requirements from a certain framework, metrics related to reference TOM,
references TOMs, guidance, etc.

 Implementation and Integration Status

A first version of the Catalogue has been implemented at M15. The code is uploaded to the
corresponding repository6 in the project GitLab, and a docker-compose file for deployment is
provided. A preliminary deployment was done in order to test the software and the deployment
process.

The Catalogue provides a GUI for end users, as well as a RESTful API to interact with it.

 Published APIs

The Catalogue has implemented all the functionality to access and modify the database
elements as a REST API, so the number of interfaces and endpoints is quite large. The Appendix
A contains a graphical presentation of the available APIs, that can be used by the components
interacting with the Catalogue.

The complete API is also available at the repository7 as a json file (OpenAPI definition).

6 https://git.code.tecnalia.com/medina/public/catalogue-of-controls
7 https://git.code.tecnalia.com/medina/public/catalogue-of-controls/-/blob/main/openapi.json

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/catalogue-of-controls
https://git.code.tecnalia.com/medina/public/catalogue-of-controls/-/blob/main/openapi.json

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 49 of 80

www.medina-project.eu

 Graphical interface

The Catalogue offers a GUI to access and manipulate the different entities that compose the
database. The typical screens for a CRUD (Create/Retrieve/Update/Delete) interface have been
developed.

As a sample of the interface, some screenshots are presented here. Figure 21 and Figure 22
show the list of Security Controls and TOMs, while Figure 23 shows the detail of a specific
Security Control (this last window is very similar to the one used to edit/create the entity, just
changing the fields from “read” mode to “edit” mode).

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 50 of 80

www.medina-project.eu

Figure 21. Window of list of Security Controls

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 51 of 80

www.medina-project.eu

Figure 22. List of TOMs

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 52 of 80

www.medina-project.eu

Figure 23. Details page of a Security Control

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 53 of 80

www.medina-project.eu

4.2 NLP Technique (block #2)

4.2.1 CNL Translator

The NL2CNL Translator [16] is the MEDINA component used to map EUCS NL (Natural Language)
requirements into their MEDINA CNL translation and consists of two modules: a recommender
system and a translator. It interacts with the MEDINA User Interface, with the Catalogue of
Controls and Security Schemes, with the CNL Store, and with the CNL Editor. The first module,
the recommender system, takes as input a requirement and returns as output one or more
metrics associated with it. The second module, the translator, takes as input the result obtained
by the recommendation and translates the metrics in the MEDINA CNL.

 Implementation and Integration Status

At M15 a preliminary version of the CNL Translator has been implemented and it is to be
deployed to the MEDINA Kubernetes cluster during the integration workshop8. The CNL
Translator provides a set of RESTful APIs to interact with.

 Published APIs

The Appendix A - Section: CNL Translator and DSL Mapper depicts the available APIs that can be
used by the components that interact with the NL2CNL Translator.

4.2.2 CNL Editor

The CNL Editor is the MEDINA component used to associate requirements with metrics, to
manual refine output of CNL Translator, to define Obligations and to change TargetValues for
Metrics.

The CNL Editor has a Web GUI Interface usable by a User e.g. a CSP who wants to define
Requirement and Obligations (next abbreviated in Req&Obl or R&O in diagrams) association
instances. For each Requirement instance exists an XML (Extensible Mark-up Language) file that
is initially created, with only Requirement metadata, by Metric Recommender and CNL Editor
acts on this xml file adding metrics and defining or refining obligations on these. CNL Editor can
choose Metrics from the MEDINA Catalogue.

The structure of Req&Obl xml file is fundamentally divided in two parts:

• Requirement metadata: a unique identifier, a title, the security framework, Category,
Assurance Level, Metrics List.

• Obligations (on Metrics): Obligations that express rules that must be checked
encoded in a Controlled Natural Language (CNL), based on a predefined vocabulary.

When a Req&Obl is completed and is ready to be applied/used, the user with Editor role can
invoke CNL Mapper to translate Obligations into Rego Rules.

The Req&Obl Objects are stored in a database, named CNL Store, that is used internally from
the Editor calling CNL Store specific APIs.

CNL Editor is composed by different modules:

• CNL Editor Interface: the web GUI for access CNL Editor.

• Vocabulary: a file in RDF format with .owl extension where are defined Ontology
structures and terms needed for Editor control of user changes on Obligations.

8 The MEDINA integration workshop took place during January 18th – January 20th, 2022

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 54 of 80

www.medina-project.eu

• CNL Editor REST API: APIs used by Editor and eventually from other Certification
Languages tools like CNL Translator and DSL Mapper for basic operations (see 4.2.2.2).

• CNL Store: database with Req&Obl xml files.

• Back Store Interface: REST APIs for access to CNL Store used by CNL Editor.

Figure 24 shows a picture of the internal CNL Editor Architecture and the modules listed above.

Figure 24. CNL Editor architecture (adapted from [16])

Vocabulary and CNL Editor are customised to allow the writing of obligations in the format
agreed with the other Certification Languages tools:

A ResourceType MUST MetricName TargetValueType(Operator, TargetValue)

and just as an example:

Storage MUST EncryptionAtRestEnabled Boolean(=, true)

 Implementation and Integration Status

At M15 the CNL Editor is implemented in a first preliminary version and has been partially
deployed to the MEDINA Kubernetes cluster. It provides both a GUI for end users and a set of
RESTful APIs to interact with it. It has a basic vocabulary used to start defining R&Os and to
understand how to better integrate CNL Editor into the MEDINA framework.

CNL Editor is hosted on cnl.medina.esilab.org and can be invoked with the link:

https://cnl.medina.esilab.org/DSAEditor/ [internal use only - authentication required]

At the moment it can be accessed by local users stored in an internal database MySQL, but the
idea is to integrate it with the MEDINA access system.

Req&Obl xml structure is in a finalising stage and could be extended for MEDINA needs.

 Published APIs

In the Appendix A there are the APIs published by the CNL Editor.

http://www.medina-project.eu/
https://cnl.medina.esilab.org/DSAEditor/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 55 of 80

www.medina-project.eu

4.2.3 DSL Mapper

The DSL Mapper is the MEDINA component that maps the rigorous, yet not executable MEDINA
CNL into the MEDINA Domain Specific Language (DSL), whose statements are instead machine-
readable. It interacts with the CNL Editor, with the CNL Store, and with the Orchestrator.

 Implementation and Integration Status

At M15 a preliminary version of the DSL Mapper has been implemented and is to be deployed
to the MEDINA Kubernetes cluster during the integration workshop. At this stage of the project,
the CNL Mapper has been implemented as a module of the NL2CNL Translator, since they share
common resources and libraries. Thus, the APIs provided by this component have been included
with the ones provided by the NL2CNL Translator.

 Published APIs

The APPENDIX A - Section: CNL Translator and DSL Mapper depicts the available APIs that can
be used by the components that interact with the DSL Mapper.

4.3 Risk Assessment and Optimisation Framework (block #3)

4.3.1 Risk Assessment and Optimisation Framework (RAOF) (block #3)

The Risk Assessment and Optimisation Framework (RAOF) provides a risk-based analysis for the
evaluation of non-conformities and will support the CSP in optimising of non-compliance
reduction effort. The Framework is realised with a tool/service called Self-Assessment Tool for
Risk Analysis (SATRA).

 Implementation and Integration Status

The first version of RAOF has been implemented and deployed. This version has the main focus
on implementing the model defined in D5.1 [2], to make the tool to provide the core
functionality and be able to integrate with other components. The tool provides GUI and API
ways to operate with RAOF.

The current version is fixed for EUCS-based risk assessment only. The flexibility to select a
certification scheme (which requires implementation of the functionality to connect with
Catalogue of Controls & Certification Schemes) is planned for the future. The integration with
Continuous Certification Evaluation and Automatic Certificate Life-Cycle Manager is in a
rudimentary state and only provides a simplistic functionality to ensure that the defined
workflow is executed. Implementation of this functionality is planned for M18, the due date of
D4.4 [17], dedicated to the dynamic risk assessment. The optimisation support (i.e., help in risk-
based selection of requirements to cover) is planned to be implemented during the next phase
of the project.

 Published APIs

Appendix A displays the currently available APIs for other MEDINA Components.

 Graphical interface

The RAOF provides a GUI for a user to interact with the tool directly during preparation for
certification. A screenshot of the tool is shown in D2.6 [14] .

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 56 of 80

www.medina-project.eu

4.4 Continuous Evaluation and Life Cycle Manager (block #4)

4.4.1 Continuous Certification Evaluation

The Continuous Certification Evaluation component (CCE) collects assessment results gathered
by Security Assessment components through the Orchestrator (block #7) and continuously
builds an evaluation tree representing the aggregation of assessment results to determine
compliance with the different certification elements.

Beside the assessment results that CCE receives from the Orchestrator, other required inputs
come from the Catalogue of Controls & Security Schemes (block #1). Data gathered from the
Catalogue include a database of resources present in the observed CSP’s infrastructure and the
structure of the evaluation scheme itself (metrics, requirements, controls, control groups).

Output of the CCE is consumed by the Risk Assessment and Optimisation Framework (RAOF):
CCE sends RAOF a list of all negatively evaluated resource-requirement pairs to determine
whether they represent major or minor unconformities.

 Implementation and Integration Status

In the current implementation state, the CCE completely implements the basic evaluation
aggregation (the methodology is described in D4.1 [18]). Because the integration with the
MEDINA Catalogue to obtain the real certification schema is not yet established, CCE initializes
its structure with a hard-coded sample tree. The tree is updated according to the assessment
results received through the gRPC interface.

The CCE exposes an API that serves the evaluated certification values in all parts of the
evaluation tree. The API is ready to be used by the front-end components and the RAOF.

Currently, the evaluation tree and its values are stored in-memory.

CCE source code is available on the project's GitHub repository9. A Dockerfile is available for
simple deployment.

 Published APIs

Appendix A displays the currently REST APIs published by Continuous Certification Evaluation.

Data is returned in the format of JSON objects.

The interface for receiving assessment result is implemented using gRPC. Definition of the RPC
service can be found in the corresponding Protocol Buffer source file10.

4.4.2 Life Cycle Manager

The Life-Cycle Manager component implements a state machine that tracks a certificate’s state.
The states it defines are based on how the EUCS defines them, e.g., new, continued, or
suspended (see WF6 for additional information). As such, it takes inputs from the risk
assessment and optimization framework to process them and translate them into the
appropriate certificate state – possible after manual review by an auditor.

9 https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation/
10 https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation/-
/tree/main/src/main/proto

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation/
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation/-/tree/main/src/main/proto
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation/-/tree/main/src/main/proto

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 57 of 80

www.medina-project.eu

 Implementation and Integration Status

The Life-Cycle Manager currently implements a state machine, a certificate model based on the
ISO/IEC 17021 standard (”Requirements for bodies providing audit and certification of
management systems”), and several APIs to interact with it. It also includes test cases, as well as
build and deployment configurations for Docker and Kubernetes. It is therefore in a state where
it can be deployed, and its communication with the RAOF is currently being tested. Note that it
does not further forward data to other components.

 Published APIs

Appendix A displays the currently REST APIs published by the Life-Cycle Manager.

4.5 Organizational Evidence Gathering and Processing (block #5)

4.6 Orchestrator and Databases (block #6)

4.6.1 Orchestrator and Databases

The Orchestrator [13] [19] is the central management component in the MEDINA framework.
For example, it receives assessment results from the Security Assessment, and forwards them
to the Trustworthiness System and to the Continuous Evaluation Component.

 Implementation and Integration Status

The Orchestrator mainly consists of APIs; their implementation status is described below. The
Orchestrator does furthermore include the necessary configuration files for building Docker
images and deploying them in a Kubernetes cluster.

By default, the Orchestrator stores all data to be stored in an ephemeral in-memory storage. A
PostgreSQL database, however, can be used as well, which only requires to configure the
respective connection parameters.

 Published APIs

The Orchestrator implements many APIs, since it is connected to several components. Please
see the Appendix A for an overview.

4.6.2 Trustworthiness System

The trustworthiness system [13] provides a common service of trustworthy records to be able
to carry out automated inspections if needed guaranteeing information integrity.

It is composed of five elements:

• Blockchain network where the information will be saved guaranteeing its integrity due
to the security features of the Blockchain technology.

• Smart Contracts with the trustworthiness management system functionalities:
registration of data in the Blockchain (evidence and assessment results) to be verified,
as well as the use of this previously registered data for integrity verification.

• Blockchain client, required to interact with the Blockchain and the Smart Contracts
deployed on the Blockchain.

• Blockchain viewer, for receiving, normalizing, and categorizing the information
recorded on the Blockchain to be consumed by users in a user-friendly way being
Blockchain technology transparent for them.

• Blockchain viewer client, which provides a graphical interface to consume the
information gathered by the Blockchain viewer.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 58 of 80

www.medina-project.eu

 Implementation and Integration Status

A first version of the Trustworthiness system has been implemented and deployed for validation
purposes.

• The Blockchain network, the Smart Contracts, the Blockchain viewer and the Blockchain
viewer client are provided as a service from TECNALIA premises.

• An instance of the Blockchain client is provided as a service from TECNALIA premises for
validation purposes. A docker image has been generated to be deployed at the
orchestrator premises, which is the only MEDINA component interacting with the
trustworthiness system.

 Published APIs

Appendix A describes the available API that can be used by the components interacting with the
Blockchain client from the Trustworthiness System. The specific details are available at:
https://medina.bclab.dev/doc [internal use only - authentication required].

 Graphical interface

The trustworthiness system includes a graphical interface accessible at:
https://medina.bclab.dev [internal use only - authentication required]. The considered
dashboards are shown in Figure 25 and Figure 26.

http://www.medina-project.eu/
https://medina.bclab.dev/doc
https://medina.bclab.dev/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 59 of 80

www.medina-project.eu

Figure 25. Trustworthiness System General Dashboard

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 60 of 80

www.medina-project.eu

Figure 26. Trustworthiness System Specific Dashboard for each orchestrator

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 61 of 80

www.medina-project.eu

4.7 Evidence Collection and Security Assessment (block #7)

Evidence collection represents the starting point of the evidence flow in the MEDINA framework.
Different components responsible for evidence collection discover cloud resources, measure
their properties, and forward results (Evidence) to the Security Assessment component.

4.7.1 Evidence Collection

 Evidence Collection (Clouditor Discovery)

4.7.1.1.1 Implementation and Integration Status

Currently, the Evidence Collector [13] [19] can discover resources in different cloud systems
(Microsoft Azure, Amazon Web Services), and for different services in these systems, including
computing, storage, and networking services.

4.7.1.1.2 Published APIs

Appendix A displays the currently REST APIs published by the Evidence Collector.

 Evidence Collection from Wazuh and VAT

Wazuh [13] [19] is an open-source security monitoring tool for threat detection, integrity
monitoring, incident response and basic compliance monitoring. In MEDINA, Wazuh is used to
satisfy and verify security controls related to malware protection, logging, threat analytics and
automatic monitoring. Vulnerability Assessment Tools (VAT) [13] [19] is a vulnerability scanning
and detection framework that includes several vulnerability scanning tools. It can be configured
to periodically scan the CSP’s infrastructure and detect vulnerabilities and potential threats. VAT
can be used to satisfy or gather evidence for controls related to vulnerability detection, use of
encrypted communication, detection of new devices, etc.

Both Wazuh and Vulnerability Assessment Tools are integrated with other MEDINA components
through a common component that collects evidence from both tools: Wazuh & VAT Evidence
Collector, which forwards the gathered evidence to the Security Assessment component of
Clouditor. The architecture of these components is described in further detail in D3.4 [19].

4.7.1.2.1 Implementation and Integration Status

Deployment scripts are implemented to setup a demo environment including Wazuh, the
Evidence Collector component, and a sample infrastructure to gather evidence from. The
Evidence Collector currently implements gathering evidence from Wazuh for a limited number
of metrics.

The basic integration with Clouditor’s Security Assessment is implemented, sending evidence
through the gRPC protocol. Other types of communication between the Wazuh & VAT Evidence
collector and Clouditor include component registration and configuration instructions and are
currently being developed and tested.

4.7.1.2.2 Published APIs

Wazuh & VAT Evidence Collector is integrated with Clouditor through gRPC. No other APIs are
exposed.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 62 of 80

www.medina-project.eu

 Evidence Collection (Vulnerability Assessment Tool)

A further type of evidence collection is implemented in Codyze11 [13] [19] which is a static code
analyse that can verify security policies in source code. Thus, it complements the other evidence
collection tools.

4.7.1.1.1 Implementation and Integration Status

The current design foresees Codyze as a tool that both collects evidence and assesses them. It
then forwards the assessment results directly to the Orchestrator. To that end, a wrapper for
Codyze has been implemented which constructs assessment results according to the MEDINA
data model and sends them to the Orchestrator.

4.7.1.1.2 Published APIs

Codyze is integrated with the Orchestrator via the existing REST interfaces. No other APIs are
exposed.

4.7.2 Security Assessment (Clouditor)

The Security Assessment [13] [19] components assess the incoming evidence to create
Assessment Results and send them to the Orchestrator. The main Security Assessment
component provided by MEDINA is described here and implemented as part of Clouditor. If
required by special evidence collection tools, other security assessment components (provided
by CSPs) can be used as well.

 Implementation and Integration Status

The Security Assessment is implemented with an integrated policy engine, the Open Policy Agent
(OPA)12, which assesses incoming evidence according to pre-defined metrics.

The Evidence Collector and the Security Assessment are integrated via gRPC calls and include
the necessary configuration files for building Docker images and deploying them in a Kubernetes
cluster.

 Published APIs

Appendix A displays the currently APIs published by the Security Assessment.

4.7.3 SSI-based certificate management System

The SSI-based certificate management system [18] provides the necessary tools for digitalizing
the conformity assessment results report based on the information gathered by MEDINA
framework. It is an additional component to the general MEDINA framework.

In this sense, it is formed by the required Blockchain-based and the necessary services for the
CAB, CSP and a potential CSP client:

The CAB needs the following services:

• A service for listening to the events from the MEDINA framework and know when to
issue/update/revoke a certificate.

• A service for issuing, updating and/or revoking the public and private attestations
(verifiable credentials) about the CSP based on the input from the MEDINA framework.

11 https://github.com/Fraunhofer-AISEC/codyze
12 https://www.openpolicyagent.org/

http://www.medina-project.eu/
https://github.com/Fraunhofer-AISEC/codyze
https://www.openpolicyagent.org/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 63 of 80

www.medina-project.eu

• A service for automatically saving the public attestations in a public registry.

The CSP needs the following services:

• A service for receiving public and private attestations (verifiable credentials) from the
CAB and locally save them.

• A service for generating verifiable proofs to share with their clients based on the
verifiable credentials from the CAB.

The CSP clients need the following services:

• A service for asking the CSP for specific proofs (both associated to private or public
attestations).

• A service for verifying signatures from the verifiable proofs.

 Implementation and Integration Status

At the time of writing this deliverable, it is still under development.

 Published APIs

At the time of writing this deliverable, it is still under development.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 64 of 80

www.medina-project.eu

5 MEDINA User Interface (block #8)

This section describes the MEDINA User Interface while the previous section (Chapter 4) is
dedicated to components’ integration interfaces only.

5.1 Implementation

5.1.1 Functional description

The goal of the tool is to provide a primary point of access for MEDINA Framework: it integrates
with existing authentication and guides users based on their authorization level to specific
components UIs.

 Fitting into overall MEDINA Architecture

GUIs in the MEDINA Framework are separated. Final users need a leading thread that makes it
easier to navigate through content.

5.1.2 Technical description

In order to facilitate independent team frontend development of functionalities, the
architecture chosen for this implementation is “micro-frontends”. [20] This kind of architecture
allows us to embed into a main frontend component (Integrated UI) any other UI in the
framework independently of the underlying technology.

 Prototype architecture

The following diagram describes a simplified architecture from an Integrated UI perspective.

Figure 27. MEDINA UI Architecture

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 65 of 80

www.medina-project.eu

 Description of Components

5.1.2.2.1 Authentication and authorization

Authentication is managed by the MEDINA Catalogue’s Keycloak13, which is a standalone
component based on an open-source solution. It provides a UI and, with due initial
configuration, advanced authentication and authorization capabilities, including SSO, Identity
Brokerage and role mapping. Every component implements a “Keycloak adapter” which acts as
an HTTP interceptor and checks on resources requests whether:

• The client requesting user authentication is a registered client

• The user is authenticated, if not it redirects to the login page

• The user is authorized for the requested resource based on its role on Keycloak
configuration, if not it redirects to an appropriate error page

Once a user is authenticated, a JWT is provided which contains user information and roles. It
allows us to implement in a safe way features like conditional formatting and routing based on
user’s role. For example, a CSP wouldn’t see what concerns an Auditor accessing the same panel.

5.1.2.2.2 Integration of components

The following list comprises the components we integrate at the moment and the chosen
strategy. It will be subject of further evolution in next iteration processes. Workflows involving
reported components can be found in chapter 3 of this document. Current integration status
has a technical enablement only purpose.

Table 10. Integration strategy for the different MEDINA components

Component name Integration strategy

Metrics and Measures Catalogue Keycloack REST API

Metrics and Measures Catalogue REST API & Iframe

NL2CNL Translator REST API

Orchestrator*

*This integration has been set up, but will be finalized in
the next phase

REST API

 Technical specifications

The prototype is developed using Angular 12, a modern typescript framework that allows us to
build high-performance, scalable, component-based single page web applications. [21] The
framework is enriched with Angular Material 2 library, a set of high quality animated responsive
components that follow Material Design UI specifications. [22] [23] The application runs on a
Nginx web server. [8]

Integration of micro-frontends is obtained through iframes and REST API. In particular, since
REST APIs are following OpenAPI specifications, we are able to generate and update
automatically referred services in the application, with great benefits in regards to productivity

13 https://www.keycloak.org/

http://www.medina-project.eu/
https://www.keycloak.org/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 66 of 80

www.medina-project.eu

and bug-free implementation. [24] Ngx-charts is used to render animated graphical content (e.g.
Histograms). [25]

Web application source code is packaged as ES flattened module and added to a Nginx:alpine
image, in order to containerize it.

 User Interface structure

In this section we present current UIs interactions. It will be both expanded and refined in the
next iteration processes.

5.1.2.4.1 Login, authentication and iframe embedding

Unauthenticated users that try to access Integrated-UI are redirected to keycloak’s login page.

Figure 28. Keycloak Login Page

After inserting correct credentials, users are redirect to the page that the request was originated
from.

The UI is composed of a fixed top navigation bar and a dynamic lateral navigation bar, so that
the latter can be hidden or shown depending on screen size. Main content is rendered inside
the container by Angular Routing Component, depending on the requested endpoint. For
example, path /frame renders an iframe component which embeds a different application.

In the following example Integrated-UI embeds the Catalogue dashboard. As intended, the
authentication is received correctly by the embedded component, without the need to log-in
again.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 67 of 80

www.medina-project.eu

Figure 29. Full Screen Frame Embedding - Catalogue and Integrated UI

Figure 30. Responsive IFrame Embedding - Catalogue and Integrated UI

5.1.2.4.2 Conditional formatting and guard

A Guard component is implemented which allows to define under what conditions the
component can be rendered by the router. Basic set-up requires authentication only, but roles
can be defined as parameters to implement authorization. Authorization can be implemented
taking advantage of conditional formatting too, allowing us to hide/change certain features
based on user role.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 68 of 80

www.medina-project.eu

Figure 31. Example: Frame button is hidden in navigation bar for User without role ADMIN and routing is
inhibited

5.1.2.4.3 Services

For integration testing purposes, a set of buttons have been implemented in home component
that simulate a REST GET call to the following endpoints:

Table 11. Integration tested endpoints

Component name Endpoint

Metrics and
Measures
Catalogue

https://catalogue-
dev.k8s.medina.esilab.org/services/cocbackend/api/security-
controls/count [internal use only - authentication required]

NL2CNL Translator https://nl2cnl-translator-dev.k8s.medina.esilab.org/ids [internal use
only - authentication required]

5.1.3 Delivery and usage

 Package information

The package has the following structure:

Table 12. Package structure

Path Description

/conf Contains specifications that are used by docker when
generating an image to configure Nginx web server

/dist Contains the result of the build

/kubernetes Contains kubernetes configuration files for deployment

/node_modules Contains installed npm modules

http://www.medina-project.eu/
https://catalogue-dev.k8s.medina.esilab.org/services/cocbackend/api/security-controls/count
https://catalogue-dev.k8s.medina.esilab.org/services/cocbackend/api/security-controls/count
https://catalogue-dev.k8s.medina.esilab.org/services/cocbackend/api/security-controls/count
https://nl2cnl-translator-dev.k8s.medina.esilab.org/ids

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 69 of 80

www.medina-project.eu

/src/Dockerfile This file contains specifications that are used in order to
build a docker image

/src/assets/config/config.json Contains application configuration which can be modified
at runtime

/src/environments/ Contains static configurations based on environment (dev
or prod)

/src/app/services Contains services that are generated via OpenAPI specs in
order to integrate with other applications in Medina
Framework

/src/app/ Contains application main components

 Download

https://git.code.tecnalia.com/medina/wp5/task_5.3/integrated-ui [internal use only -
authentication required].

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/wp5/task_5.3/integrated-ui

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 70 of 80

www.medina-project.eu

6 Conclusions

The document covers the objectives of the Task 5.3 at M15. On the one hand, the environment
has been defined and setup to support CI/CD approach, that have to be further optimized. On
the other, integration activities are initiated, and a webinar and a workshop are organized in
order to do it appropriately according to the methodology defined in this deliverable.

The Test Bed environment has been realized on a three-node Kubernetes Cluster that
orchestrates all components in the MEDINA Framework. All the components on the Test Bed
environment are containerized and communicate each other with RESTful API over HTTPS
secure protocol. A Kubernetes Dashboard, that is a web-based User Interface, is created to help
to deploy containerized applications, and manage the cluster resources.

During the workshop the actual environment was illustrated in order to do the integration
activities along with the partners: following the methodology all components have been
deployed in the MEDINA cluster, meanwhile through the webinar are transmitted to the
partners the main notions on Kubernetes and Docker.

Next activities will foresee the implementation of the pipelines that automatize all deployment
process. A new version of the components in the MEDINA Framework will be provided and in
addition, the components of the block five will be added. Also, creating and instantiating real-
world scenarios based on the generic workflows are goals to be achieved in WP6. Lastly, a
workshop on CI/CD is planned and others will be held if necessary.

A second version of this document will be delivered at M27, containing updated versions of the
components in MEDINA Framework and the setup of the build, deploy and security pipelines.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 71 of 80

www.medina-project.eu

7 References

[1] “K8s,” [Online]. Available: https://kubernetes.io/docs/home/.

[2] MEDINA Consortium, “D5.1 MEDINA Requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy,” 2021.

[3] “RKE,” [Online]. Available: https://rancher.com/docs/rke/latest/en/os/.

[4] “Rook/Ceph,” [Online]. Available: https://rook.io/docs/rook/v1.8/.

[5] “METALLB,” [Online]. Available: https://metallb.universe.tf/.

[6] “SSH,” [Online]. Available: https://www.ssh.com/academy/ssh/protocol.

[7] “JFrog Artifactory,” [Online]. Available: https://jfrog.com/artifactory/.

[8] “Nginx,” [Online]. Available: https://www.nginx.com/.

[9] Linux Foundation, “Helm package manager,” [Online]. Available: https://helm.sh/.

[10] Linux Foundation, “Cert manager,” [Online]. Available: https://cert-manager.io/docs/.

[11] “Apache Maven Project,” [Online]. Available: https://maven.apache.org/.

[12] “Codyze,” [Online]. Available: https://www.codyze.io/?ref=https://githubhelp.com.

[13] MEDINA Consortium;, “D3.1-Tools and techniques for the management of trustworthy
evidence-v1,” 2021.

[14] MEDINA Consortium, “D2.6 - Risk-based techniques and tools for Cloud Security
Certification-v1,” 2022.

[15] MEDINA Consortium;, “D2.1 – Continuously certifiable technical and organizational
measures and catalogue of cloud security metrics-v1,” 2021.

[16] MEDINA Consortium, “D2.3 Specification of the Cloud Security Certification Language-v1,”
2021.

[17] MEDINA Consortium, “D4.4 - Methodology and tools for risk-based assessment and
security control reconfiguration-v1,” 2022.

[18] MEDINA Consortium;, “D4.1 Tools and Techniques for the Management and Evaluation of
Cloud Security Certifications,” 2021.

[19] MEDINA Consortium;, “D3.4-Tools and techniques for collecting evidence of technical and
organisational measures-v1,” 2021.

[20] L. M. D. T. Severi Peltonen, “Motivations, benefits, and issues for adopting Micro-
Frontends: A Multivocal Literature Review,” DAZN, London, United Kingdom and Tampere
University, Tampere, Finland, 24 03 2021. [Online]. Available:

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 72 of 80

www.medina-project.eu

https://www.sciencedirect.com/science/article/pii/S0950584921000549. [Accessed 01 11
2021].

[21] Google, “Angular,” [Online]. Available: https://angular.io/.

[22] Google, “Material Design,” [Online]. Available: https://material.io/design.

[23] Google, “Angular Material,” [Online]. Available: https://material.angular.io/.

[24] Linux Foundation, “OpenAPI,” [Online]. Available: https://www.openapis.org/.

[25] Swimlane, “Ngx-charts,” [Online]. Available: https://swimlane.github.io/ngx-charts.

[26] S. Madsen, “How to Prioritize with the MoSCoW Technique,” October 2017. [Online].
Available: https://www.projectmanager.com/training/prioritize-moscow-technique .
[Accessed March 2018].

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 73 of 80

www.medina-project.eu

APPENDIX A: Published APIs

Section: Catalogue of Controls & Security Schemes

The following screenshot series show the list of available APIs that can be used by the
components interacting with the Catalogue.

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 74 of 80

www.medina-project.eu

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 75 of 80

www.medina-project.eu

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 76 of 80

www.medina-project.eu

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 77 of 80

www.medina-project.eu

Section: CNL Translator and DSL Mapper

Section: CNL Editor

/copyreq&obltemp/{req&obltempid}/user/{userid} Create a Req&Obl from Req&Obl XML
Template

/createreq&obl store a new Req&Obl in the CNL Store. The API returns a unique Req&Obl
identifier

/deletereq&obl/{req&oblid} delete a Req&Obl, by its identifier

/fetchdatapolicy/{req&oblid} Retrieve Req&Obl DSL part (Obligations) from the DSL Mapper

/fetchusagepolicy/{req&oblid} Retrieve Req&Obl DSL part (Obligations) from the DSL Mapper

/getreq&obl/{req&oblid} retrieve a Req&Obl by its identifier

/getreq&obldetails/{userid} Fetch the details of the Req&Obl

/getuserreq&oblslist/{username} List Available Req&Obls

/mapreq&obl/{req&oblid} Send Req&Obl to DSL Mapper

/updatereq&obl modify the content of an already existing Req&Obl, by its identifier

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 78 of 80

www.medina-project.eu

Section: Risk Assessment and Optimisation Framework

Section: Continuous Evaluation

• /tree, GET: Returns the complete structure and values of the currently-evaluated
certification tree.

• /resourcenodes, GET: Returns an array of all resource-requirement pairs (fulfilment of a
specific requirement by a specific resource) with their evaluated values. Additional parameter
“conformant” can be used to return only positively or only negatively evaluated nodes.

Section: Life Cycle Manager

- /new, POST: Creates a new certificate that is initialized with the state new
- /evaluation, POST: Processes a new evaluation result which can be positive or negative;

the state of the respective certificate is then changed accordingly, e.g. to continued or
suspended

- /update, POST: Processes a request to update the certificate’s information, e.g. the
scope (without changing its compliance state)

- /remediation, POST: Procesess a remediative evaluation result that changes a
suspended certificate back to continued

- /statechange, GET: Provides information about the last state change of a certificate

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 79 of 80

www.medina-project.eu

Section: Orchestrator

http://www.medina-project.eu/

D5.3 – MEDINA integrated solution-v1 Version 1.1 – Final. Date: 30.09.2022

© MEDINA Consortium Contract No. GA 952633 Page 80 of 80

www.medina-project.eu

Section: Trustworthiness System

Section: Evidence Collection (Cloud Discovery)

- /v1/discovery/start, POST: Starts discovering the cloud resources
- /v1/discovery/query, POST: Lists all evidences collected in the last run

Section: Security Assessment (Clouditor)

- /v1/assessment/evidences, POST: Assesses the evidence sent by the Evidence Collector
- /v1/assessment/results, GET: Lists all assessment results

http://www.medina-project.eu/

	Table of contents
	List of tables
	List of figures
	Terms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 MEDINA Test Bed and Secure DevOps Infrastructure
	2.1 Test Bed Environment
	2.1.1 Hardware Infrastructure
	2.1.2 Operating Environment
	2.1.2.1 Kubernetes Installation and Configuration
	2.1.2.2 Kubernetes Dashboard

	2.1.3 Components Integration Methodology
	2.1.3.1 Docker and Kubernetes Webinar with Sample Component Integration example
	2.1.3.2 First integration Workshop

	2.2 Design of the CI/CD Solution

	3 Generic Architectural Workflows
	3.1 WF1 - Preparation of Target of Certification (ToC)
	3.1.1 Related Architectural Components
	3.1.2 Workflow

	3.2 WF2 - Preparation of MEDINA Components
	3.2.1 Related Architectural Components
	3.2.2 Workflow

	3.3 WF3 - EUCS deployment on ToC
	3.3.1 Related Architectural Components
	3.3.2 Workflow

	3.4 WF4 - EUCS Preparedness – ToC Self-Assessment
	3.4.1 Related Architectural Components
	3.4.2 Workflow

	3.5 WF5 - EUCS Compliance Assessment
	3.5.1 Related Architectural Components
	3.5.2 Workflow

	3.6 WF6 - EUCS – Maintenance of ToC certificate
	3.6.1 Related Architectural Components
	3.6.2 Workflow

	3.7 WF7 - EUCS –Report on ToC Certificate
	3.7.1 Related Architectural Components
	3.7.2 Workflow

	4 MEDINA Framework Components and Integration
	4.1 Catalogue (block #1)
	4.1.1 Catalogue of Controls & Security Schemes
	4.1.1.1 Implementation and Integration Status
	4.1.1.2 Published APIs
	4.1.1.3 Graphical interface

	4.2 NLP Technique (block #2)
	4.2.1 CNL Translator
	4.2.1.1 Implementation and Integration Status
	4.2.1.1 Published APIs

	4.2.2 CNL Editor
	4.2.2.1 Implementation and Integration Status
	4.2.2.2 Published APIs

	4.2.3 DSL Mapper
	4.2.3.1 Implementation and Integration Status
	4.2.3.1 Published APIs

	4.3 Risk Assessment and Optimisation Framework (block #3)
	4.3.1 Risk Assessment and Optimisation Framework (RAOF) (block #3)
	4.3.1.1 Implementation and Integration Status
	4.3.1.2 Published APIs
	4.3.1.3 Graphical interface

	4.4 Continuous Evaluation and Life Cycle Manager (block #4)
	4.4.1 Continuous Certification Evaluation
	4.4.1.1 Implementation and Integration Status
	4.4.1.2 Published APIs

	4.4.2 Life Cycle Manager
	4.4.2.1 Implementation and Integration Status
	4.4.2.2 Published APIs

	4.5 Organizational Evidence Gathering and Processing (block #5)
	4.6 Orchestrator and Databases (block #6)
	4.6.1 Orchestrator and Databases
	4.6.1.1 Implementation and Integration Status
	4.6.1.2 Published APIs

	4.6.2 Trustworthiness System
	4.6.2.1 Implementation and Integration Status
	4.6.2.2 Published APIs
	4.6.2.3 Graphical interface

	4.7 Evidence Collection and Security Assessment (block #7)
	4.7.1 Evidence Collection
	4.7.1.1 Evidence Collection (Clouditor Discovery)
	4.7.1.1.1 Implementation and Integration Status
	4.7.1.1.2 Published APIs

	4.7.1.2 Evidence Collection from Wazuh and VAT
	4.7.1.2.1 Implementation and Integration Status
	4.7.1.2.2 Published APIs

	4.7.1.1 Evidence Collection (Vulnerability Assessment Tool)
	4.7.1.1.1 Implementation and Integration Status
	4.7.1.1.2 Published APIs

	4.7.2 Security Assessment (Clouditor)
	4.7.2.1 Implementation and Integration Status
	4.7.2.2 Published APIs

	4.7.3 SSI-based certificate management System
	4.7.3.1 Implementation and Integration Status
	4.7.3.2 Published APIs

	5 MEDINA User Interface (block #8)
	5.1 Implementation
	5.1.1 Functional description
	5.1.1.1 Fitting into overall MEDINA Architecture

	5.1.2 Technical description
	5.1.2.1 Prototype architecture
	5.1.2.2 Description of Components
	5.1.2.2.1 Authentication and authorization
	5.1.2.2.2 Integration of components

	5.1.2.3 Technical specifications
	5.1.2.4 User Interface structure
	5.1.2.4.1 Login, authentication and iframe embedding
	5.1.2.4.2 Conditional formatting and guard
	5.1.2.4.3 Services

	5.1.3 Delivery and usage
	5.1.3.1 Package information
	5.1.3.2 Download

	6 Conclusions
	7 References
	APPENDIX A: Published APIs
	Section: Catalogue of Controls & Security Schemes
	Section: CNL Translator and DSL Mapper
	Section: CNL Editor
	Section: Risk Assessment and Optimisation Framework
	Section: Continuous Evaluation
	Section: Life Cycle Manager
	Section: Orchestrator
	Section: Trustworthiness System
	Section: Evidence Collection (Cloud Discovery)
	Section: Security Assessment (Clouditor)

