

Deliverable D5.4

MEDINA integrated solution-v2

Editor(s): Debora Benedetto, Claudio Caimi, Ahmed Ibrahim, Claudia
Zago

Responsible Partner: Hewlett Packard Italiana, SRL (HPE)

Status-Version: Final – v1.0

Date: 31.01.2023

Distribution level (CO, PU): PU

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 2 of 104

www.medina-project.eu

Project Number: 952633

Project Title: MEDINA

Title of Deliverable: MEDINA integrated solution-v2

Due Date of Delivery to the EC 31.01.2023

Workpackage responsible for the
Deliverable:

WP5 - MEDINA Framework Integration

Editor(s):
Debora Benedetto, Claudio Caimi, Ahmed Ibrahim,
Claudia Zago (HPE)

Contributor(s): TECNALIA, Bosch, CNR, Fabasoft, FhG, XLAB

Reviewer(s):
Juncal Alonso (TECNALIA)
Cristina Martinez (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP4, WP6

Abstract: This deliverable will integrate all the components

developed by the other technical WPs in the MEDINA
Framework. Different versions of the solution will be
provided following an incremental approach. The first
version will be an initial prototype with the core
functionalities implemented (at M15); the second
version (at M27) will augment these functionalities
taking into consideration the feedback coming for the
use cases and the final version (M33) will include
corrections and feedback coming from the
implementation of the use cases. The software will be
accompanied by a Technical Specification Report. This
set of deliverables is the result of Task 5.3.

Keyword List: Architecture, Workflows, Components Integration,
CI/CD, Integrated UI

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 3 of 104

www.medina-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 10.11.2022 Initial TOC HPE, HPE CDS

v0.2 20.11.2022 Added Test Bed environment HPE, HPE CDS

v0.3 28.11.2022 Added Evidence Collection FhG

v0.4 29.11.2022 Added Hardware Infrastructure TECNALIA

v0.5 29.11.2022 Added Catalogue of Controls and
Metrics

TECNALIA

v0.6 30.11.2022 Added RAOF section CNR

v0.7 30.11.2022 Added NL2CNL Translator and DSL
Mapper

CNR

v0.8 30.11.2022 Added details for organizational
evidence gathering

Fabasoft

v0.9 30.11.2022 Added details for NL2CNL Translator Michela Fazzolari CNR

v0.91 03.12.2022 Added Life Cycle Manager and
Orchestrator and Databases

FhG

v0.92 06.12.2022 Added Wazuh, VAT, CCE XLAB

v0.93 06.12.2022 Added SSI and Trustworthiness System TECNALIA

v0.94 07.12.2022 Added Workflows and Workflows
Appendix

TECNALIA, BOSCH

v0.95 16.12.2022 Added Integrated UI, CNL Editor and
CI/CD solution

HPE, HPE CDS

v0.96 10.01.2023 Merged all the contribution, fixed
references and figures

HPE, HPE CDS

v0.97 12.01.2023 Increase RAOF and block#4 CNR, FhG

v0.98 25.01.2023 Internal Review TECNALIA

v0.99 30.01.2023 Addressed all comments from internal
review

HPE, HPE CDS

v1.0 31.01.2023 Ready for submission Cristina Martínez
(TECNALIA)

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 4 of 104

www.medina-project.eu

Table of contents

Terms and Abbreviations .. 9

Executive Summary ... 11

1 Introduction ... 12

1.1 About this deliverable .. 12

1.2 Document structure ... 13

1.3 Updates from D5.3 ... 13

2 MEDINA Test Bed and Secure DevOps infrastructure ... 15

2.1 Test Bed environment .. 15

2.1.1 Hardware Infrastructure ... 15

2.1.2 Components Integration Methodology .. 16

2.2 Implementation of the CI/CD solution ... 22

2.2.1 Operating Environment ... 22

2.2.2 Pipelines .. 25

3 Generic Architectural Workflows ... 33

3.1 Generic MEDINA Workflows .. 33

3.2 Roles and Levels of Visibility ... 34

3.3 Authorization Model for MEDINA Workflows .. 35

3.3.1 WF1 - Preparation of Target of Certification (ToC) ... 35

3.3.2 WF2 - Preparation of MEDINA Components ... 35

3.3.3 WF3 - EUCS deployment on ToC ... 36

3.3.4 WF4 - EUCS Preparedness – ToC Self-Assessment .. 37

3.3.5 WF5 - EUCS Compliance Assessment .. 38

3.3.6 WF6 - EUCS – Maintenance of ToC certificate .. 38

3.3.7 WF7 - EUCS –Report on ToC Certificate .. 39

4 MEDINA Framework components and integration .. 40

4.1 Catalogue (block #1) ... 42

4.1.1 Catalogue of Controls and Metrics .. 42

4.2 Certification Metrics and Language (block #2) ... 46

4.2.1 NL2CNL Translator ... 46

4.2.2 CNL Editor .. 47

4.2.3 DSL Mapper ... 49

4.3 Risk Assessment and Optimisation Framework (block #3) .. 50

4.3.1 Risk Assessment and Optimisation Framework (RAOF) 50

4.4 Continuous Evaluation and Certification Life-Cycle (block #4) 54

4.4.1 Continuous Certification Evaluation .. 54

4.4.2 Automated Certificate Life Cycle Manager ... 56

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 5 of 104

www.medina-project.eu

4.4.3 Automated Self-Sovereign Identity-based certificates management (SSI) 57

4.5 Organizational Evidence Gathering and Processing (block #5) 59

4.5.1 Organizational Evidence Gathering and Processing .. 59

4.6 Orchestrator and Databases (block #6) .. 61

4.6.1 Orchestrator and Databases ... 61

4.6.2 Trustworthiness System .. 61

4.7 Evidence Collection and Security Assessment (block #7) .. 64

4.7.1 Evidence Collection ... 64

5 MEDINA Integrated User Interface (block #8) ... 67

5.1 Implementation .. 67

5.1.1 Functional description ... 67

5.1.2 Technical description .. 67

5.1.3 Delivery and usage .. 71

6 Conclusions .. 72

7 References ... 73

8 APPENDIX A: Operating Environment .. 75

8.1 Kubernetes Installation and Configuration .. 75

8.2 Kubernetes Dashboard ... 77

9 APPENDIX B: Docker and Kubernetes Webinar with Sample Component Integration example
 79

10 APPENDIX C: First integration workshop ... 81

11 APPENDIX D: Generic Architectural Workflows ... 84

11.1 WF1 - Preparation of Target of Certification (ToC) .. 84

11.1.1 Related Architectural Components ... 84

11.1.2 Workflow ... 84

11.2 WF2 - Preparation of MEDINA Components .. 84

11.2.1 Related Architectural Components ... 84

11.2.2 Workflow ... 85

11.3 WF3 - EUCS deployment on ToC .. 86

11.3.1 Related Architectural Components ... 86

11.3.2 Workflow ... 86

11.4 WF4 - EUCS Preparedness – ToC Self-Assessment ... 87

11.4.1 Related Architectural Components ... 87

11.4.2 Workflow ... 87

11.5 WF5 - EUCS Compliance Assessment ... 88

11.5.1 Related Architectural Components ... 88

11.5.2 Workflow ... 88

11.6 WF6 - EUCS – Maintenance of ToC certificate ... 90

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 6 of 104

www.medina-project.eu

11.6.1 Related Architectural Components ... 90

11.6.2 Workflow ... 90

11.7 WF7 - EUCS –Report on ToC Certificate ... 92

11.7.1 Related Architectural Components ... 92

11.7.2 Workflow ... 92

12 APPENDIX E: Published APIs ... 94

Component: Catalogue of Controls and Metrics ... 94

Component: NL2CNL Translator and DSL Mapper ... 98

Component: CNL Editor ... 98

Component: Risk Assessment and Optimisation Framework .. 98

Component: Continuous Certification Evaluation ... 99

Component: Life Cycle Manager .. 100

Component: Automated Self-Sovereign Identity-based certificates management (SSI)..... 100

Component: Assessment and Management of Organizational Evidence – AMOE 101

Component: Orchestrator .. 102

Component: Trustworthiness System .. 103

Component: Evidence Collection (Cloud Discovery) .. 104

Component: Security Assessment (Clouditor) ... 104

 List of tables

TABLE 1. OVERVIEW OF DELIVERABLE UPDATES WITH RESPECT TO D5.3 .. 14
TABLE 2. STATUS OF POINT-TO-POINT CONNECTIONS .. 21
TABLE 3. GENERIC MEDINA WORKFLOWS .. 33
TABLE 4. MEDINA ROLES AND LEVELS OF VISIBILITY ... 34
TABLE 5. WORKFLOW 1 .. 35
TABLE 6. RBAC MODEL FOR WORKFLOW 1 ... 35
TABLE 7. WORKFLOW 2 .. 36
TABLE 8. RBAC MODEL FOR WORKFLOW 2 ... 36
TABLE 9. WORKFLOW 3 .. 36
TABLE 10. RBAC MODEL FOR WORKFLOW 3 ... 36
TABLE 11. WORKFLOW 4 .. 37
TABLE 12. RBAC MODEL FOR WORKFLOW 4 ... 37
TABLE 13. WORKFLOW 5 .. 38
TABLE 14. RBAC MODEL FOR WORKFLOW 5 ... 38
TABLE 15. WORKFLOW 7 .. 39
TABLE 16. RBAC MODEL FOR WORKFLOW 7 ... 39
TABLE 17. INTEGRATION STRATEGY FOR THE DIFFERENT MEDINA COMPONENTS 69
TABLE 18. PACKAGE STRUCTURE .. 71
TABLE 19. POINT TO POINT COMMUNICATION TESTS ... 83
TABLE 20. WF1 DESCRIPTION .. 84
TABLE 21. WF2 DESCRIPTION .. 85
TABLE 22. WF3 DESCRIPTION .. 86

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 7 of 104

www.medina-project.eu

TABLE 23. WF4 DESCRIPTION .. 87
TABLE 24. WF5 DESCRIPTION .. 88
TABLE 25. WF6 DESCRIPTION .. 91
TABLE 26. WF7 DESCRIPTION .. 92

List of figures

FIGURE 1. KUBERNETES CLUSTER ON MEDINA INFRASTRUCTURE .. 16
FIGURE 2. TECHNICAL WEBINARS ... 17
FIGURE 3. STATUS OF INTEGRATION OF MEDIAN COMPONENTS ... 20
FIGURE 4. PUBLIC GITLAB - LICENSE .. 23
FIGURE 5. PRIVATE GITLAB REPOSITORY .. 24
FIGURE 6. CI/CD TOOLS ... 25
FIGURE 7. JENKINS SEED JOB ... 27
FIGURE 8. PIPELINES .. 28
FIGURE 9. BUILD PIPELINE ... 28
FIGURE 10. DEPLOY PIPELINE ... 29
FIGURE 11. DEPLOY PIPELINE WITH AVAILABLE ENV .. 29
FIGURE 12. SECURITY PIPELINE ... 29
FIGURE 13. DEFECTDOJO DASHBOARD: SPRINGSWAGGER TEMPLATE ... 31
FIGURE 14. CLEAN-CLUSTER PIPELINE .. 32
FIGURE 15. MEDINA ARCHITECTURE AND DATA FLOW ... 41
FIGURE 16. CONTROLS OF THE “ORGANISATION OF INFORMATION SECURITY” CATEGORY 44
FIGURE 17. REQUIREMENTS OF THE "OPS-05" CONTROL ... 44
FIGURE 18. FILTER TO SEARCH FOR “EUCS & HIGH” REQUIREMENTS ... 44
FIGURE 19. FILTER TO SEARCH FOR CONTROLS .. 45
FIGURE 20. METRICS IMPLEMENTED FOR THE “OPS-05.4” REQUIREMENT ... 45
FIGURE 21. DETAILS OF A METRIC ... 45
FIGURE 22. QUESTIONNAIRE. QUESTIONS FOR THE OIS-01 SECURITY CONTROL ... 46
FIGURE 23. CNL EDITOR – REOS VISUALIZATION .. 48
FIGURE 24. CNL EDITOR – SHOWING A SPECIFIC REO ... 49
FIGURE 25. RAOF - SETUP OF TARGETS OF EVALUATION ... 52
FIGURE 26. RAOF - LIST OF RESOURCES .. 52
FIGURE 27. RAOF - REQUIREMENTS TO BE FULFILLED .. 53
FIGURE 28. RAOF - RESULTS OF THE ANALYSIS ... 54
FIGURE 29. SAMPLE ASSESSMENT RESULTS TREE ... 56
FIGURE 30. SCREENSHOT OF THE CERTIFICATES OVERVIEW PRESENTED IN THE ORCHESTRATOR UI 57
FIGURE 31. MEDINA SELF-SOVEREIGN IDENTITY (SSI) FRAMEWORK GRAPHICAL INTERFACE 59
FIGURE 32. AMOE LANDING PAGE ... 61
FIGURE 33. MEDINA EVIDENCE TRUSTWORTHINESS MANAGEMENT SYSTEM GRAPHICAL INTERFACE 63
FIGURE 34. MEDINA UI ARCHITECTURE ... 67
FIGURE 35. BEARER TOKEN FIELDS ... 68
FIGURE 36. KEYCLOAK SERVER ... 69
FIGURE 37. KEYCLOAK LOGIN PAGE .. 70
FIGURE 38. FULLSCREEN IFRAME EMBEDDING - CATALOGUE AND INTEGRATED UI 71
FIGURE 39. KUBERNETES CLUSTER INSTALLATION WITH RKE ... 75
FIGURE 40. EXCERPT OF MEDINA’S DOCKER REGISTRY ... 76
FIGURE 41.URL NAMING CONVENTION FOR DEV/TEST ENVIRONMENTS .. 77
FIGURE 42. SERVICE ACCOUNT TYPE USED FOR THE KUBERNETES DASHBOARD... 77
FIGURE 43. KUBERNETES DASHBOARD .. 78
FIGURE 44. SPRING SWAGGER TEMPLATE ON GITLAB .. 79

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 8 of 104

www.medina-project.eu

FIGURE 45. SAMPLE PROJECT DEPLOYMENT STEPS ... 79
FIGURE 46. DEMO PROJECT IN THE TEST ENVIRONMENT ... 80
FIGURE 47. K8S DASHBOARD: COMPONENTS DEPLOYED IN DEV ENVIRONMENT ... 81
FIGURE 48. STATUS OF THE FIRST INTEGRATION OF MEDINA COMPONENTS ... 82
FIGURE 49. CERTIFICATE MAINTENANCE (SOURCE: EUCS [29]) .. 90

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 9 of 104

www.medina-project.eu

Terms and Abbreviations

AMOE Assessment and management of organizational evidence

API Application Programming Interface

CAB Conformity Assessment Body

CCE Continuous Certification Evaluation

CCD Company Compliance Dashboard

CCE Continuous Certification Evaluation

CI/CD Continuous Integration / Continuous Deployment

CISO Chief Information Security Officer

CNL Controlled Natural Language

CSA or EU CSA Coordination and Support Action

CSP Cloud Service Provider

DLT Distributed Ledger Technologies

DoA Description of Action

DSL Domain Specific Language

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

gRPC Google Remote Procedure Call

GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure As A Service

IT Information Technologies

KPI Key Performance Indicator

KR Key Result

LCM Life Cycle Manager

NCCA National Cybersecurity Certification Authority

NL Natural Language

NL2CNL Natural Language To Controlled Natural Language

NLP Natural Language Processing

OWASP Open Web Application Security Project

PaaS Platform As A Service

RAM Random Access Memory

RAOF Risk Assessment and Optimisation Framework

RBAC Role Based Access Control

REO Requirements and Obligations

REST Representational State Transfer

SATRA Self-Assessment Tool for Risk Analysis

SCA Software Composition Analysis

SPDX Software Package Data Exchange

SSH Secure Shell

SSI Self-Sovereign Identity

SSL Secure Sockets Layer

SSO Single Sign-On

SW Software

ToE Target of Evaluation

ToC Target of Certification

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 10 of 104

www.medina-project.eu

TOM Technical and Organizational Measure

TRL Technology Readiness Level

UC Use Case

UI User Interface

VAT Vulnerability Assessment Tools

WF WorkFlow

VM Virtual Machine

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 11 of 104

www.medina-project.eu

Executive Summary

This document is the second version of the D5.3 [1], that points out the result of the task 5.3 in
M27 (January 2023). The goal of this second version is to have a more stable environment and
a more automated solution for the MEDINA Framework using the CI/CD approach.

In this deliverable we present a second version of the MEDINA integrated solution with
increased functionalities compared to the initial prototype in M15, and also taking into
consideration the feedback coming from the evaluation in the two MEDINA use cases. The
document shows how some of the main objectives of the work package 5 are achieved in
relation to the maintenance of the SecDevOps infrastructure for MEDINA and the support of the
continuous integration with dedicated session, workshops and webinars.

The document reports the same structure of D5.3, highlighting updates or changes in each
section, and placing the unchanged parts in the Appendix. First, it recapitulates the current state
of the Test Bed environment with hardware and operating details, and the methodology
adopted throughout the integration phase of the components in the MEDINA Framework
exploiting webinars and demos. An overview of the entire integrated environment including the
Kubernetes cluster and the CI/CD infrastructure is provided. The document then goes deep into
the description of MEDINA CI/CD implemented solution, how it supports the automation of the
processes with the pipelines and their stages with a focus on security aspects. Compared to the
previous version, the seven workflows are presented in a new view based on the roles of the
users in MEDINA that has been agreed by the consortium for every component involved in each
workflow. For each of the eight building blocks that compose the MEDINA architecture their
current status and their published APIs are reported. The last part of the document is dedicated
to the MEDINA Integrated User Interface, with updates on its technical implementation and
usage.

The next version of this deliverable published in M33 will provide the final MEDINA integrated
solution including corrections and feedback from the implementation of the use cases.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 12 of 104

www.medina-project.eu

1 Introduction

This section includes an overview of the context of the deliverable, how it is structured and the
updates respect to the previous deliverable D5.3 [1].

1.1 About this deliverable

As stated in the “Introduction” section of D5.2 [2], WP5 “MEDINA framework Integration” has
five deliverables that can be divided in two parallel series:

• Those that define the MEDINA framework in detail (D5.1 [3] and D5.2 [2])

• Those that describe the developed solution (D5.3 [1], D5.4 and D5.5).

This deliverable is the second version of the three deliverables of WP5 dedicated to the
developed “MEDINA integrated solution”. It reports about the current status and the
advancements achieved on the integration of the MEDINA components and is the result of task
T5.3 “System Continuous Integration and Optimization”.

Since this is a self-contained document, you can find here the description of the integration
strategy and implementation adopted during the whole period, although the improvements
introduced in the last year, from M15 to M27, have been highlighted. Further details about the
updates with respect to D5.3 can be found in Section 1.3.

The document starts by describing the details of the hardware infrastructure provided to set up
the Test Bed environment and how this environment is implemented and used. The Test Bed
environment hosts the MEDINA components, further details about its installation and
configuration can be found in the APPENDIX A: Operating Environment. Once the Test Bed
environment has been set up, partners can release their components and the following sections
describe the methodology adopted to achieve this integration. Finally, current status of the
MEDINA framework release and the integration of its component is explained.

Secondly, the document describes the overall design of the CI/CD solution that has been put in
place to support the development and integration activities of the MEDINA Framework. This
solution foresees three pipelines of build, deploy and security to perform the automation of the
integration component.

Thirdly, the document presents the workflows used by the Use Cases to test the correct
behaviour of the MEDINA framework. The workflows have minor updates and are described in
detail in the APPENDIX D: Generic Architectural Workflows. In this period, partners have focused
on the introduction of the user’s roles point of view, implementing the authorization and
filtering strategies in the components.

Fourthly, the document presents an overview of the implementation status of each component,
explaining the interaction with the other MEDINA modules and providing brief details on the
component interface (if any). One important goal achieved in M27 is the introduction of new
connections between MEDINA components.

Finally, the document includes the description of the MEDINA Integrated User Interface
component, which is the entry point for the user to access to the MEDINA framework.

A third release of this deliverable is foreseen in M33 (July 2023). It will describe the final
infrastructure and components integration, and will leverage the information received from the
implementation of the Use Cases as feedback to revise the solution.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 13 of 104

www.medina-project.eu

1.2 Document structure

The rest of the document is structured as follows:

Section 2 presents the Test Bed Environment, describing its configuration and the hardware
infrastructure provided, the description of the methodology adopted for the component
integration through the “Keycloak”, “Authorization and Filtering” and “CI/CD” webinars, and the
current status of the integration of components. It then describes the implementation and
strategy adopted for the CI/CD solution.

Section 3 describes the generic workflows based on seven example scenarios with related
architectural components. These workflows are described from the authorization and filtering
point of view and are presented from the user’s role and permissions perspective.

Section 4 presents the MEDINA Framework components. There is a sub section for each block
describing all components that belong to it. Each component is presented with an overview of
its scope in MEDINA, its implementation status and its integration with the other MEDINA
components. If available, its graphical interface is also described.

Section 5 is dedicated to the MEDINA Integrated User Interface component, which is the
component implemented in Work Package 5.

Finally, Section 6 reports the conclusions.

The Appendices sections are dedicated to topics that have not changed much from the previous
deliverable or are too extensive to be included in the main sections of the document. They are
structured as follows:

• APPENDIX A: Operating Environment, describes the installation and configuration of the
Kubernetes cluster into the Test Bed environment and the final results achieved.

• APPENDIX B: Docker and Kubernetes Webinar with Sample Component Integration
example, describes the webinar organized for the explanation of the main aspects and
operations of Docker and Kubernetes and the demonstration through a demo example
on how manually release the components into the Test Bed environment.

• APPENDIX C: First integration workshop, describes the workshop held to complete the
first release of the MEDINA framework in the “dev” environment and the status of
component integration achieved.

• APPENDIX D: Generic Architectural Workflows, describes the workflows in detail, going
step-by-step through the iterations between architectural components and the generic
role(s) being involved.

• APPENDIX E: Published APIs, describes the REST API exposed by the components, divided
into a section dedicated to each of them.

1.3 Updates from D5.3

This deliverable evolves from D5.3 [1], so much of its content is common to that included in the
previous document, with the ultimate goal of providing a self-contained deliverable that
facilitates the reader´s understanding. To simplify the tracking of progress and updates with
respect to the previous version of the deliverable (D5.3), Table 1 shows a brief summary of the
changes and additions made in each of the sections.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 14 of 104

www.medina-project.eu

Table 1. Overview of deliverable updates with respect to D5.3

Section Change

2 The Hardware Infrastructure provided has been updated to better suit
the components integration requirements.

More steps of the integration methodology have been completed and
new webinars have been released. The current integration status and the
point-to-point connections have been updated.

Finally, the CI/CD pipelines are now implemented by all the partners and
the final status is shown.

3 This section is evolved by introducing the MEDINA user roles and
presenting the workflows from a role point of view.

4 This section contains an update of the description of the MEDINA
components and includes the description of two new implemented
components SSI and AMOE.

5 Main changes here are in the “components description” and “user
interface structure” sections, since more components have been
integrated and it has implemented the possibility to login with the Bosch
Use Case external identity provider.

Appendix A No changes here.

Appendix B No changes here.

Appendix C No changes here.

Appendix D This section contains small changes to the workflow steps, which are
largely the same as in the previous deliverable.

Appendix E This section contains the REST APIs of the Self-Sovereign Identity and
AMOE components. The REST APIs of the other components have
updates.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 15 of 104

www.medina-project.eu

2 MEDINA Test Bed and Secure DevOps infrastructure

This section presents the configuration of the Test Bed environment and the hardware
infrastructure used for its installation The organization of the Test Bed environment has not
changed, while the hardware infrastructure has undergone some updates.

We also describe here the methodology followed to achieve the second release of the MEDINA
framework, giving details about the new webinars held to help partners during this process and
the situation at M27 of the current state of the integration of components and the point-to-
point connections.

2.1 Test Bed environment

The Test Bed environment is the environment where the MEDINA Framework is delivery on to
test and verify all the functionalities.

The main changes introduced during this period are the hardware infrastructure which has been
reorganized to better adapt to component requirements and the “Production” environment
hosted by the Use Cases, which has been replaced by a “Validation” environment.

In order to have a self-contained document, we are going to resume here the configuration of
the Test Bed Environment.

As described in APPENDIX A: Operating Environment, the Test Bed environment was installed
and configured from scratch and it consists of a three nodes Kubernetes [4] cluster with two
different, independent and isolated virtual environments:

• Development: is used by developers for testing their modules without fear of bugs or
errors. This environment does not affect the end users and is used to improve the code
of the MEDINA micro-services before deploying them to the Test environment.

• Test: the main purpose here is to ensure that all the updates made on the different
modules work as expected. This environment, that is more stable than the development
environment, is used by developers for integration testing and by Use Case owners for
the validation and quality assessment of MEDINA components.

All the micro-services in the Test Bed environment are containerized and communicate with
each other via a RESTful API over a secure HTTPS protocol.

Since the Use Cases, Bosch and Fabasoft are validating the components released in the “Test”
environment, they are hosting a “Validation” environment that will replace the former
“Production” environment, as described in deliverable D5.2 [2].

2.1.1 Hardware Infrastructure

This section describes the list of the hardware equipment used to setup the Development and
Test environments. These environments run on Virtual Machines (VM) hosted by TECNALIA and
based on Ubuntu OS 20.04. The domain for all the machines is medina.esilab.org. The access to
the virtual machines is provided via SSH (Secure Shell) protocol, using digital certificates.

The Development and Test Environments are implemented on a 3-node Kubernetes cluster that
virtualizes both environments, making them independent and isolated (see Figure 1). These
environments run the MEDINA micro-services in containers.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 16 of 104

www.medina-project.eu

Figure 1. Kubernetes cluster on MEDINA infrastructure

A dedicated VM hosts the CI/CD orchestration engine, the tools that support the CI/CD
processes, and the Kubernetes cluster management. Its current resource status is as follows:

• RAM: 16 GB

• Cores: 4

• Hard Disk: 400 GB

The CI/CD is reachable at: cicd.medina.esilab.org.

The three nodes for the Kubernetes cluster (k8s00, k8s01, k8s02.medina.esilab.org) share the
same specifications:

• RAM: 16 GB

• Cores: 8

• Hard Disk: 200 GB + 200 GB

The 200 GB of storage of each node are organized as a distributed filesystem for data persistent
layer. The Kubernetes cluster offers 200 GB of storage, and the data is duplicated among the
three nodes.

An additional VM is provided for the Wazuh and VAT tools, in order to produce fake data for the
MEDINA Framework. The specifications are:

• RAM: 8 GB

• Cores: 4

• Hard Disk: 60 GB

• OS: Ubuntu 20.04

2.1.2 Components Integration Methodology

Once the Test Bed environment has been properly configured and all the necessary installations
have been performed, the next step is to deploy all the component in the cluster.

This section describes the methodology adopted to perform component integration, which has
not changed with respect to D5.3 [1], and reports on the progress achieved during this period.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 17 of 104

www.medina-project.eu

We describe here the new delivery of webinars to enhance the integration and the current status
of component connection.

In order to better organize the work of the integration we adopted the following methodology
which presents the actions to be taken until the complete release of the MEDINA framework:

1. Each component must be available on the internal private GitLab repository
2. Each component must be containerized into a docker image, the docker image must be

available on the internal private docker registry Artifactory
3. Deployment of each component into the development environment in the MEDINA Ku-

bernetes cluster, named “dev”
4. Standalone tests to check each component have been correctly deployed in the devel-

opment environment
5. Point to point tests for the communication in pairs of the components in the develop-

ment environment
6. Test end to end in the development environment verifying that the workflows described

in Section 3 have been correctly implemented
7. Deployment of the stable version of each component in the test environment in the

MEDINA Kubernetes cluster, named “test”
8. Standalone tests to check each component has been correctly deployed in the test en-

vironment
9. Point to point tests for the communication in pairs of the components in the test envi-

ronment
10. Test end to end in the test environment verifying that the workflows described in Sec-

tion 3 have been correctly implemented.

This methodology is implemented through two instruments: workshops and webinars. The
overall integration consists of three rounds: M15, M27 and M33. The webinars are recorded and
shared with all partners in the Fabasoft cloud, in a specific folder named “TECHNICAL
WEBINARS” (see Figure 2). This allows partners to view them again whenever they need to.

Figure 2. Technical Webinars

During the first round (M15) HPE coordinated the integration of components, which was done
manually by each partner. To support this, we delivered a webinar and a workshop. During the
webinar we illustrated the main concepts and functionalities of Docker and Kubernetes, as

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 18 of 104

www.medina-project.eu

reported in APPENDIX B: Docker and Kubernetes Webinar with Sample Component Integration
example. During the workshop (see APPENDIX C: First integration workshop) we supported the
partners for the implementation of the first five actions of the methodology: integration in
GitLab, build and push of the docker images into Artifactory, and deployment and tests in the
development environment of the MEDINA Kubernetes cluster.

During this second round (M27), we have delivered three webinars and we collaborated with
the Use Cases for the validation of the workflows described in Section 3. The integration of the
components has been automated and we have released the first stable version of MEDINA
framework in the “test” environment. In addition, partners can now automatically release their
components and we are adopting a continuous integration strategy by checking during the
biweekly Work Package 5 meetings the status of the connection between components.

The integration status of each component and the advancements of the methodology actions
are tracked using a spreadsheet available in the Fabasoft shared repository, which is reviewed
and updated during the WP5 regular meetings.

The following sections present the description of the webinars conducted in the second round.

2.1.2.1 Keycloak Webinar

Keycloak [5] is an open-source identity and access management tool. It supports multiple
standards, the one used in MEDINA is OpenID. Its role in MEDINA is to act as source of truth for
identity and to provide login UI. The Keycloak server is reachable, for example, for the DEV
environment at this URL: https://catalogue-keycloak-dev.k8s.medina.esilab.org/auth. Every
microservice client uses a Keycloak adapter in order to communicate with the Keycloak server.

The Keycloak webinar aims to help partners with their microfrontend configuration. It is divided
in two parts. The first one describes theoretically how Keycloak works and the flow it covers
when a user initiates a request: the result is the token containing the user’s information for
authentication and authorization. The second part shows a demo with a SpringBoot application
for the configuration of a Keycloak adapter and the configuration on Keycloak server.

2.1.2.1 Authorization and Filtering Webinar

This webinar consists of a demonstration about the topics of Authorization and Filtering in
Keycloak for MEDINA. The first topic deals with the configuration in Keycloak of the Composite
Roles used by each component to give access permissions to endpoints within a component. In
Keycloak it is possible to manage users and roles. For example, a user without any role assigned
cannot see anything in the UI, to grant permission it is necessary to define roles. These roles are
defined within the Client (microfrontend) and are only available to this Client.

The second topic is addressed by using the user-related properties obtained from the token used
for authentication. These properties correspond to the token fields “cloudserviceproviderid”
and “cloudserviceid” which are used to restrict the visibility of the provider (Fabasoft or Bosch)
and the resources the user is interested in.

2.1.2.2 CI/CD Webinar

This webinar is focused on Continuous Integration and Continuous Delivery. It can be considered
a second part of the previous webinar dedicated to the integration with Kubernetes cluster. The
webinar is structured by presenting first the CI/CD environment already setup for MEDINA, then
the ad-hoc pipelines developed and finally a live demo with a sample project called
“springswagger-template” has been shown. This example provides guidelines for partners to
create their own pipelines. This webinar it also mentioned throughout Section 2.2.2 with

http://www.medina-project.eu/
https://catalogue-keycloak-dev.k8s.medina.esilab.org/auth

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 19 of 104

www.medina-project.eu

reference to the demo to explain how to set up the Jenkins Seed Job for pipeline creation and
what the pipelines do.

2.1.2.3 Second Round - Continuous integration

During the first round we dedicated a workshop session to release the first version of the
MEDINA Framework in the “dev” environment of the Kubernetes cluster. The partners manually
released their components and we coordinated and helped them during this phase. The
integration was successfully completed and the point2point connections planned were
implemented. Further details about this workshop are in APPENDIX C: First integration
workshop.

During this second round, we didn’t have a dedicated workshop session but the partners
continuous integrated and updated their components. Thus, all component owners
implemented the CI/CD pipelines, which allowed the partners to automatically release them in
the Kubernetes cluster. Section 2.2 describes the strategy and implementation in the CI/CD
pipelines.

One of the goals we reached during this second round is the integration of the latest MEDINA
components into the Kubernetes cluster. In fact, the Organizational Evidences Gathering and
Processing (AMOE) component was not integrated during the first workshop session and the
Automated Self-Sovereign Identity-based certificates management (SSI) component was
introduced in recent months. AMOE and SSI are now deployed in the “dev” and “test”
environments.

Figure 3 lists all the components of the MEDINA Framework: the green ones are released in the
Development and Test environments and the blue ones will not be released in the Kubernetes
cluster. The Codyze component will be integrated in the MEDINA Security pipeline and Wazuh
and VAT run in a dedicated standalone VM provided by TECNALIA. Interested readers can see
the progress of the integration of the MEDINA components by comparing Figure 3 with the
previous status of integration in M15, that is shown in Figure 48 in the APPENDIX C: First
integration workshop.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 20 of 104

www.medina-project.eu

Figure 3. Status of integration of MEDIAN components

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 21 of 104

www.medina-project.eu

The last four actions foreseen by the defined methodology were successfully completed by all
partners: first of all, each project has been released in the Kubernetes “test” environment and
the standalone and point2point tests have been performed, finally the Use Cases tested the end
to end scenarios verifying that the workflows described in Section 3 were working properly in
their own “Validation” environment. Further details on the validation of the workflows can be
found in D5.2 [2] and in D6.3 [6].

During the regular bi-weekly WP5 meetings we checked the status of the components and the
updates of the point-to-point connections. Table 2 shows the current status of these
connections as follows:

• Light green: the connection was implemented during the first round

• Dark green: the connection has been successfully implemented during this second
round

• Orange: the connection is in progress

• Grey: the connection is no longer needed

Comparing the contents of Table 2 with the previous status shown in Table 19 in APPENDIX C:
First integration workshop, we can see that most of the point-to-point connections are
completed: 20 connections have been implemented in addition to the previous 6, 3 connections
have been discarded and 3 connections are still in progress.

Table 2. Status of Point-to-point connections

Component Name A Component Name B Status

Orchestrator Continuous Certification Evaluation CONNECTED

Orchestrator Trustworthiness System CONNECTED

Orchestrator Security Assessment CONNECTED

Orchestrator Catalogue of Controls & Metrics CONNECTED

Orchestrator NL2CNL Translator CONNECTED

Codyze Orchestrator CONNECTED

Cloud Evidence Collector Security Assessment CONNECTED

Security Assessment Evidence Collection from VAT IN PROGRESS

Security Assessment Evidence Collection from WAZUH CONNECTED

DSL Mapper Orchestrator CONNECTED

DSL Mapper Catalogue of Controls & Metrics DISCARDED

NL2CNL Translator Catalogue of Controls & Metrics CONNECTED

NL2CNL Translator CNL Editor CONNECTED

CNL Editor DSL Mapper CONNECTED

CNL Editor Catalogue of Controls & Metrics DISCARDED

Assessment and Management of
Organizational Evidence

Catalogue of Controls & Metrics CONNECTED

Assessment and Management of
Organizational Evidence

Orchestrator CONNECTED

Catalogue of Controls & Metrics
Static Risk Assessment and
Optimisational Framework

IN PROGRESS

Countinuous Certification
Evaluation

Catalogue of Controls & Metrics CONNECTED

Countinuous Certification
Evaluation

Dynamic Risk Assessment and
Optimisation Framework

CONNECTED

Countinuous Certification
Evaluation

Life Cycle Manager CONNECTED

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 22 of 104

www.medina-project.eu

Component Name A Component Name B Status

Dynamic Risk Assessment and
Optimisation Framework

Life Cycle Manager CONNECTED

Assessment and Management of
Organizational Evidence

Orchestrator CONNECTED

Self-Sovereign Identity Life Cycle Manager CONNECTED

Integrated UI Catalogue of Controls & Metrics CONNECTED

Integrated UI NL2CNL Translator DISCARDED

Integrated UI Orchestrator CONNECTED

Integrated UI CNL Editor CONNECTED

Integrated UI Self-Sovereign Identity IN PROGRESS

Integrated UI
Static Risk Assessment and Optimization

Framework
CONNECTED

Integrated UI Continuous Certification Evaluation CONNECTED

Integrated UI
Assessment and Management of

Organizational Evidence
CONNECTED

2.2 Implementation of the CI/CD solution

This section provides updates in M27 on the status of the implementation of the CI/CD strategy
supported by CI/CD tools. It first gives an overview of the operating environment that involves
all CI/CD components and the Kubernetes cluster and how they work together in our automated
solution designed for MEDINA. During this period, full automation of software release has been
achieved through the use of pipelines. Secondly, more details are provided on the three
standardized pipelines and their stages, and how they are setup through the Jenkins Seed Job.
In addition, a new pipeline for cleaning dangling Docker images has been created. Also
mentioned is the webinar that was held during this period to support the integration activities
by giving an example to partners.

2.2.1 Operating Environment

This section describes the overview of the MEDINA Operating Environment proposed to support
the CI/CD implementation.  

The MEDINA framework is made up by the collaboration of multiple components developed by
the partners and published over the Internet. Each component corresponds to one or more
microservices and the code is stored in the TECNALIA GitLab version control, which provides
repositories both for private1 and open-source2 projects.

All open-source projects are published in TECNALIA’s public GitLab, organized with a folder per
component where every microservice reports its license, as shown in Figure 4.

1 https://git.code.tecnalia.com/medina - [authentication required]
2 https://git.code.tecnalia.com/medina/public

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina
https://git.code.tecnalia.com/medina/public

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 23 of 104

www.medina-project.eu

Figure 4. Public GitLab - license

In addition, the license is also provided using the SPDX [7] standard. Thus, in each source code
file of the open-source projects there is a header indicating the licence details, which is for all
components the Apache-2.0.

On the other hand, we organized the TECNALIA’s private GitLab repository in folders that
support work packages and tasks, so that each partner can use a dedicated path for its
components. For example, the CNL Editor component belongs to the work package 2, Task 2.4
and that is the folder where it is stored, as shown in Figure 5.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 24 of 104

www.medina-project.eu

Figure 5. Private GitLab repository

During our regular WP5 meeting, we coordinated and checked that all the components followed
the conventions explained above.

The microservice has to be containerized into a Docker image in order to be deployed. For this
reason, we provided a private Docker registry hosted by TECNALIA, which is the JFrog
Artifactory3 [8], to store the docker images.

Finally, the docker images are deployed to the Kubernetes cluster and exposed over the Internet.
The Jenkins automation server hands the delivery of each microservices: it fetches the code from

3 https://artifact.tecnalia.com/ui - [authentication required]

http://www.medina-project.eu/
https://artifact.tecnalia.com/ui

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 25 of 104

www.medina-project.eu

GitLab, builds and stores the Docker image and finally releases it into the Kubernetes cluster
(see Figure 6).

Figure 6. CI/CD tools

More details about the Jenkins pipelines are explained in the following section.

2.2.2 Pipelines

This section describes the implementation of the CI/CD solution that is put in place for
supporting the MEDINA Framework through the pipelines schema that has been described in
D5.3 [1]. The implemented pipelines are three, named Build pipeline, Deploy pipeline and
Security pipeline.

These pipelines are called following a hierarchy: the Build pipeline is triggered automatically at
every push of a project in the MEDINA public GitLab and automatizes the build of the project,
the creation of the Docker image and its push on the TECNALIA Artifactory. Then, if the previous
pipeline succeeds, without any errors, the second Deploy pipeline is triggered that will
automatically deploy the component to the “development" environment by default. Finally, the
Security pipeline starts automatically if the Build and the Deploy pipelines succeed.

As described in D5.2 [2], to automate the deployment process we make use of the Jenkins Seed
Job that will automatically create the pipelines for each component of the MEDINA Framework.
This is a plugin that consists in filling a form by entering parameters such the software repository
URL where to retrieve the source code, the container file descriptor (in Docker format), the
generated container image for publishing to an internal private registry and a list of one or more
Kubernetes deployment manifest files.

This procedure is quite the same for all components because all the CI/CD tools involved are
organized to simplify the deployment with a convention agreed by the consortium. The GitLab
repository is divided into groups that are folders which contain the projects. The structure
reflects the Work Package and Tasks division of the MEDINA project. Also, Jenkins and
Artifactory are organized following this convention.

All these concepts and steps were described during the CI/CD Webinar (see Section 2.1.2.2)
using a Demo with the sample project "springswagger-template”. First of all, a new project

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 26 of 104

www.medina-project.eu

named “springswagger-template” was created in GitLab. The Jenkins Seed Job could then be run
by filling it with the parameters customized for the project.

Following there is the description of these parameters and an example how to compile the form
to create the specific pipelines for the project “springswagger-template”. Figure 7 shows these
parameters:

• Work Packages/Task folder, where the Jenkins Jobs will be created. We can choose the
correct path from the picklist, that are previous created in Jenkins. Select wp5/task_5.2.

• Job basename, i.e., the component name: for example, springswagger-template.

• GitLab URL, retrieved from the TECNALIA GitLab web interface, is the source code re-
pository for the project.

• GitLab branch, is the default “master”.

• Build template, chosen from a preconfigured template, can be empty or customized
with a build automation tool like Maven. Select Maven.

• Docker file, the name of the dockerfile that contains the instructions to build the con-
tainer image. In this case the folder in which is the file is “docker” and the name of the
file is “Dockerfile”.

• Image, the name of the container image pushed to the private registry, that is the Arti-
factory owned by TECNALIA. The image will have the absolute path, for example:
wp5/t52/springswagger-template.

• Kubernetes manifests, the yaml files used for the deployment in the Kubernetes cluster,
that are contained in GitLab folder “kubernetes”.

Once these details are provided, the Seed Job automatically creates the three pipelines for
build, deploy and security for the “springswagger-template” in the selected folder (see
Figure 8).

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 27 of 104

www.medina-project.eu

Figure 7. Jenkins Seed Job

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 28 of 104

www.medina-project.eu

Figure 8. Pipelines

During the CI/CD Webinar demo it has been shown how the creation of the pipelines flows
through their stages after configuring and building the Jenkins Seed Job. Every pipeline has
several stages, with a name describing what they have done.

As described theoretically in the CI/CD strategy in D5.2 [2], the Build pipeline foresees stages
where the code is checked out from GitLab and the docker container is setup to execute the
other build stages. These stages are the compile, testing and package stages that can be
different depending on the Build template field selected in the Seed Job before running it. In this
case we have selected Maven, so “mvn” commands are executed. The next three stages are
referred to the Docker image building and pushing to the Artifactory repository. By default, the
image is pushed with the “latest” tag but there is an optional phase to tag it differently. At last,
if no errors occur the Deploy Job is automatically called.

Figure 9. Build pipeline

The Deploy pipeline deals with the release of the components in the Kubernetes cluster. As
described in Section 2.1, the Kubernetes cluster is divided in two isolated and virtual
environments, “dev” and “test”. The stages of this pipeline (see Figure 10) include first the step
where Jenkins accesses to the Kubernetes cluster with exchanged credentials, and then the step
in which the Kubernetes manifests files are applied to release the configuration to the
environment. By default, the Deploy pipeline releases the component on the “dev”
environment.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 29 of 104

www.medina-project.eu

Figure 10. Deploy pipeline

Partners can also use this pipeline to manually release the component on the "test" environment
changing it with one click from the Deploy pipeline, rebuilding the pipeline and choosing among
the available environments, as shown in Figure 11.

Figure 11. Deploy pipeline with available ENV

The Security pipeline is automatically triggered upon a successful Build and Deploy.

Figure 12. Security pipeline

This pipeline includes various steps (shown in Figure 12) representing the different types of
security analysis performed: Static Code analysis for checking the source code, Container
security for scanning vulnerabilities into the container packages, and Software Composition
Analysis (SCA) for spotting security issues in third party libraries.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 30 of 104

www.medina-project.eu

The two first security controls are performed respectively by Semgrep and Anchore. These tools
are running into containers called in the security pipeline. Once the scanning is done, these
containers, in which the tools are installed, are destroyed but the output file of the analysis
persists. The advantage of this choice to use the container lives in the fact that it is possible to
fast and easily update the tool to the latest version, forcing the download of the latest tag of the
container images.

Regarding the third security control, SCA, the tool that performs this analysis is OWASP
Dependency Check, installed via command line. In the latest stages of this Security pipeline a
report is prepared, that collects all the analysis outputs of the previous stages, and finally is
published to DefectDojo, the vulnerability report aggregator tool adopted to make possible to
see all the analysis results in a unique view. The report is visible directly inside Jenkins, but
DefectDojo provides a graphical interface with several metrics and dashboards to analyse the
results using different parameters, such as the time or the severity of the vulnerabilities.

Figure 13 shows a view from the DefectDojo Dashboard of the findings “springswagger-
template” that are found running its Security pipeline. It represents an easy way to control, for
example, the Severity of the vulnerabilities and help to do mitigation actions with suggestions.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 31 of 104

www.medina-project.eu

Figure 13. DefectDojo Dashboard: springswagger template

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 32 of 104

www.medina-project.eu

As a next step in the Security pipeline, the MEDINA component Codyze [9] will be added. Codyze
is a static code analysis tool developed by FhG partner (see Section 4.7.1).

In addition to the three pipelines available in M15, we needed to add a new pipeline called
“clean-cluster” to deal with dangling docker images that caused no disk space to be left. Figure
14 shows the stages that compose this pipeline. Basically, the dangling docker images are listed,
then removed, and finally the disk space is shown.

Figure 14. Clean-cluster pipeline

All these steps provide an example of how to use the CI/CD tools to adopt the SecDevOps
approach in MEDINA. The aim is to give guidelines to partners to enable a conventional way of
using the overall infrastructure that is setup.

The result is that all the components that build the MEDINA Framework were deployed in M27
using these Jenkins pipelines and were released in the two Kubernetes environment “dev” and
“test”.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 33 of 104

www.medina-project.eu

3 Generic Architectural Workflows

This section updates the generic MEDINA workflows (WFs), which were first introduced in D5.3
[1] and further detailed in D6.3 [6], with the initial version of an “Authorization and Filtering
Concept” by defining the use-case 1 (UC1) roles and access-levels assigned to MEDINA users on
the different components of the developed framework.

At this point it is worth to notice that MEDINA’s authorization and filtering concept only applies
to those components where user interaction (UI) has been considered, whereas
components/API methods not exposing any UI element are out of scope4.

Next, to keep this report self-contained, we review the basics related to the generic MEDINA
workflows, as presented in D5.3. For interested readers, an updated version of the MEDINA
workflows’ details can be found in APPENDIX D: Generic Architectural Workflows.

3.1 Generic MEDINA Workflows

This section provides as background the generic workflows which comprise the MEDINA
framework and consist of the seven different scenarios/interactions shown in the Table 3 below.

Table 3. Generic MEDINA workflows

Workflow Comment Other/Dependency

WF1 - Preparation
of Target of
Certification (ToC)

Setup, configure and deploy the cloud service
to certify (ToC) on top of the chosen
hyperscaler(s). This process includes
configuring the underlying PaaS/IaaS.

Mandatory workflow
CSP Responsibility
Dependencies: None

WF2 - Preparation
of MEDINA
components

Setup, configure and deploy the MEDINA
components. Only related to those
components under the responsibility of the
CSP.

Mandatory workflow
CSP Responsibility
Dependencies: WF1

WF3 - EUCS
deployment on ToC

Setup, configure and deploy the
corresponding EUCS framework (for the
chosen assurance level basic/substantial/high)
on the ToC.

Mandatory workflow
CSP Responsibility
Dependencies: WF1, WF2

WF4 - EUCS
Preparedness – ToC
Self-Assessment

Self-assess preparedness for EUCS certification
based on the chosen assurance level. This is a
risk-based approach.

Optional workflow
CSP Responsibility
Dependencies: WF1, WF2,
WF3

WF5 - EUCS –
compliance
assessment

Performs a point-in-time (discrete) EUCS
compliance assessment for the ToC. When
such discrete assessment is periodically
executed, then we achieve the MEDINA notion
of “continuous”.

Mandatory workflow
CAB Responsibility
Dependencies: WF1, WF2,
WF3

WF6 - EUCS –
maintenance of
ToC certificate

Start certificate maintenance life-cycle for the
ToC. Based on current EUCS, the maintenance
process comprises the following stages:
(issuance5), renewal, continuation, update, re-
issuance (new certificate), withdrawal, and

Mandatory workflow
CAB Responsibility
CSP Responsibility
Dependencies: WF1, WF2,
WF3, WF5

4 It must be noticed that API-level authorization shall be needed in productive MEDINA environments
(TRL7). The authorization/filtering model introduced in this section provides the basis for implementing
more complex/productive scenarios.
5 Despite initial certificate’s issuance is not mentioned in the maintenance process defined by the core
EUCS document, for the purposes of MEDINA this discussion is part of the life-cycle manager (WP4).

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 34 of 104

www.medina-project.eu

Workflow Comment Other/Dependency

suspension.

WF7 - EUCS –
report on ToC
certificate

Reports on EUCS certificate status for a ToC.
The report can be obtained by the CAB and the
CSP, in which case the level of provided details
might vary.

Optional workflow
CAB Responsibility
CSP Responsibility
Dependencies: WF1, WF2,
WF3, WF5

Based on these generic workflows, the rest of this chapter focuses on presenting the initial roles
and authorization concept for the framework.

3.2 Roles and Levels of Visibility

To present the initial authorization/filtering concept, first we proceed to re-introduce the basic
roles in MEDINA (cf. D6.3 [6]) along with their “visibility level”, which is defined in terms of the
CSP information available for EUCS certification. This is shown in Table 4.

Table 4. MEDINA Roles and Levels of Visibility

Roles Explanation (cf. D6.3 [6]) Level of Visibility

IT Security Governance
Its main objective is the protection of Bosch business
models, products, services, and data.

Cloud Service Provider6

Security Analyst

Responsible for ensuring that the Bosch Group’s
digital assets and sensitive information are protected
as well as evaluating and reporting on the efficiency
of the security policies in place.

Cloud Service Provider

Domain Governance
Acts as the core competence holder and responsible
topic owner for product security.

One or more Cloud
Services

Product and Service
Owner

The Product & Service Owner is the central point of
contact for all questions concerning a specific Bosch
IT product or service.

Cloud Service7

Product (Security)
Engineer

Oversees the build, deploy, and run of a product and
its system components.

Cloud Service

Chief Information
Security Office (CISO)

The Chief Information Security Officer (CISO) is who
the Compliance Manager has to report to.

Cloud Service Provider

Customer

The customer8 is either a company consuming cloud
products or services (B2B, business-to-business
context), or an individual (B2C, business-to-customer
context).

Cloud Service

Auditor9

The Conformity Assessment Body (CAB) is a body
that performs conformity assessment services with
the goal of demonstrating that specified
requirements are fulfilled.

One or more Cloud
Services

6 Including all underlying certifiable Cloud Services.
7 For the purposes of MEDINA, we consider visibility to at most one Cloud Service.
8 For the purposes of MEDINA, the Customer is the only non-authenticated role in the framework.
9 This role also refers to internal Auditors and NCCAs (National Cybersecurity Certification Authority).

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 35 of 104

www.medina-project.eu

Next, for each defined role we introduce the actual set of allowed actions based on both the
relevant WF and the involved MEDINA framework components. This is presented in the
following section.

3.3 Authorization Model for MEDINA Workflows

MEDINA leverages the Role Based Access Control model (RBAC10) to enforce specific permissions
on the Integrated UI for certain components. This section presents the initial version of
MEDINA’s RBAC concept based on the generic workflows, whereas details associated to its
technical implementation are presented later on this document.

3.3.1 WF1 - Preparation of Target of Certification (ToC)

This initial workflow, despite not invoking any of the MEDINA components, is an evident pre-
requisite for the CSP to fulfil before the certification process starts. Its main goal is for the CSP
to prepare the Target of Certification (ToC), both from a technical (e.g., deploying the actual
cloud service in the hyperscaler) and organizational (e.g., gather the operational manuals in
electronic format) perspectives.

Table 5. Workflow 1

Short Explanation Associated MEDINA Components

Setup, configure and deploy the cloud service to certify (ToC) on
top of the chosen hyperscaler(s). This process includes configuring
the underlying PaaS/IaaS.

CSP testbed

For this initial workflow, the only role allowed to operate on the platform is the so-called Product
(Security) Engineer, as shown in Table 6.

Table 6. RBAC Model for Workflow 1

Roles Component Allowed Actions

IT Security Governance Testbed None

Security Analyst Testbed None

Domain Governance Testbed None

Product and Service Owner Testbed None

Product (Security) Engineer Testbed Setup, configure, deploy

Chief Information Security Office (CISO) Testbed None

Customer Testbed None

Auditor Testbed None

3.3.2 WF2 - Preparation of MEDINA Components

The second generic workflow of the architecture (WF2) refers to the actual configuration and
deployment of those MEDINA components which are needed for certifying the Cloud Service.
This WF2 does not perform any actual assessment, but it executes a required set of deploying
actions before the certification process is triggered by WF3.

10 Please refer to https://en.wikipedia.org/wiki/Role-based_access_control

http://www.medina-project.eu/
https://en.wikipedia.org/wiki/Role-based_access_control

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 36 of 104

www.medina-project.eu

Table 7. Workflow 2

Short Explanation Associated MEDINA Components

Setup, configure and deploy the MEDINA components. Only
related to those components under the responsibility of the CSP.

Evidence Collectors, Integrated UI

The evidence collectors (e.g., Clouditor and Wazuh), along with the Integrated UI are deployed
and configured by the Product (Security) Engineer exclusively.

Table 8. RBAC Model for Workflow 2

Roles Component Allowed Actions

IT Security Governance Testbed None

Security Analyst Testbed None

Domain Governance Testbed None

Product and Service Owner Testbed None

Product (Security) Engineer Testbed
Setup, configure, deploy (Catalogue, SSO,
DLT, Clouditor, Wazuh, Codyze, VAT)

Chief Information Security Office (CISO) Testbed None

Customer Testbed None

Auditor Testbed None

3.3.3 WF3 - EUCS deployment on ToC

After the ToC has been deployed on the hyperscaler (WF1) and the corresponding MEDINA
components were configured/deployed by the CSP (WF2), then it is possible to use the later for
certifying the Cloud Service. That is the goal of this WF3.

Table 9. Workflow 3

Short Explanation Associated MEDINA Components

Setup, configure and deploy the corresponding EUCS framework
(for the chosen assurance level basic/substantial/high) on the
ToC.

Catalogue, NL2CNL Translator, CNL
Editor, DSL Mapper

The third workflow in MEDINA involves interaction between different components of the
architecture to orchestrate complex processes (e.g., NLP for recommending EUCS metrics). In
this case we identify roles without permission to modify certification information, and once
again the Product (Security) Engineer as the only role capable of changing information about the
framework. It must be noted that the Catalogue cannot be modified by any of the MEDINA roles,
and it is pre-filled by the “MEDINA framework provider” with the required standards.

Table 10. RBAC Model for Workflow 3

Roles Component Allowed Actions

IT Security Governance
Catalogue, NL2CNL Translator, CNL Editor,
DSL Mapper

Read11

Security Analyst
Catalogue, NL2CNL Translator, CNL Editor,
DSL Mapper

Read

Domain Governance Catalogue, NL2CNL Translator, CNL Editor, Read

11 Descriptions can be updated for Entities on the Catalogue, in order to match specific organizational
needs.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 37 of 104

www.medina-project.eu

Roles Component Allowed Actions

DSL Mapper

Product and Service Owner
Catalogue, NL2CNL Translator, CNL Editor,
DSL Mapper

Read

Product (Security) Engineer
Catalogue, NL2CNL Translator, CNL Editor,
DSL Mapper

Read/Write12

Chief Information Security
Office (CISO)

Catalogue, NL2CNL Translator, CNL Editor,
DSL Mapper

Read

Customer
Catalogue, NL2CNL Translator, CNL Editor,
DSL Mapper

None

Auditor
Catalogue, NL2CNL Translator, CNL Editor,
DSL Mapper

Read

For WF3 and in the specific case of the CNL Editor UI, the “Write” actions means that only the
role “Product (Security) Engineer” is allowed to operate on the Rego objects by applying
Complete and Map.

3.3.4 WF4 - EUCS Preparedness – ToC Self-Assessment

This workflow relates to the components in charge of performing the static risk management
(SATRA) and the self- assessment Questionnaire (Catalogue of controls and metrics) as
documented by D2.7 [10] and D2.2 [11] respectively. Although SATRA implements a “stand alone
functionality”, which does not need to be technically deployed in the Cloud Service (cf. WF3), it
is integrated into the whole MEDINA framework thanks to the unified UI.

Table 11. Workflow 4

Short Explanation Associated MEDINA Components

Self-assess preparedness for EUCS certification based on the
chosen assurance level. This includes a risk-based approach.

SATRA, Catalogue

Both components in WF4 only allow the Product and Service Owner to perform all available
actions. The rest of roles are assigned read-only/reporting actions according to the least
privilege principle.

Table 12. RBAC Model for Workflow 4

Roles Component Allowed Actions Component Allowed Actions

IT Security
Governance

SATRA
Risk Computation
(Reporting)

Catalogue Load questionnaire,
Generate report

Security Analyst SATRA
Risk Computation
(Reporting)

Catalogue Load questionnaire,
Generate report

Domain Governance SATRA
Risk Computation
(Reporting)

Catalogue Load questionnaire,
Generate report

Product and Service
Owner

SATRA

Create SoC, SoC Info,
Questionnaire, Asset
Information, Risk
Computation
(Reporting)

Catalogue Start/Edit
questionnaire,
Save questionnaire,
Generate report

Product (Security)
Engineer

SATRA
Risk Computation
(Reporting)

Catalogue Load questionnaire,
Generate report

Chief Information SATRA Risk Computation Catalogue Load questionnaire,

12 Only for AMOE it is allowed to Delete uploaded PDF security policies.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 38 of 104

www.medina-project.eu

Roles Component Allowed Actions Component Allowed Actions

Security Office (CISO) (Reporting) Generate report

Customer SATRA None Catalogue None

Auditor SATRA
Risk Computation
(Reporting)

Catalogue Load questionnaire,
Generate report

3.3.5 WF5 - EUCS Compliance Assessment

This WF5 describes discrete compliance assessments, which should then be periodically
executed for the MEDINA framework to start the certification lifecycle (cf. WF6).

Table 13. Workflow 5

Short Explanation Associated MEDINA Components

Performs a point-in-time (discrete) EUCS compliance assessment
for the ToC. When such discrete assessment is periodically
executed, then we achieve the MEDINA notion of “continuous”.

AMOE, Orchestrator,
Trustworthiness System, Evidence
Collectors

WF5 contains the interactions for performing discrete assessments, where only the role
(internal) Auditor is allowed to change AMOE recommended assessments and submit them for
evaluation to the Orchestrator.

Table 14. RBAC Model for Workflow 5

Roles Component Allowed Actions

IT Security Governance
AMOE, Orchestrator, Trustworthiness System,
Evidence Collectors

Read13

Security Analyst
AMOE, Orchestrator, Trustworthiness System,
Evidence Collectors

Read

Domain Governance
AMOE, Orchestrator, Trustworthiness System,
Evidence Collectors

Read

Product and Service Owner
AMOE, Orchestrator, Trustworthiness System,
Evidence Collectors

Read

Product (Security) Engineer
AMOE, Orchestrator, Trustworthiness System,
Evidence Collectors

Read

Chief Information Security
Office (CISO)

AMOE, Orchestrator, Trustworthiness System,
Evidence Collectors

Read

Customer
AMOE, Orchestrator, Trustworthiness System,
Evidence Collectors

None

Auditor
AMOE, Orchestrator, Trustworthiness System,
Evidence Collectors

Read/Write

3.3.6 WF6 - EUCS – Maintenance of ToC certificate

This WF6 departs from the current definition of certificate maintenance in the EUCS core
document, and for the purposes of MEDINA, it also adds an initial stage of “certificate issuance”.

Despite WF6 plays an important role in MEDINA (i.e., continuous execution and analysis of
discrete assessments), there is no user interaction envisioned within the Integrated UI. For this
reason, WF6 is not associated to any RBAC model.

13 Filtering assessment results in the Orchestrator is consider a “Read” action.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 39 of 104

www.medina-project.eu

3.3.7 WF7 - EUCS –Report on ToC Certificate

The goal of this WF7 is to report about the status of an EUCS certificate corresponding to the
ToC and at different levels of detail, depending on the targeted audience (CAB, CSP, etc.). The
final WP7 takes care of reporting the status of the certificate (and related evidence) to
authorized stakeholders.

Table 15. Workflow 7

Short Explanation Associated MEDINA Components

Report on EUCS certificate status for a ToC. The report can be
obtained by the CAB or by the CSP, in which case the level of
provided details might vary.

Integrated UI, RAOF (Dynamic),
CCE, ACLM, SSI

In this case, the proposed RBAC model considers read-only actions for all roles except the
Auditor. The latter must have read and write access in order to operate at the level of evidence
and assessments in the corresponding components’ UIs.

Table 16. RBAC Model for Workflow 7

Roles Component Allowed Actions

IT Security Governance Integrated UI, RAOF (Dynamic), CCE, ACLM, SSI Read

Security Analyst Integrated UI, RAOF (Dynamic), CCE, ACLM, SSI Read

Domain Governance Integrated UI, RAOF (Dynamic), CCE, ACLM, SSI Read

Product and Service Owner Integrated UI, RAOF (Dynamic), CCE, ACLM, SSI Read

Product (Security) Engineer Integrated UI, RAOF (Dynamic), CCE, ACLM, SSI Read

Chief Information Security
Office (CISO)

Integrated UI, RAOF (Dynamic), CCE, ACLM, SSI Read

Customer Integrated UI, RAOF (Dynamic), CCE, ACLM, SSI Read14

Auditor Integrated UI, RAOF (Dynamic), CCE, ACLM, SSI Read/Write

14 For non-authenticated users (i.e., Customer role), the usage of SSI technology provides selective
disclosure of attributes related to the EUCS certificate. This measure avoids leaking confidential attributes
used during the certification process.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 40 of 104

www.medina-project.eu

4 MEDINA Framework components and integration

This section describes the status of the integration activities of the MEDINA components.

The figure below represents the evolution of the architecture presented in D5.3 [1] and
identifies eight building blocks, each one corresponding to a different functionality. Further
information about the architecture can be found in deliverable D5.2 [2].

For each block there is a dedicated section presenting the components which are part of it. The
block#8 represents the Integrated UI, which is a WP5 component. For this reason, it is described
in the dedicated Section 5.

For each component, we present a brief description of its role in the MEDINA framework and a
reference to the deliverable containing more details about it. This is followed by information on
the integration of the component with the other MEDINA components, the improvements
achieved during this second round and the APIs exposed. Finally, if available, a brief description
of the implemented Graphical User Interface (GUI) is included.

All component REST APIs are listed in APPENDIX E: Published APIs.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.20223

© MEDINA Consortium Contract No. GA 952633 Page 41 of 104

www.medina-project.eu

Figure 15. MEDINA Architecture and data flow

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 42 of 104

www.medina-project.eu

4.1 Catalogue (block #1)

The Catalogue is the component that implements most of the KR1 (Repository of metrics and
measures). The main goal is to have an automated tool where a CSP compliance manager or an
auditor can obtain all the information and guidance related to a security scheme (in MEDINA,
we are focused in the EUCS scheme). Namely the controls, the security requirements, its
assurance levels, etc. That is, everything that can be considered “static” information that
appears in the standard.

As a result of the research performed in MEDINA, the Catalogue has been extended with extra
information/functionalities such as reference TOMs, metrics, mapping to controls that are
similar in other schemes, and self-assessment questionnaires.

For more information about the Catalogue, see the deliverable D2.2 [11].

4.1.1 Catalogue of Controls and Metrics

The Catalogue of Controls and Metrics component provides the following functionalities:

• Endorsement of Security Control Frameworks and related attributes: security
requirements, categories, controls, reference TOMs, metrics, and assurance levels.

• Provision of guidance for the (self-)assessment of the requirements.

• Shows and filters the information based on some values for the attributes:
o Shows the controls by category, navigation through categories, controls,

requirements, and metrics
o Selection of requirements of a certain assurance level
o Selection of metrics related to TOM.
o Provides filters in each screen based in field names

• Mapping of certification schemes, providing information about related controls from
different frameworks, with respect to controls in EUCS.

• Provides a self-assessment questionnaire (of about 500 questions) to check the degree
of compliance of the EUCS 2022 security framework [12].

More information about all the Catalogue can be found in D2.2 [11].

4.1.1.1 Implementation and Integration Status

The main updates of the second release of the Catalogue of Controls and Metrics (M27) with
respect to the previous version (M12) are related to:

• Updates to EUCS draft version August 2022 [12]

• Development of the questionnaire functionality

• Refurbishment of the GUI for easier navigation through the application data

• Updates to the mapping of controls, including the new version of ISO 27002 and the
Cisco Cloud Controls Framework15

• Inclusion of the Reference TOMs

• Configuration of the deployment of the component for Kubernetes into the
development and test environments

• Updates on the data model used, specifically in the database, as required by the Use
Cases.

15 Cisco CCF: https://www.cisco.com/c/en/us/about/trust-center/compliance/ccf.html

http://www.medina-project.eu/
https://www.cisco.com/c/en/us/about/trust-center/compliance/ccf.html

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 43 of 104

www.medina-project.eu

The second version of the Catalogue in M27 implements all mandatory requirements as defined
in deliverable D5.2 [2], at least partially. Concretely, 7 out of 9 (77%) of the requirements are
fully implemented, and the rest is very advanced. A docker-compose file for deployment has
been provided that can be deployed locally for development using vagrant and docker-compose.
The deployment in the Development and Test environments has been done through the
Kubernetes cluster provided by WP5.

The Catalogue frontend is now integrated with the MEDINA Integrated UI. It is also integrated
with the user management tool (Keycloak) and is able to control the logged user and its
properties. The Catalogue provides a GUI for end users, as well as a RESTful API to interact with
it. Both are described in Section 4.1.1.3.

The Catalogue provides data to the following MEDINA components: Orchestrator (controls and
metrics), NL2CNL Translator (metrics), SATRA-Risk Assessment and Optimization framework
(answers to the questionnaire), AMOE-Assessment and Management of Organizational Evidence
(control and metrics), and CCE-Continuous Certification Evaluation (relations between metrics,
requirements, controls, categories).

The Catalogue is now Open Source with license Apache 2.0 and the source code is available on
the public GitLab repository16.

4.1.1.2 Published APIs

The Catalogue has implemented all the internal functionality to access and modify the database
elements as a REST API, so the number of interfaces and endpoints is quite large. The list of the
available APIs is gathered in Annex E, Component: Catalogue of Controls . All of them are
available for the components that want to interact with the Catalogue.

The complete API is also available online at the repository17 as an OpenAPI definition.

4.1.1.3 Graphical Interface

The Catalogue offers a GUI to access and manipulate the different entities that are stored in the
database. A CRUD screen (Create/Retrieve/Update/Delete) has been developed for each of the
main entities, although not all these actions have been allowed in all cases.

The GUI allows the user to navigate through the EUCS framework elements, using the visual
elements on the different screens -like buttons, links, and filters-. For example, the user can
select information like the requirements of a certain assurance level, controls of a category,
metrics related to a requirement, reference TOMs, etc.

In the following, some screenshots are presented as a sample of the GUI, in particular to show:

• Controls (see Figure 16)

• Requirements (see Figure 17)

• Filters (see Figure 18 and Figure 19)

• Metrics (see Figure 20) and details of a metric (see Figure 21)

• Questionnaires (see Figure 22)

The interested readers can find a more detailed user manual in D2.2 [11].

16 https://git.code.tecnalia.com/medina/public/catalogue-of-controls
17 https://git.code.tecnalia.com/medina/public/catalogue-of-controls/-/blob/main/openapi.json

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/catalogue-of-controls
https://git.code.tecnalia.com/medina/public/catalogue-of-controls/-/blob/main/openapi.json

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 44 of 104

www.medina-project.eu

Figure 16. Controls of the “Organisation of Information Security” category

Figure 17. Requirements of the "OPS-05" control

Figure 18. Filter to search for “EUCS & High” requirements

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 45 of 104

www.medina-project.eu

Figure 19. Filter to search for controls

Figure 20. Metrics implemented for the “OPS-05.4” requirement

Figure 21. Details of a metric

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 46 of 104

www.medina-project.eu

Figure 22. Questionnaire. Questions for the OIS-01 Security control

4.2 Certification Metrics and Language (block #2)

The components belonging to the “Certification Metrics and Languages” block are mainly
related with KR3 (Certification Language), whose objective is to provide a language specification
which expresses the most relevant aspects of a security certification scheme in machine-
readable format using a Domain Specific Language (DSL).

More information about all the components described in this section can be found in the
deliverable D2.4 [13].

4.2.1 NL2CNL Translator

The NL2CNL Translator is the MEDINA component used to map EUCS NL (Natural Language)
requirements into their MEDINA CNL (Controlled Natural Language) translation. This translation
is performed in two steps: the first one selects a set of metrics that could be useful to evaluate
a certain security requirement, also called TOM (Technical and Organizational Measure). After
associating a set of metrics with a requirement, the second step translates those metrics into
policies. Specifically, requirements and metrics are expressed in NL, while the translated policies
are expressed in CNL.

The NL2CNL Translator interacts with the Catalogue of Controls and Metrics, with the CNL Store
through the CNL Editor APIs, and with the Orchestrator.

4.2.1.1 Implementation and Integration Status

Compared with M15, the NL2CNL Translator prototype has undergone some changes, and its
development and integration status are at an advanced stage. Specifically, the component now
consists of three modules, each with a specific function. The Translation module and the Metric
Recommender module were available in M15. The first one implemented a set of RESTful APIs
and the translation of metrics into obligations, from NL to CNL. The second one implemented
the association of a TOM with a set of metrics. The functionality of the Metric Recommender is
unchanged, whereas there is a new module, called API Server, which is responsible of
coordinating all the modules and of implementing the API interface towards the outside.

The whole prototype with all modules is correctly deployed to the MEDINA Kubernetes cluster
and is connected to the other components of the Certification Language block.

Specifically, the NL2CNL Translator connects to the Catalogue of Controls and Metrics through
its API, to retrieve the TOMs and metrics descriptions and metadata. Several tests have been

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 47 of 104

www.medina-project.eu

carried out to verify proper operation, and currently no errors have been found in retrieving the
necessary information from the Catalogue.

After the translation, the result is stored in the CNL Store, a database managed by the CNL Editor,
accessible though the CNL Editor APIs. At M15 this connection was still in a testing phase, while
currently the two components are fully connected through the CNL Editor APIs. Also in this case,
the tests performed did not generate errors in the creation of REOs, which are the objects
managed by the CNL Store. In addition, compared with M15, the CNL Editor ontology has been
updated and the NL2CNL Translator has been modified accordingly.

Lastly, the NL2CNL Translator interacts with the Orchestrator, which triggers the translation
through its User Interface. To this aim, the NL2CNL Translator has been modified with respect
to M15 to provide an endpoint that is invoked by the Orchestrator.

An additional feature currently available that had not yet been developed in M15 is the
implementation of authentication via Keycloak server. This allows the NL2CNL Translator to
verify that the user invoking its API is actually logged into the MEDINA framework.

The NL2CNL Translator is now Open Source with license Apache 2.0 and the source code is
available on the public GitLab repository18.

4.2.1.1 Published APIs

The NL2CNL Translator provides a REST API that can be used by the other components
interacting with it. The list of the available APIs is provided in Annex E, Component: NL2CNL
Translator and DSL Mapper.

4.2.2 CNL Editor

CNL Editor is the component that allows a user of a Cloud Service provider to manage, with a
Graphical Interface, the REO objects that are the association, in CNL format, between
Requirements and policies as compiled from NL2CNL Translator. CNL Editor takes as input REO
created from NL2CNL Translator and produces in output updated REO for DSL Mapper.

With the Editor Frontend, user can visualize REO, change Target Value specified for the Metrics
and delete Obligations not considered suitable for CSP. Finally, the user can send the REO to
the DSL Mapper with “map” operations which convert CNL obligations into Rego Code.

4.2.2.1 Implementation and Integration Status

CNL Editor is composed by these different modules:

• CNL Editor Interface: the web GUI to access CNL Editor.

• Vocabulary: a file in RDF format with extension .owl where the Ontology structures and
terms needed for the Editor the control of user changes on Obligations are defined.

• CNL Editor REST API: APIs used by the Editor and eventually by other Certification
Languages tools like CNL Translator and DSL Mapper for basic operations.

• CNL Store: database with Req&Obl xml files.

• Back Store Interface: REST APIs for access to the CNL Store used by CNL Editor.

CNL Editor was partially containerized on a VM standalone in M15. At the time of writing CNL
Editor is implemented in a mature version and has been fully deployed in the MEDINA
Kubernetes cluster. It provides both a GUI for end users and a set of RESTful APIs to interact with

18 https://git.code.tecnalia.com/medina/public/nl2cnl-translator

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/nl2cnl-translator

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 48 of 104

www.medina-project.eu

it. The vocabulary used by Editor was updated to the requirements available the Catalogue in
M26 (EUCS 2022 [12]).

From M15 onwards we revised the xml structure of REO to reflect the needs of MEDINA based
on partners requests, and the API was also renamed and adapted to better fit the MEDINA
context.

CNL Editor can be invoked from the MEDINA UI by selecting the option “Requirements &
Obligations” and access is allowed by Keycloak.

CNL Editor interacts with the other tools, NL2CNL Translator and DSL Mapper, by REST APIs.

4.2.2.2 Published APIs

CNL Editor makes available APIs that can be used from other tools (e.g., create by NL2CNL
Translator) to manage REO and that are listed in Annex E, Component: CNL Editor.

4.2.2.3 Graphical interface

CNL Editor has a Web Interface that allows a user visualizing and managing some changes to the
REOs. Operations allowed for a REO are: delete obligations or change the Target Values of
Obligations.

When the user invokes CNL Editor a list of REOs is shown (see Figure 23).

Figure 23. CNL Editor – REOs visualization

 When the user selects a specific REO the window shown in Figure 24 is displayed.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 49 of 104

www.medina-project.eu

Figure 24. CNL Editor – Showing a specific REO

4.2.3 DSL Mapper

The DSL Mapper is a component of the MEDINA framework that has the aim of mapping the
obligations expressed in CNL into executable policies expressed in DSL. In particular, the
obligations resulting from the previous steps are embedded in an XML object, called REO, and
read from the CNL Store, while the output generated by the DSL Mapper is expected to be
compliant with the DSL chosen in MEDINA, i.e., the Rego language. The Rego language allows
the creation of policies that can be used to automatically assess evidence, collected by the
evidence collector components. The output of the DSL Mapper is sent to the Orchestrator, which
performs the assessment of the policies.

4.2.3.1 Implementation and Integration Status

Compared with M15, several steps forward have been made regarding this component. The
most important change is in the implementation of a new stand-alone prototype, whereas
previously the DSL Mapper had been implemented directly in the NL2CNL Translator due to the
immaturity of the prototype.

There are two main subcomponents in the DSL Mapper: the first is called API Server and is
responsible for the API interface to other MEDINA components. Moreover, it coordinates all the
DSL Mapper operations. The second is the Mapping component, which implements the
generation of the Rego rules.

The prototype is currently deployed in the MEDINA Kubernetes cluster and is connected to the
other needed components of the MEDINA framework. Specifically, the mapping functionality is
triggered by the CNL Editor, through its UI. Then, the DSL Mapper uses the information stored
in the CNL Store as source of data. Currently, the connection between the DSL Mapper and the
CNL Editor is fully working.

After performing the mapping of obligations into Rego rules, the output is sent to the
Orchestrator in order to be further processed. The latter feature is not yet fully supported and
is in a beta stage, as errors sometimes occur that prevent the DSL Mapper from sending mapping
results to the Orchestrator.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 50 of 104

www.medina-project.eu

Similar to the other components of this block, the DSL Mapper also implements the
authentication via Keycloak server.

The DSL Mapper is now Open Source with license Apache 2.0 and the source code is available
on the public GitLab repository19.

4.2.3.1 Published APIs

The DSL Mapper provides a REST API that can be used by the other components interacting with
it. The list of the available APIs is shown in Annex E, Component: NL2CNL Translator and DSL
Mapper.

4.3 Risk Assessment and Optimisation Framework (block #3)

4.3.1 Risk Assessment and Optimisation Framework (RAOF)

RAOF is a service for supporting the non-conformity assessment process with a risk-based
decision-making capability. This component evaluates the current risk of the CSP, by estimation
of the CSP’s needs and protection against possible threats. The computed risk value is used to
evaluate how far is the CSP from full compliance with the selected certification scheme (and
assurance level). Not only does this analysis help to identify which security requirements are
missing, but also how risky it is for this CSP if these requirements are not fulfilled. By
implementing these functionalities, RAOF contributes to two Key Results: KR2 (by providing the
risk-aware support to a compliance manager before applying for certification) and KR6
(supporting the MEDINA’s auditor, i.e., Certification Life-Cycle Manager, with a risk-based
evaluation of detected non-conformities).

Additional details about this component are available in Deliverables D2.7 [10] and D4.4 [14].

4.3.1.1 Implementation and Integration Status

The RAOF component is used in two parts of the MEDINA process. First, the component provides
the support during the bootstrapping, when a compliance manager evaluates if the cloud service
could be certified (i.e., fulfill the requirements for certification). In this case, the compliance
manager interacts with the RAOF directly through the GUI.

RAOF is also used during the dynamic evaluation of compliance. CCE component notifies RAOF
about the requirements which have been evaluated by assessment tools and the result of these
assessments. If non-conformities are detected, RAOF re-computes the risk using initially
provided input and the assessment results and analyses the non-conformity gap. The result of
this analysis (i.e., whether the non-conformity is to be counted as major or minor) is provided
to the Life-Cycle Manager (LCM) for further evaluation of the status of the certificate.

In the current version all the main features are implemented. The engine for the non-conformity
gap analysis is set up to compute and compare risk values for different assurance levels and
different cloud market types. The computation is based on the cloud resources expected values
of which should be initially provided by the CSP and the fulfilled requirements of the certification
scheme. Moreover, the recently added functionality helps the compliance manager to optimise
its investment in covering certification scheme’s requirements to achieve at most minor non-
compliance. The dynamic part implements the communication between Continuous
Certification Evaluation (CCE) and Life-Cycle Manager (LCM) components and is set up to
perform the risk-based non-conformity gap assessment automatically.

19 https://git.code.tecnalia.com/medina/public/dsl-mapper

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/dsl-mapper

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 51 of 104

www.medina-project.eu

The component is integrated into the MEDINA’s platform and implements the common
functionalities for it. In particular, it uses the Keycloak mechanisms to authenticate users and
authorise access to the risk analysis functionalities only for associated Targets of Evaluations.
During the final period of the project, a more detailed use of this mechanism is envisaged, for
more accurate separation of duty management.

Another functionality implemented by the RAOF is importing results of the questionnaire
provided by the Catalogue of Controls and Metrics. This option aims to ensure that a user can
report which EUCS requirements the considered service satisfies only once, but benefit from
both analyses provided as by the Catalogue (compliance score) as well as RAOF (risk-based
analysis of non-conformities and optimised planning for implementation of additional
requirements).

Yet some work is expected to improve the component and integrate it better with other
components of MEDINA. Integration with other components should undergo deeper testing
(e.g., various options should be considered). Especially, integration with the dashboard of the
compliance manager may require additional endpoints to be implemented to simplify the work
of the compliance manager. Some modifications in the logic of the dynamic risk computation
could be implemented to enhance its computation of risks per resource. The values used to set
up the components and its GUI could see changes after getting the feedback from the use case
providers.

The Risk Assessment and Optimisation Framework is now Open Source with license Apache 2.0
and the source code is available on the public GitLab repository20.

4.3.1.2 Published APIs

RAOF provides a REST API with several endpoints. This API is to be used by the compliance
manager dashboard during the bootstrapping phase. All Targets of Evaluation (ToEs) managed
by the RAOF are created and could be modified by Clouditor using this API. As well, as the CCE is
supposed to invoke RAOF using a dedicated endpoint of this API.

The list of the available APIs is provided in Annex E, Component: Risk Assessment and
Optimisation Framework.

4.3.1.3 Graphical interface

RAOF provides a GUI for the direct interaction with a compliance manager, which can be used
to set up all settings for a Target of Evaluation (see Figure 25), add the list of resources and their
sensitivity (see Figure 26), and report fulfilled requirements (see Figure 27).

20 https://git.code.tecnalia.com/medina/public/static-risk-assessment-and-optimization-framework

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/static-risk-assessment-and-optimization-framework

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 52 of 104

www.medina-project.eu

Figure 25. RAOF - Setup of Targets of Evaluation

Figure 26. RAOF - List of resources

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 53 of 104

www.medina-project.eu

Figure 27. RAOF - Requirements to be fulfilled

Also, the GUI displays the results of the analysis and the computed risk values, as shown in Figure
28.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 54 of 104

www.medina-project.eu

Figure 28. RAOF - Results of the analysis

4.4 Continuous Evaluation and Certification Life-Cycle (block #4)

4.4.1 Continuous Certification Evaluation

In the previous version of this report (D5.3 [1]), the CCE component only implemented the basic
evaluation aggregation and supported a hard-coded sample standardisation schema. The
updates of the current version with regards to D5.3 include full integrations with the MEDINA
Catalogue of Controls and Metrics, the Orchestrator, and RAOF. A number of other features were
also implemented, such as storing the history of past evaluation states and support for handling
multiple Targets of Evaluation with a single CCE instance and calculation of operational
effectiveness values. A front-end web UI component was added as well.

The components belonging to the “Continuous Certification Evaluation” are mainly related with
KR5 (Continuous Cloud Certificate Evaluator, CCE), whose objective is to collect assessment
results gathered by Security Assessment components and continuously build an evaluation tree

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 55 of 104

www.medina-project.eu

representing aggregation of assessment results to determine compliance with the different
controls.

Additional details about the component’s architecture and methodology used is available in
Deliverable D4.2 [15].

4.4.1.1 Implementation and Integration Status

All the elicited functional requirements are now implemented in the CCE. They are implemented
using three microservices: CCE core (back-end), CCE UI (front-end) and MongoDB database.

The Continuous Certification Evaluation component (CCE) receives assessment results gathered
by Security Assessment components through the Orchestrator and continuously builds an
evaluation tree representing the aggregation of assessment results to determine compliance
with the different certification elements.

Beside the assessment results, CCE also receives data about the Cloud Services and related
Targets of Evaluation from the Orchestrator. Another required input is the structure of the
evaluation scheme used (relations between metrics, requirements, controls, categories) that is
obtained from the MEDINA Catalogue of Controls and Metrics.

Outputs of the CCE are consumed by the Risk Assessment and Optimisation Framework (RAOF)
and the Life-Cycle Manager (LCM). CCE periodically sends the changed values of the evaluation
tree to RAOF for the risk-based evaluation of the severity of incompliances. The LCM queries the
CCM’s API to obtain operational effectiveness values which help determine the overall
certification state.

The evaluation aggregation is implemented for multiple Targets of Evaluation (multi-tenancy
support), history of evaluation tree states is being stored in a database and is exposed through
an API, the operational effectiveness values are being calculated and integration with all
components needed for the complete functionality is complete. A web user interface of the
component is also implemented with minor updates still pending.

The authentication and authorization of users (using Keycloak) are not yet implemented.

The source code of both the CCE core21 (back-end) and the UI22 (front-end) is available on the
public GitLab repository. Dockerfiles are available for simple deployment and integrated with
the project’s development and testing environments on Kubernetes.

4.4.1.2 Published APIs

CCE exposes two APIs:

• HTTP REST-like API, mainly used for communication with the web front-end (UI)

• gRPC API, for communication with the Orchestrator and the Life-Cycle Manager

Details of both these APIs are described in Annex E, Component: Continuous Certification
Evaluation

21 https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation
22 https://git.code.tecnalia.com/medina/public/cce-frontend

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation
https://git.code.tecnalia.com/medina/public/cce-frontend

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 56 of 104

www.medina-project.eu

4.4.1.3 Graphical interface

The CCE frontend provides a tree visualization of the assessment results (as shown in Figure 29).
Additional web UI updates are still pending.

Figure 29. Sample assessment results tree

4.4.2 Automated Certificate Life Cycle Manager

The Automated Certificate Life Cycle Manager (LCM) integrates different sources of information
to decide on the certificate status. As such, it presents the final step of the MEDINA framework,
consolidating all assessments/evaluations into one result. It addresses KR6 (Risk-Based Auditor
Tool).

4.4.2.1 Implementation and Integration Status

The LCM is integrated with the components mentioned above: the integration with the CCE is
implemented via a periodical HTTP request that retrieves the operational effectiveness data.
Risk-based evaluations are reported to the LCM by the RAOF after every evaluation, e.g., every
five minutes. This connection is also implemented via an HTTP API. A further HTTP request is
sent to the SSI Framework component. Currently, this request is only sent if the certificate is
suspended or withdrawn, since only in this case should the CAB review the available evaluation
results and possibly issue a new certificate with a changed status. The connection to the
Orchestrator is implemented using gRPC and serves the purpose of storing certificate data
including their state history in a permanent storage.

As inputs, it obtains information from the Continuous Certification Evaluation component which
calculates data on operational effectiveness, i.e., compliance data over a certain time frame.
Additionally, it obtains information from the Risk Assessment and Optimisation Framework,
which provides a risk-based evaluation of deviations present in the cloud service.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 57 of 104

www.medina-project.eu

As outputs, the LCM provides the certificate status to the Orchestrator to be saved in a database
and presented in the Orchestrator UI. Furthermore, it reports to the SSI Framework, since it is
possible that a new certificate credential needs to be issued. For more details, see deliverable
D4.2 [15].

The Automated Certificate Life Cycle Management is now Open Source with license Apache 2.0
and the source code is available on the public GitLab repository23.

4.4.2.2 Published APIs

The Automated Certificate Life Cycle Management APIs are listed in Annex E, Component: Life
Cycle Manager.

4.4.2.3 Graphical interface

The status of existing certificates and their histories are presented in the Orchestrator UI. Figure
30 shows an example of this.

Figure 30. Screenshot of the certificates overview presented in the Orchestrator UI

4.4.3 Automated Self-Sovereign Identity-based certificates management
(SSI)

The Self-Sovereign Identity (SSI) Framework provides the CSPs with the capability to manage
their own security certificates as part of their identity through verifiable credentials. “To manage
their own identity” ultimately means that they store their identity on their own “user space”
without intervention of a third-party.

The SSI Framework is not only composed of the CSP component to store and control the
credentials. It is also composed of the issuer component which provides the CAB a way to issue
verifiable credentials about the security certificates related to the CSP; and the client´s
component which provides a way to ask and verify proofs of different security certificate

23 https://git.code.tecnalia.com/medina/public/life-cycle-manager

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/life-cycle-manager

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 58 of 104

www.medina-project.eu

features. In this sense, privacy is an important requirement within MEDINA, as several security
certificate features are considered sensitive and must be treated carefully. The SSI Framework
is capable of sharing sensitive information in a confidential way by keeping user´s identity out
of third parties, which act as identity silos, reducing the risk of identity theft; but also, by using
Zero-Knowledge Proofs (ZKPs). ZKPs preserve user´s privacy using cryptography to proof that a
CSP has some attributes without disclosing these attributes.

The SSI Framework is part of KR5 (Cloud Certificate Evaluator). Details about this component are
available in deliverable D4.2 [15].

4.4.3.1 Implementation and Integration Status

A first prototype of the Self-Sovereign Identity (SSI) Framework has been implemented since
M15 completely covering its functionality. It is composed by one SSI-network, three SSI-agents
(issuer, holder and verifier, for the complete SSI flow) and two SSI-webapps (one for the holder
and another one for the issuer and verifier).

The SSI-network, two of the SSI-agents (issuer and verifier), one of the SSI-webapps (the one for
the issuer and verifier) and the SSI-API are provided as a service by TECNALIA emulating the CAB
and a potential CSP customer. All these components are correctly deployed and integrated with
each other. Additionally, the SSI-API is also correctly integrated with the LCM for receiving the
certificate state after the MEDINA framework execution.

Additionally, one SSI-agent (holder) and one SSI-webapp (the one for the holder) are correctly
deployed on the MEDINA environment and are correctly integrated with Keycloak. These
components are also integrated with the rest of the SSI components. No integration with
additional components is needed in this case. The associated functional requirements are fully
covered.

4.4.3.2 Published APIs

The SSI-API component of the SSI Framework exposes an API described in detail in Section
6.3.2.3 in D4.2 [15]. The list of these APIs is also available in Annex E, Component: Automated
Self-Sovereign Identity-based certificates management (SSI).

4.4.3.3 Graphical interface

The Self-Sovereign Identity (SSI) Framework is controlled by means of a web-app application.
Figure 31 shows an example of the graphical interface.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 59 of 104

www.medina-project.eu

Figure 31. MEDINA Self-Sovereign Identity (SSI) Framework graphical interface

4.5 Organizational Evidence Gathering and Processing (block #5)

4.5.1 Organizational Evidence Gathering and Processing

The Assessment and Management of Organizational Evidence (AMOE) component extracts and
collects evidence from policy documents. The component is addressing the NLP and
organizational measure aspects of KR4 (Continuous Evidence Management Tools). It can
compute pre-assessments (hints) that can be used to speed up the audit process. After
uploading a document, the component extracts the evidence for a set of organizational metrics
with the help of the built-in Natural Language Processing (NLP) pipeline.

The processed data can be analyzed in the UI and assessment results can be set/confirmed. Once
complete, the assessment results can be forwarded to the Orchestrator on demand.

Additional details about this component are available in deliverables D3.2 [16] and D3.5 [17].

4.5.1.1 Implementation and Integration Status

The main implementation of AMOE started in M15. Current status of the implementation
consists of one component made up by the webservice for the user interface (UI) and REST API
(e.g., for the CCD).

For the evidence gathering functionality the following subprocesses have been implemented.
Pre-processing for PDF to transform unstructured policy documents into semi-structured
content usable for faster and more accurate extraction. The evidence extraction pipeline itself,
which consists of one main method (keyword-based approach) that is used by default. For
research purposes three other similar evidence extraction pipelines have been built, however,
tests have shown they would need additional work. All evidence extraction approaches make
use of standard NLP techniques and utilize the pre-trained question answering system roberta-
base-squad224.

24 https://huggingface.co/deepset/roberta-base-squad2

http://www.medina-project.eu/
https://huggingface.co/deepset/roberta-base-squad2

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 60 of 104

www.medina-project.eu

The integration of the component into the MEDINA framework uses the API of the Catalogue of
Controls and Metrics and has a hardcoded fall back to a static metric file if the connection would
fail. Furthermore, the connection to the Orchestrator for metric implementation details and
sending assessment results and evidence has been implemented.

To store the metadata, logging and extracted evidence internally, a connector to internal data
base (MongoDB) has been added. The user action information (on edit/upload/delete/submit)
is logged into the data base.

User authentication is done via the MEDINA Keycloak service and respective component client.
Role based access (Keycloak roles) as well as filtering of information based on cloud service
information in the authentication token has been implemented. A dockerfile and kubernetes
configuration for deployment of webservice, db and redis cache have been created.

A quality check pipeline for manual checks on the status and aid of research tasks for evidence
extraction has been implemented. It enables comparison of annotated information in the tool
Inception25 to the evidence extraction approaches.

The AMOE component is now Open Source with license Apache 2.0 and the source code is
available on the public GitLab repository26.

4.5.1.2 Published APIs

The AMOE APIs are listed in Annex E, Component: Assessment and Management of
Organizational Evidence – AMOE.

4.5.1.3 Graphical interface

AMOE provides a GUI for users to interact (see Figure 32). The following access types are defined
in M27, configurable through the Keycloak authentication token roles:

• no access

• read only access

• upload/delete files or stop running processes

• edit/submit assessment results

• admin (full read/write access)

25 https://inception-project.github.io/
26https://git.code.tecnalia.com/medina/public/amoe

http://www.medina-project.eu/
https://inception-project.github.io/
https://git.code.tecnalia.com/medina/public/amoe

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 61 of 104

www.medina-project.eu

Figure 32. AMOE landing page

4.6 Orchestrator and Databases (block #6)

4.6.1 Orchestrator and Databases

The Orchestrator is the central interface in MEDINA and manages evidence and assessment
results. It provides access to databases, forwards data between components, and provides the
main user interface. As such, it is an essential component in the integrated MEDINA framework.
It addresses KR4 (Continuous Evidence Management Tools).

For more details, please refer to deliverables D3.2 [16] and D3.5 [17].

4.6.1.1 Implementation and Integration Status

The Orchestrator provides a graphical user interface which, among others, allows to view
assessment results, register cloud services, and manage the evaluation of cloud services. It is
integrated with the evidence collection tools (including AMOE), the security assessment tools,
the Continuous Certification Evaluation, the Catalogue of Controls and Metrics, the Keycloak
component, and the DSL mapper. It also provides a persistent (and in-memory) database.

The Orchestrator component is now Open Source with license Apache 2.0 and the source code
is available on the public GitLab repository 27.

4.6.1.2 Published APIs

The Orchestrator implements numerous APIs, since it is integrated with many components.
Please see Annex E, Component: Orchestrator for an overview28.

4.6.2 Trustworthiness System

The MEDINA Evidence Trustworthiness Management System provides a secure storage for
evidence and assessment results hashes. It is implemented through Smart Contracts backboned

27 https://git.code.tecnalia.com/medina/public/orchestrator
28 An up-to-date API specification can also be found on GitHub:
https://github.com/clouditor/clouditor/blob/main/openapi/orchestrator/openapi.yaml

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/orchestrator
https://github.com/clouditor/clouditor/blob/main/openapi/orchestrator/openapi.yaml

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 62 of 104

www.medina-project.eu

by a common Blockchain network for all the MEDINA framework instances, providing the
following functionalities:

• Includes the logic for all Orchestrator instances in MEDINA to provide the required
information to be audited (about evidence and assessment results). For this purpose, an
API is exposed by the Blockchain client.

• Provides secure long-term information recording, thanks to the inherent advantages of
Blockchain (integrity, decentralization, authenticity…).

• Includes the logic for external users to access MEDINA’s audited information (about
evidence and assessment results) in a graphical and user-friendly way through a kibana-
based dashboard.

The MEDINA Evidence Trustworthiness Management System is part of the KR4 (Continuous
Evidence Management tools). Details about this component are available in D3.2 [16].

4.6.2.1 Implementation and Integration Status

The MEDINA Evidence Trustworthiness Management System is almost completely implemented
and integrated in M27. It is composed by three main components: Blockchain ledger and
deployed Smart Contracts, Blockchain monitor provided as a service from TECNALIA, and
Blockchain client needed by the Orchestrator to interact with the Blockchain. The integration
between the Blockchain client and the Orchestrator component by means of an API has been
improved since M15 fixing some bugs and including error management.

Keycloak is not needed by the MEDINA Evidence Trustworthiness Management System because
it includes its own user management functionality as it is provided as a common service to
different use-cases and users. For this reason, users and roles are not limited to those defined
in MEDINA Keycloak.

The associated functional requirements are almost covered except for the trustworthiness
guaranteeing capabilities by extracting checksums from DLT and comparing with current
checksums to detect modifications. Manual ways have been defined but automatic ways are
under consideration. Usability and security have been highly improved since M15.

4.6.2.2 Published APIs

The Blockchain client exposes an API described in detail in Appendix C of D3.2 [16]. The list is
also available in Appendix E, Component: Trustworthiness System.

4.6.2.3 Graphical interface

The MEDINA Evidence Trustworthiness Management System exposes a Kibana-based graphical
interface available at: https://medina.bclab.dev/ [authentication required]. For more details,
refer to Section 4.2.2.5 in D3.2 [16].

Figure 33 shows an example of dashboard of the graphical interface.

http://www.medina-project.eu/
https://medina.bclab.dev/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 63 of 104

www.medina-project.eu

Figure 33. MEDINA Evidence Trustworthiness Management System graphical interface

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 64 of 104

www.medina-project.eu

4.7 Evidence Collection and Security Assessment (block #7)

4.7.1 Evidence Collection

4.7.1.1 Evidence Collection (Clouditor Discovery)

The evidence collectors form the first automated step in the MEDINA evidence pipeline. They
scan a certain resource and compile information about it to be assessed by the Security
Assessment. The Cloud Evidence Collection provided by Clouditor discovers existing cloud
resources, e.g., from Microsoft Azure systems, and retrieves information about them. It then
creates a MEDINA evidence and sends it to the Security Assessment. This component addresses
KR4 (Continuous Evidence Management Tools).

For more details, please refer to deliverables D3.2 [16] and D3.5 [17].

4.7.1.1.1 Implementation and Integration Status

The Clouditor Evidence Collection implements all requirements defined in D5.2 [2]. Still, we will
extend its functionality regarding the cloud resource types it can discover. It is furthermore
integrated with the Security Assessment to which it sends the evidence, as well as with the
Orchestrator which receives the raw evidence to be stored in a database.

The Evidence Collection components are now Open Source with license Apache 2.0 and the
source code is available on the public GitLab repository29.

4.7.1.1.2 Published APIs

The Evidence Collection offers two APIs: One for starting the discovery, and one for retrieving
the evidence collected in the last iteration. See also Annex E, Component: Evidence Collection
(Cloud Discovery).

4.7.1.2 Evidence Collection (Wazuh)

Wazuh [18] is a host-based intrusion detection system that features several modules for threat
detection, integrity monitoring, incident response, and basic compliance monitoring. It is
deployed on individual machines in the CSP’s infrastructure and gathers data about security-
related events on these machines. An additional component, the Wazuh & VAT Evidence
Collector is used to connect Wazuh with the rest of the MEDINA framework by querying Wazuh
and producing evidence based on its state and reported events. While Wazuh is a standalone
component, Wazuh &VAT Evidence Collector functions as a microservice within the MEDINA
framework.

Wazuh addresses the KR 4 (Continuous Evidence Management Tools).

Additional details about this component are available in deliverables D3.2 [16] and D3.5 [17].

4.7.1.2.1 Implementation and Integration Status

All requirements defined [3] for evidence collection with Wazuh are implemented. The evidence
is currently produced for a limited number of metrics, which is planned to be extended. It is
integrated (through the Wazuh & VAT Evidence Collector) to the Security Assessment component
to which it sends the produced evidence.

29 https://git.code.tecnalia.com/medina/public/cloud-evidence-collector

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/cloud-evidence-collector

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 65 of 104

www.medina-project.eu

The Evidence Collection component is now Open Source with license Apache 2.0 and the source
code is available on the public GitLab repository30.

4.7.1.2.2 Published APIs

There are no APIs exposed externally (to other MEDINA components). Internally, Wazuh
publishes an API for querying its state which is used by the Wazuh & VAT Evidence Collector.

4.7.1.3 Evidence Collection (Vulnerability Assessment Tools)

Vulnerability Assessment Tools (VAT) act as a vulnerability scanning and detection framework.
The component incorporates multiple web application scanning tools that can be configured to
periodically scan the CSP’s services in testing or in production environments and report about
detected vulnerabilities. It also provides capabilities to run user-provided vulnerability detection
scripts which can be used with VAT to produce MEDINA-compliant evidence.

VAT address the KR4 (Continuous Evidence Management Tools).

Additional details about this component are available in deliverables D3.2 [16] and D3.5 [17].

4.7.1.3.1 Implementation and Integration Status

Similar to Wazuh, VAT is also connected to MEDINA by means of the Wazuh & VAT Evidence
Collector component. Currently, evidence can be produced for custom user-provided
vulnerability detection scripts with a configurable metric identifier.

The Evidence Collection component is now Open Source with license Apache 2.0 and the source
code is available on the public GitLab repository31.

4.7.1.3.2 Published APIs

No APIs are externally exposed by VAT. Internally, VAT exposes an API to provide information
about the configuration and results of all scheduled and completed tasks. This API is used by the
Wazuh & VAT Evidence Collector to produce evidence based on the state of VAT. The evidence
is forwarded to the Security Assessment component (Clouditor).

4.7.1.4 Security Assessment (Clouditor)

Once the evidence has been collected, it must be assessed regarding the requirements specified
in the respective certification catalogue. The Security Assessment first obtains pre-defined
metrics data and policies from the Orchestrator. It then uses this data to assess incoming
evidence regarding their compliance with the metric data. Assessment Results are the output of
this component and include the compliance state, resource ID, and other information that
enable auditors to trace a non-compliance to its exact source. It addresses KR4 (Continuous
Evidence Management Tools) and KR5 (Cloud Certificate Evaluator).

For more details, please refer to deliverables D3.2 [16] and D3.5 [17].

30 https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
https://git.code.tecnalia.com/medina/public/wazuh-deploy
31 https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
https://git.code.tecnalia.com/medina/public/vat-deploy
https://git.code.tecnalia.com/medina/public/vat-genscan

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
https://git.code.tecnalia.com/medina/public/wazuh-deploy
https://git.code.tecnalia.com/medina/public/wazuh-vat-evidence-collector
https://git.code.tecnalia.com/medina/public/vat-deploy
https://git.code.tecnalia.com/medina/public/vat-genscan

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 66 of 104

www.medina-project.eu

4.7.1.5 Implementation and Integration Status

The Security Assessment component currently implements all mandatory requirements as
defined in deliverable D5.2 [2]. It is integrated with the Evidence Collection and the Orchestrator,
and therefore implements all necessary integrations. These also include the integration with the
Keycloak component.

The Security Assessment component is now Open Source with license Apache 2.0 and the source
code is available on the public GitLab repository32.

4.7.1.6 Published APIs

The Security Assessment offers two APIs: one for providing evidence to be assessed, and one for
querying assessment results. See also Annex E, Component: Security Assessment (Clouditor).

32 https://git.code.tecnalia.com/medina/public/security-assessment

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/security-assessment

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 67 of 104

www.medina-project.eu

5 MEDINA Integrated User Interface (block #8)

This section provides an in-depth description of the MEDINA Integrated User Interface (IUI).

5.1 Implementation

5.1.1 Functional description

The goal of the tool is to provide a main access point for the MEDINA Framework: it integrates
with existing authentication and guides users based on their authorization level to the user
interfaces of specific components.

5.1.1.1 Fitting into overall MEDINA Architecture

The MEDINA Framework is developed with a microservices architecture. Thus, each component
implements its own Graphical User Interface (GUI). For this reason, the MEDINA Framework
GUIs are separated, and the final users need a leading thread that makes it easier to navigate
through content. The MEDINA Integrated UI integrates all these GUIs into a single and organized
entry point.

5.1.2 Technical description

In order to facilitate independent team frontend development of functionalities, the
architecture chosen for this implementation is “micro-frontends” [19]. This kind of architecture
allows to embed in a main frontend component (Integrated UI) any other UI in the framework
regardless of the underlying technology.

5.1.2.1 Prototype architecture

The following diagram describes a simplified architecture from the Integrated UI perspective.
The client lands on the Integrated UI and then the user can navigate to the GUI provided by
other components. These components need to implement a Keycloak adapter in order to
enforce authentication.

Figure 34. MEDINA UI Architecture

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 68 of 104

www.medina-project.eu

5.1.2.2 Description of components

5.1.2.2.1 Authentication and authorization

Authentication is managed by Keycloak33, which is a standalone component based on an open-
source solution. It provides a UI and, with due initial configuration, advanced authentication and
authorization capabilities, including SSO, Identity Brokerage and role mapping. Every
component implements a “Keycloak adapter” which acts as an HTTP interceptor and checks on
resources requests whether:

• The client requesting user authentication is a registered client

• The user is authenticated, if not it redirects to login page

• The user is authorized for the requested resource based on its role on Keycloak config-
uration, if not it redirects to an appropriate error page

Once a user is authenticated, a JWT is provided which contains user information and roles. It
allows us to implement in a safe way features like conditional formatting and routing based on
user’s role. For example, a CSP wouldn’t see what concerns an Auditor accessing the same panel.

Figure 35. Bearer Token Fields

As shown in Figure 35, the token provides user related information available to the components
that are being accessed. In particular during this second round we took advantage of it in order
to provide the cloud services and cloud service providers references that are linked to the
current user.

33 https://www.keycloak.org/

http://www.medina-project.eu/
https://www.keycloak.org/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 69 of 104

www.medina-project.eu

Figure 36. Keycloak server

In MEDINA, the Keycloak identity management server acts as:

• A source of truth for authentication and authorization of users and microservices
communication

• An identity broker for existing enterprise identity providers

• Based on OpenID Connect standard

Microservices take advantage of Keycloak adapters to communicate with Keycloak server. Each
microservice has its corresponding configuration on Keycloak server.

As a result, we have successfully integrated the Enterprise Identity Provider authentication
provided by the UC1 (Bosch Active Directory) in M27.

5.1.2.2.2 Integration of components

Table 17 shows the list of components integrated in M27 in the MEDINA integrated UI and the
chosen integration strategy. Respect to M15, during this period we integrated four new
components. These new integrated components are highlighted in light green in Table 17.

Table 17. Integration strategy for the different MEDINA components

Component name Integration strategy

Catalogue of Metrics and Controls Iframe

Orchestrator*
*This integration has been set up, but will be finalized in the next

phase

Iframe

CNL Editor Iframe

Continuous Certificate Evaluation Iframe

Risk Assessment and Optimisation Framework Iframe

Keycloak Rest API

Organizational Evidence Gathering and Processing Iframe

5.1.2.3 Technical specifications

The prototype is developed using Angular 12 [20], a modern typescript framework that allows
us to build high-performance, scalable, component-based single page web applications The
framework is enriched with Angular Material 2 library [20], a set of high quality animated
responsive components that follow Material Design UI specifications. The application runs on a
Nginx web server [21].

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 70 of 104

www.medina-project.eu

Integration of micro-frontends is obtained through Iframes and REST API. In particular, since the
micro-frontends are deployed in the Kubernetes cluster, we are able to integrate them by
providing the URL of the component and update automatically the referred services in the
application, with great benefits to productivity.

Web application source code is packaged as ES flattened module and added to a Nginx:alpine
image, in order to containerize it.

5.1.2.4 User Interface structure

In this section we present the authentication provided by the MEDINA Integrated UI.

5.1.2.4.1 Login, authentication and Iframe embedding

Unauthenticated users that try to access the integrated-UI are redirected to Keycloak’s login
page (see Figure 37). We collaborated with UC1 in order to integrate the possibility to
authenticate with the external identity provider provided by Bosch in the MEDINA Login page.
Thanks to this approach a user registered into the Bosch Active Directory can be also recognized
in the MEDINA Framework.

Figure 37. Keycloak Login Page

After inserting correct credentials, users are redirect to the page that the request was originated
from (see Figure 38).

The UI is composed of a fixed top navigation bar and a dynamic lateral navigation bar, so that
the latter can be hidden or shown depending on screen size. Main content is rendered inside
the container by Angular Routing Component, depending on the requested endpoint. For
example, path /frame renders an Iframe component which embeds a different application.

In the following example, the Integrated-UI embeds Catalogue dashboard. As explained before,
the authentication is received correctly by the embedded component, without the need to log-
in again.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 71 of 104

www.medina-project.eu

Figure 38. FullScreen IFrame Embedding - Catalogue and Integrated UI

5.1.3 Delivery and usage

5.1.3.1 Package information

The package has the following structure:

Table 18. Package Structure

Path Description

/conf Contains specifications that are used by docker when generating an
image to configure Nginx web server

/dist Contains the result of the build

/keycloak-dev-docker-
compose

The docker compose for local development described in the readme
file

/kubernetes Contains kubernetes configuration files for deployment

/Kubernetes-test Contains kubernetes test configuration files for deployment

/node_modules Contains installed npm modules

/realm-config This file contains a backup of the keycloak realm configurations

/src/Dockerfile This file contains specifications that are used in order to build a
docker image

/src/assets/config/config.json Contains application configuration which can be modified at
runtime

/src/environments/ Contains static configurations based on environment (dev or test)

/src/app/services Contains services that are generated via OpenAPI specs in order to
integrate with other applications in MEDINA Framework

/src/app/ Contains the main components of the application

5.1.3.2 Download

The Integrated User Interface is closed-source and published on the private TECNALIA GitLab at:
https://git.code.tecnalia.com/medina/wp5/task_5.3/integrated-ui [internal use only -
authentication required].

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/wp5/task_5.3/integrated-ui

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 72 of 104

www.medina-project.eu

6 Conclusions

This document reports on how the objectives for M27 related to task 5.3 have been fulfilled.
First of all, the environment is kept in maintenance compared to the first version of M15, and
the automation of the solution has been improved by redefining the methodology described
with the use of CI/CD pipelines. The adoption of the CI/CD strategy enables the automatic
release of the components in the two virtual environments of the Kubernetes cluster, “dev” and
“test”. The components that made up the eight building blocks of the MEDINA reference
architecture have reached a high level of maturity and some components such as SSI and block
five components have been added for the first time.

In addition, the document shows the seven scenarios identified in the previous version in a new
way by introducing roles and their level of visibility that define the allowed actions. At the same
time, integration activities have been led with the support of technical webinars and
demonstrations on different topics regarding the DevOps approach integrated with the
Kubernetes environment, the Keycloak integration with the component, and how to manage the
authorization and filtering in MEDINA.

The next activities planned for the third and last version of this “MEDINA integrated solution”
foresee improving the solution with feedback coming from the Use Cases, and improving the
security pipeline by adding the MEDINA component “Codyze”. A satisfactory state of completion
will be reached for each component and the Integrated User Interface will be finalised with the
fulfilment of all requirements, in particular regarding the look & feel. This final version will be
released in M33.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 73 of 104

www.medina-project.eu

7 References

[1] MEDINA Consortium, “D5.3 MEDINA integrated solution-v1,” 2022.

[2] MEDINA Consortium, “D5.2 MEDINA Requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy,” 2022.

[3] MEDINA Consortium, “D5.1 MEDINA Requirements, Detailed architecture, DevOps
infrastructure and CI/CD and verification strategy,” 2021.

[4] “K8s,” [Online]. Available: https://kubernetes.io/docs/home/. [Accessed January 2023].

[5] “Keycloak,” [Online]. Available: https://www.keycloak.org/. [Accessed January 2023].

[6] MEDINA Consortium, “D6.3 Use cases development and validation-prototypes-v1,” 2022.

[7] “SPDX license,” [Online]. Available: https://spdx.org/licenses/. [Accessed January 2023].

[8] “JFrog Artifactory,” [Online]. Available: https://jfrog.com/artifactory/. [Accessed January
2023].

[9] “Codyze,” [Online]. Available: https://www.codyze.io/?ref=https://githubhelp.com.
[Accessed January 2023].

[10] MEDINA Consortium, “D2.7 Risk-based techniques and tools for Cloud Security
Certification-v2”.

[11] MEDINA Consortium, “D2.2 Continuously certifiable technical and organizational
measures and catalogue of cloud security metrics-v2,” 2023.

[12] ENISA, “EUCS -Cloud Service Scheme,” Draft version provided by ENISA (August 2022) - not
intended for being used outside the context of MEDINA, 2022.

[13] MEDINA Consortium, “D2.4 Specification of the Cloud Security Certification Language-v2,”
2022.

[14] MEDINA Consortium, “D4.4 Methodology and tools for risk-based assessment and security
control reconfiguration-v1,” 2022.

[15] MEDINA Consortium, “D4.2 Tools and Techniques for the Management and Evaluation of
Cloud Security Certifications - v2,” 2022.

[16] MEDINA Consortium, “D3.2 Tools and techniques for the management of trustworthy
evidence-v2,” 2022.

[17] MEDINA Consortium, “D3.5 Tools and techniques for collecting evidence of technical and
organisational measures-v2,” 2022.

[18] Wazuh Inc., “Wazuh,” [Online]. Available: https://wazuh.com. [Accessed January 2023].

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 74 of 104

www.medina-project.eu

[19] L. M. D. T. Severi Peltonen, "Motivations, benefits, and issues for adopting Micro-
Frontends: A Multivocal Literature Review," DAZN, London, United Kingdom and Tampere
University, Tampere, Finland, 24 03 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584921000549. [Accessed
January 2023].

[20] Google, “Angular Material,” [Online]. Available: https://material.angular.io/. [Accessed
January 2023].

[21] “Nginx,” [Online]. Available: https://www.nginx.com/. [Accessed January 2023].

[22] “RKE,” [Online]. Available: https://rancher.com/docs/rke/latest/en/os/. [Accessed
January 2023].

[23] “Rook/Ceph,” [Online]. Available: https://rook.io/docs/rook/v1.8/. [Accessed January
2023].

[24] “METALLB,” [Online]. Available: https://metallb.universe.tf/. [Accessed January 2023].

[25] “SSH,” [Online]. Available: https://www.ssh.com/academy/ssh/protocol. [Accessed
January 2023].

[26] Linux Foundation, "Helm package manager," [Online]. Available: https://helm.sh/.
[Accessed January 2023].

[27] Linux Foundation, “Cert manager,” [Online]. Available: https://cert-manager.io/docs/.
[Accessed January 2023].

[28] “Apache Maven Project,” [Online]. Available: https://maven.apache.org/. [Accessed
January 2023].

[29] ENISA, “EUCS - Cloud Services Scheme,” [Online]. Available:
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme. [Accessed
January 2023].

[30] MEDINA Consortium, “D3.1 Tools and techniques for the management of trustworthy
evidence-v1,” 2021.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 75 of 104

www.medina-project.eu

8 APPENDIX A: Operating Environment

The MEDINA framework functionalities are made up by the collaboration of all the micro-
services, which communicate each other through REST API, are packaged in Docker images and
run in Docker containers. Kubernetes orchestrates all these containers in a virtual environment
running on high-available cluster.

8.1 Kubernetes Installation and Configuration

This section illustrates the container orchestration solution that is executed over the setup
infrastructure described in Section 2.1.1.

Different resources are needed to proceed with the installation and configuration of the cluster.
We used RKE [22] for the installation of Kubernetes [4] in the three nodes, Rook/Ceph [23] for
the configuration of storage and MetalLB [24] for the network configuration.

The Kubernetes cluster is configured and managed by Rancher Kubernetes Engine (RKE) [22], an
open-source distribution that simplifies the installation and operations of Kubernetes. The RKE
client is installed on a console host at the cicd.medina.esilab.org VM and communicates with
the nodes of the cluster through SSH (Secure Shell protocol [25]). Through RKE, we have
configured each cluster node to be both Master and Worker, guaranteeing fault-tolerance and
high availability. To do so, RKE creates on each of them the control plane, kubelet and kube-
proxy resources in Docker containers.

Figure 39. Kubernetes cluster installation with RKE

All the micro-services can store their data in an easy and secure way thanks to the configuration
of a distributed filesystem. Indeed, each node of the cluster provides 200 GB of storage,
managed by Rook/Ceph and exposed as a single, unified cluster filesystem.

Ceph is an open-source distributed storage solution for deliver block storage, object storage and
shared filesystem in a single, unified system. It ensures cluster state monitoring and handles
data replication, recovery and rebalancing.

Ceph is deployed to the Kubernetes cluster by Rook that is an open-source cloud-native storage
orchestrator enabling Ceph to easily run on Kubernetes cluster. The Rook operator is a
Kubernetes resource that automates the Ceph management and installation and turns Ceph into
a self-scaling, self-managing and self-healing storage service.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 76 of 104

www.medina-project.eu

Thanks to this configuration, the data are replicated across the three nodes, 200 GB of storage
and fault-tolerance and high availability are assured.

The micro-services running on the Kubernetes cluster are packaged in Docker images and stored
on a private Docker Registry running on Artifactory by JFrog [8].

In order to have Kubernetes access the Docker Registry, a specific integration has been done: a
secret has been created with the registry credentials. This allows Kubernetes to pull the micro-
service image and then run it on the cluster.

The images are pushed to the Docker registry according to the following structure that was
agreed in the project:

<medina_registry_url>/<work_package>/<task >/<image>:<tag>

Figure 40. Excerpt of MEDINA’s Docker registry

The REST API exposed by each micro-service is reachable from the Internet using the
“*.k8s.medina.esilab.org” URL, corresponding to the static public IP 172.26.124.120. In
particular, on the Kubernetes cluster an nginx [21] service is configured as a proxy to redirect all
the requests to the correct micro-service component. The binding between the nginx service
and the public IP is setup with MetalLb. MetalLb [24] is a network load-balancer implementation
that associates the public IP to the nginx service and uses standard routing protocols to make
available (part of) the network behind the Kubernetes cluster. It is essential for the MEDINA
cluster because, unlike a public cloud provider cluster, this one has no load balancer and
Kubernetes does not provide it by itself.

The user can address the environment s/he wants using this URL naming convention:
 <component_name>-<environment [test or dev]>.k8s.medina.esilab.org

For example, if the user needs to refer to the API exposed by the “api-swagger” component
running on the Kubernetes test environment, s/he will address it as:
 api-swagger-test.k8s.medina.esilab.org

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 77 of 104

www.medina-project.eu

Figure 41.URL naming convention for dev/test environments

8.2 Kubernetes Dashboard

Kubernetes Dashboard is a web-based User Interface for the Kubernetes cluster. It is helpful to
deploy containerized applications to a Kubernetes cluster, troubleshoot them, and manage the
cluster resources. We installed K8s Dashboard using the Helm package manager [26].

To have access to the Dashboard it is needed to generate a Service Account token by creating a
service account. We have two service account with different permissions: one is “dashboard-
admin” that has access to all cluster resources and the other is “partner-user” for the partners
access that has restricted permissions only to dev and test namespaces. We must copy the token
to sign into the Dashboard.

Figure 42. Service Account type used for the Kubernetes Dashboard

The Dashboard is exposed over HTTPS (see Figure 43) at
https://dashboard.k8s.medina.esilab.org/#/login [internal use only - authentication required].

http://www.medina-project.eu/
https://dashboard.k8s.medina.esilab.org/#/login

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 78 of 104

www.medina-project.eu

Figure 43. Kubernetes Dashboard

We have a secure Dashboard since certificates are used to expose it over HTTPS. These
certificates are installed using cert-manager [27]. Cert-Manager automates the provisioning of
certificates and provides a set of custom resources to issue certificates and attach them to
services.

One of the most common use cases is securing web apps and APIs with SSL certificates from
Let’s Encrypt. Basically, we have installed Cert-Manager using the manifest file, created an issuer
that uses the Let’s Encrypt API for the specific domain “dashboard.k8s.medina.esilab.org” and
exposed the Dashboard over HTTPS.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 79 of 104

www.medina-project.eu

9 APPENDIX B: Docker and Kubernetes Webinar with Sample
Component Integration example

The components’ cluster integration in the first round was done manually by all partners, then
it would be automated in the next MEDINA framework versions. To support all partners with
this first integration, a webinar was organized in which an example project was presented.

The webinar included a part dedicated to the explanation of the main aspects and operations of
Docker and Kubernetes and another part for the demonstration of all needed steps to deploy a
sample project in the MEDINA environment.

The sample project, that is a spring swagger application, is available on the project’s private
GitLab located at TECNALIA. It exposes a REST API and stores data on PostgreSQL database while
the Dockerfile, the Kubernetes manifests files and the README instructions are available on the
repository.

Figure 44. Spring Swagger Template on GitLab

The demo of the sample project illustrates step by step all the actions to do for the correct
configuration and deployment of it, starting from the build and up to its release in the k8s
cluster.

Figure 45. Sample project deployment steps

First of all, the project is packaged with Maven [28] and an executable jar is created.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 80 of 104

www.medina-project.eu

This jar is included in the Dockerfile for the docker image creation. Then, after the login on the
private Docker Registry Artifactory, the docker image is pushed following the path convention
at:

optima-medina-docker-dev.artifact.tecnalia.com/wp5/t52/springswagger-template:latest

The final step is the deployment of the docker image in the k8s cluster through the Kubernetes
Dashboard.

Once applied the Kubernetes manifests, the application is reachable from the internet according
to this URL convention:

<component_name>-<namespace {dev, test}>.k8s.medina.esilab.org

For example, the access to the application in the dev environment is at:

http://api-swagger-dev.k8s.medina.esilab.org/swagger-ui/index.html#/

Figure 46. Demo project in the test environment

http://www.medina-project.eu/
http://api-swagger-dev.k8s.medina.esilab.org/swagger-ui/index.html#/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 81 of 104

www.medina-project.eu

10 APPENDIX C: First integration workshop

The aim of the workshop for the first round was to release the first version of the MEDINA
Framework in the development environment of the cluster. The integration and release of
components was done manually by the partners which, however, would be automated through
the CI/CD pipelines in the next rounds.

To carry out the integration of the components, partners were provided with access credentials
to GitLab, Docker Registry Artifactory and the Kubernetes Dashboard.

During the workshop the first five actions foreseen by the defined methodology were
successfully completed by all partners: first of all, each project had been uploaded to GitLab,
then the Docker images had been pushed on the Artifactory registry and finally the Kubernetes
manifest files had been created and applied to the development environment via the
Kubernetes Dashboard.

At the end of the workshop, all components planned for this round were successfully released
in the development environment (see Figure 47).

Figure 47. K8s Dashboard: Components deployed in dev environment

Figure 48 lists all the components of the MEDINA Framework: the green ones were released on
the development environment, the yellow one would be deployed in the next round, and the
blue ones would not be released in the Kubernetes cluster. In particular, the Codyze component
would be integrated in the MEDINA Security pipeline and Wazuh and VAT would run on a
dedicated standalone VM provided by TECNALIA.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 82 of 104

www.medina-project.eu

Figure 48. Status of the first integration of MEDINA components

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 83 of 104

www.medina-project.eu

Furthermore, partners performed point to point tests to verify the communication in pairs of
the released components. Table 19 shows in green the working ones.

Table 19. Point to point communication tests

Component Name Component Name Status

Orchestrator Countinuous Certification Evaluation CONNECTED

Orchestrator Blockchain Monitoring Tool CONNECTED

Orchestrator Security Assessment CONNECTED

Orchestrator Metrics and Measures Catalogue NEXT ROUND

Cloud Evidence Collector Security Assessment CONNECTED

Security Assessment WAZUH + VAT Evidence Collector CONNECTED

DSL Mapper Orchestrator NEXT ROUND

DSL Mapper Metrics and Measures Catalogue NEXT ROUND

NL2CNL Translator Metrics and Measures Catalogue NEXT ROUND

CNL Editor DSL Mapper NEXT ROUND

CNL Editor NL2CNL Translator NEXT ROUND

CNL Editor Metrics and Measures Catalogue NEXT ROUND

Organisational Evidence Management
Tool

Metrics and Measures Catalogue NEXT ROUND

Static Risk Assessment and
Optimisational Framework

Metrics and Measures Catalogue NEXT ROUND

Countinuous Certification Evaluation Metrics and Measures Catalogue NEXT ROUND

Countinuous Certification Evaluation
Dynamic Risk Assessment and

Optimisation Framework
NEXT ROUND

Dynamic Risk Assessment and
Optimisation Framework

Life Cycle Manager NEXT ROUND

Integration UI
Metrics and Measures Catalogue

Keycloack
CONNECTED

Integration UI Metrics and Measures Catalogue CONNECTED

Integration UI NL2CNL Translator CONNECTED

Integration UI Orchestrator NEXT ROUND

Organisational Evidence Management
Tool

Orchestrator NEXT ROUND

Integration UI
Organisational Evidence Management

Tool
NEXT ROUND

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 84 of 104

www.medina-project.eu

11 APPENDIX D: Generic Architectural Workflows

This Appendix revisits and updates the details related to the generic architectural workflows as
presented in D5.3 [1]. As required, the workflows have been updated for the purposes of the
present deliverable.

11.1 WF1 - Preparation of Target of Certification (ToC)

This initial workflow, despite not invoking any of the MEDINA components, is an evident pre-
requisite for the CSP to fulfil before the certification process starts. Its main goal is for the CSP
to prepare the Target of Certification (ToC), both from a technical (e.g., deploying the actual
cloud service in the hyperscaler) and organizational (e.g., gather the operational manuals in
electronic format) perspectives.

11.1.1 Related Architectural Components

As mentioned above, this workflow does not involve any of the MEDINA components. However,
it setups the ToC elements in building blocks 5 and 7 from Figure 15, namely:

• ToC’s organizational evidence (electronic format)

• Cloud services comprising the ToC (e.g., IaaS/PaaS/SaaS), which can be deployed in one
or more hyperscaler.

11.1.2 Workflow

Table 20 describes the steps associated to this workflow.

Table 20. WF1 description

Step Description Role Comments

1 Documentation related to
organizational measures
implemented by the Cloud
Service is gathered and made
available in electronic format.

CSP34 The documentation can be made available in
portable formats like PDF.

2 All Resources that comprise the
Cloud Service/ToC (VMs, SQL,
Web Apps, SaaS, etc.) are
assigned to an impact level,
technically configured and
deployed in the hyperscaler.

CSP The impact level will be further used in
subsequent workflows for the purposes of risk
management. For characterizing the Resources,
the current data model in D5.2 [2] considers
three impacts levels corresponding to each of
confidentiality, integrity and availability.

11.2 WF2 - Preparation of MEDINA Components

The second generic workflow of the architecture (WF2) refers to the actual configuration and
deployment of those MEDINA components which are needed for certifying the Cloud Service.
This WF2 does not perform any actual assessment, but it is a required set of deploying actions
before the certification process is triggered by WF3.

11.2.1 Related Architectural Components

This workflow involves the components in building blocks 1, 2, 7 and 8 from Figure 15, namely:

• Catalogue of Controls and Metrics

34 In this generic context, CSP means the entity responsible of the ToC (EUCS requestor).

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 85 of 104

www.medina-project.eu

• Organizational Evidence Gathering and Processing

• Security Assessment (CS Level and OS) – Clouditor Assessment

• Evidence Collection / Security Assessment CS level and CSP Native (Azure Policies)

• Evidence Collection / Security Assessment Application Level (Codyze)

• Evidence Collection Wazuh

• Evidence Collection VAT

• Trustworthiness Evidence Management system (DLT)

• Company Compliance Dashboard / Integrated UI

11.2.2 Workflow

Table 21 describes the steps associated to this workflow.

Table 21. WF2 description

Step Description Role Comments

1 Configuring the following settings in the
Company Compliance Dashboard /
Integrated UI:
a. SSO integration
b. Setup users and roles

CSP The Integrated UI provides the entry
point to the MEDINA framework, and
as such it needs to become integral
part of the CSP’s systems. Therefore,
actions like SSO integration are
needed. A role-based authorization
model allows MEDINA users to only
perform specific actions.

2 Setting up the Catalogue of Controls and
Metrics:
a. Configure the EUCS catalogue with

all assurance levels, and including
corresponding
controls/requirements/metrics.

MEDINA35 The Catalogue of Controls and
Metrics is prefilled with EUCS
information, so it comes out-of-the-
box for the CSP (see WF3).

3 Configure the Security Assessment (CS-
Level and OS) – Clouditor Assessment:
a. Clouditor’s OS-agent is deployed in

VMs Resources from the ToC
b. Clouditor’s CS-level is configured in

PaaS Resources from the ToC

CSP The MEDINA framework guarantees
that corresponding agents can be
deployed at-scale on the
corresponding Resources.

4 Configuration of (Technical) Evidence
Collection / Security Assessment CS level
and CSP Native (Azure Policies):
a. CSP-Native is configured to

automatically collect compliance
data from Azure

CSP In analogy to the collector described
in Step 3, this CSP-Native one is used
to gather evidence from technical
measures.

5 Configuration of (Technical) Evidence
Collection / Security Assessment
Application Level (Codyze):
a. Codyze is configured

CSP Used to gather evidence from
technical measures (code-level).

6 Configuration of (Technical) Evidence
Collection Wazuh:
a. Wazuh is configured

CSP Used to gather evidence from
technical measures.

7 Configuration of (Technical) Evidence
Collection VAT:
a. VAT is configured

CSP Used to gather evidence from
technical measures.

35 This role means the actual MEDINA framework (non-human role).

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 86 of 104

www.medina-project.eu

Step Description Role Comments

8 Configuration / activation of the
Trustworthiness Evidence Management
system (DLT) for the evidence
management and security assessment
results management

CSP This component is linked to the
Orchestrator.

11.3 WF3 - EUCS deployment on ToC

After the ToC has been deployed on the hyperscaler (WF1) and the corresponding MEDINA
components were configured/deployed by the CSP (WF2), then it is possible to use the later for
certifying the Cloud Service. That is the goal of this WF3.

11.3.1 Related Architectural Components

This workflow involves the components in building blocks 1, 2, 5 and 7 from Figure 15, namely:

• Catalogue of Controls and Metrics

• CNL Editor

• Organizational Evidence Gathering and Processing

• Orchestrator / Clouditor Orchestrator

11.3.2 Workflow

Table 22 describes the steps associated to this workflow.

Table 22. WF3 description

Step Description Role Comments

1 The Company Compliance Dashboard /
Integrated UI is used to perform the
following actions:
a. Each Resource comprising the

Cloud Service is registered in
MEDINA as part of the ToC.

CSP Required information from the
Resource include the impact level
mentioned in WF1. Additional
attributes of the Resource are
populated as needed and based on the
MEDINA data model.

2 The Catalogue of Controls and Metrics
(UI) is used to:
a. Select EUCS Assurance level for the

ToC to certify

CSP The default value being “High” (which is
the one requiring continuous
monitoring in EUCS), but also “Basic”
and “Substantial” can be selected.

3 The UI from the CNL Editor is used to:
a. Select suitable built-in Metrics as

provided by the Metrics
Recommender (or accept the ones
pre-selected by default)

b. Customize Target Values36 on the
selected built-in Metrics.

CSP Once the corresponding Obligations
have been selected and configured with
a Target Value (including the
corresponding Metric), then they are
ready to be stored along with the ToC
information in MEDINA’s Orchestrator.

4 The Organizational Evidence Gathering
and Processing is used to upload the
collected documentation (see WF1)

CSP These documents are stored directly on
the database of the component, and
not on the Orchestrator’s.

5 The Orchestrator stores the configured
ToC information (see steps 1-3) in its
corresponding database.

MEDINA n/a

36 In the form of Obligations

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 87 of 104

www.medina-project.eu

11.4 WF4 - EUCS Preparedness – ToC Self-Assessment

This workflow relates to the components in charge of performing the static risk management
(SATRA) and the EUCS self-assessment (Catalogue of controls and metrics) as documented by
D2.7 [10] and D2.2 [11] respectively. Although SATRA implements a “stand alone functionality”,
which does not need to be technically deployed in the Cloud Service (cf. WF3), it is integrated
into the whole MEDINA framework thanks to the unified UI.

11.4.1 Related Architectural Components

This workflow involves the components in building blocks 1 and 3 from Figure 15, namely:

• Risk Assessment and Optimization Framework

• Catalogue of Controls and Metrics

11.4.2 Workflow

The related activities in WP4 are described in Table 23.

Table 23. WF4 description

Step Description Role Comments

1 Catalogue of controls and metrics:
a. Create a new questionnaire after

selecting the EUCS framework and
the assurance level.

b. Load a questionnaire that has been
previously stored in the Catalogue.

c. Provide answers to the questions for
each requirement, based on any of
the following potential answers:

a. Fully supported
b. Partially supported
c. Not supported at all
d. Not applicable

d. Provide some evidence to support
the answers to the questionnaire

e. Identify some non-conformities
f. Save the questionnaire
g. Generate the report

CSP The tool is based on a questionnaire
interface containing requirements
from EUCS, just as described in D2.2
[11] .

A closed set of possible answers
guarantees the computation of a
degree of compliance, which
represents the CSP’s level of
preparedness for obtaining an EUCS
certificate.

2 Catalogue of controls and metrics:
a. The compliance result for each

requirement is calculated based on
the answers provided for all its
related questions.

b. The compliance results are sent to
the SATRA end point.

c. An audit report is generated
including the non-conformities
defined for each requirement

MEDINA The structure of the audit report is
presented in D2.2 [11].

3 Risk Assessment and Optimization
Framework:
a. ToC information and Impact level

(per-Resource type) are entered into
the tool

b. If applicable, the underlying
Hyperscaler is configured as an

CSP The ToC information required for the
static risk assessment is manually
entered into the tool (contrary to the
automated discovery of Resources in
WF3), mostly because less granular
details are needed for the
preparedness assessment. For

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 88 of 104

www.medina-project.eu

Step Description Role Comments

additional Resource (along with its
associated Impact level)

c. Targeted EUCS assurance level is
selected, as required for the
preparedness assessment

example, details about the actual
Resources’ configuration are not
needed for this static assessment.

4 Risk Assessment and Optimization
Framework:

a. Implemented (CSP
Responsibility) Not Implemented
(CSP Responsibility) Not
Applicable Unknown
(Hyperscaler Responsibility)
Degree of compliance for each
requirement is retrieved from
the Catalogue and reported to
the CSP

MEDINA The preparedness report includes the
identification of major and minor
non-conformities, and comparison
between the ideal conformity case
and the provided CSP answers. More
details are presented in D2.6.

11.5 WF5 - EUCS Compliance Assessment

MEDINA proposes the notion of “continuous audit-based certification”, which departs from the
EUCS definition of “continuous (automated) monitoring” referring to periodically assessing the
ToC. This WF5 describes discrete compliance assessments, which should then be periodically
executed for the MEDINA framework to start the certification lifecycle (cf. WF6).

Further information about the underlying evidence collection mechanisms can be found in D3.2
[16].

11.5.1 Related Architectural Components

This workflow involves the components shown in building blocks 5 and 7 from Figure 15, namely:

• Organizational Evidence Gathering and Processing

• Security Assessment (CS Level and OS) – Clouditor Assessment

• Evidence Collection / Security Assessment CS level and CSP Native (Azure Policies)

• Orchestrator / Clouditor Orchestrator

• Evidence trustworthiness management (DLT)

• Evidence Collection / Security Assessment Application Level (Codyze)

• Evidence Collection / Clouditor Discovery

• Evidence Collection Wazuh

• Evidence Collection

11.5.2 Workflow

The different interactions corresponding to this WF5 are shown in Table 24.

Table 24. WF5 description

Step Description Role Comments

1 Organizational Evidence Gathering
and Processing:
a. Automatically assesses the

uploaded organizational
documentation from the ToC
based on the selected Metrics.

MEDINA MEDINA supports EUCS auditors in their
currently manual/time-consuming
activity of assessing organizational
evidence of the CSP (e.g., operation
manuals). The automated assessment
of such organizational evidence is
expected to release auditors from most

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 89 of 104

www.medina-project.eu

Step Description Role Comments

of this time-consuming activity,
although a minimum level of human
interaction is still expected (e.g., to
confirm the assessment results of the
tool, or to provide training data which is
CSP-specific).

2 Evidence Collection / Security
Assessment Application Level
(Codyze):
a. Assesses code-level Resources

from the ToC based on selected
Metrics

MEDINA D3.2 [16] already includes an analysis of
the high assurance level requirements
covered by the MEDINA tools. This
includes not only the current coverage,
but also the expected coverage once the
extensions of the tools / new
functionalities are included.

3 Evidence Collection / Clouditor
Discovery:
a. Assesses cloud service-level

Resources from the ToC based
on selected Metrics

MEDINA Please refer to D3.2 [16] for further
details on metrics’ coverage.

4 Evidence Collection Wazuh:
a. Assesses cloud service-level

Resources from the ToC based
on selected Metrics

MEDINA Please refer to D3.2 [16] for further
details on metrics’ coverage.

5 Evidence Collection VAT:
a. Assesses cloud service-level

Resources from the ToC based
on selected Metrics

MEDINA Please refer to D3.2 [16] for further
details on metrics’ coverage.

6 Evidence Collection / Security
Assessment CS level and CSP Native
(Azure Policies):
a. Assesses cloud service-level

Resources from the ToC based
on selected Metrics

MEDINA Please refer to D3.2 [16] for further
details on metrics’ coverage.

7 Orchestrator / Clouditor
Orchestrator:
a. Assessment Results from

organizational assessments are
stored

b. Evidence from organizational
assessments is stored

MEDINA Organizational and technical evidence
are managed by MEDINA in the same
manner, so they can be postprocessed
homogeneously by the rest of
components (cf. WF6 and WF7).

8 Evidence trustworthiness
management (DLT):
a. Digest/hash of relevant

information related to
organizational assessments
results and evidence are stored

MEDINA Please refer to comment above.

9 Orchestrator / Clouditor
Orchestrator:
a. Assessment Results from

technical assessments are
stored

b. Evidence from technical
assessments is stored

c. Assessment Results are sent to
Continuous Certification
Evaluation

MEDINA n/a

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 90 of 104

www.medina-project.eu

Step Description Role Comments

10 Evidence trustworthiness
management (DLT):
a. Digest/hash of relevant

information related to technical
assessment results and evidence
are stored

MEDINA n/a

11.6 WF6 - EUCS – Maintenance of ToC certificate

This WF6 departs from the current definition of certificate maintenance in the EUCS core
document (see Figure 49) and, for the purposes of MEDINA, adds also an initial stage of
“certificate issuance”. The main objective of WF6 is to take the “discrete/point in time”
assessments from WF5 in order to trigger the different statuses of the corresponding EUCS
certificate.

Figure 49. Certificate maintenance (source: EUCS [29])

11.6.1 Related Architectural Components

This workflow involves the components shown in building blocks 3 and 4 from Figure 15, namely:

• Continuous Certification Evaluation

• Risk Assessment and Optimization Framework

• Automated Certificate Lifecycle Management

• SSI framework

11.6.2 Workflow

The different interactions corresponding to this WF6 are shown in Table 25.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 91 of 104

www.medina-project.eu

Table 25. WF6 description

Step Description Role Comments

1 Continuous Certification Evaluation:
a. Assessment Results (point-in-time

assessment) are received from Or-
chestrator / Clouditor Orchestra-
tor (push-mode)

b. Tree-based evaluation is per-
formed with received Assessment
Results (which are received per-
Resource)

c. Tree-based evaluation results are
stored in Certification Evaluation
Storage

d. If a non-compliance is found37,
then the Risk Assessment and Op-
timization Framework is invoked
(RAOF, see Step 2 below)

MEDINA This component automatizes the
currently manual audit process for
analysing a set of evidence (in particular
when operational efficiency is in scope,
like in the case of EUCS High).

2 Risk Assessment and Optimization
Framework (RAOF):
a. In analogy to WF4, the degree of

non-compliance is computed
based on the (point-in-time) as-
sessments obtained from the Con-
tinuous Certification Evaluation

b. The degree of non-compliance is
communicated to the Certificate
Lifecycle Manager (see Step 4 be-
low)

MEDINA As mentioned in WF4, the “degree on
non-compliance” is computed
comparing the real (e.g., based on
monitored/declared status of
requirements) risk level and ideal one
(i.e., with all requirements satisfied). A
threshold is to be set which determines
if the difference is higher (major non-
conformity) or lower (minor non-
conformity). See D2.6 for more details.

3 Automated Certificate Lifecycle
Manager:
a. Based on the Operational Effec-

tiveness Criteria defined by EUCS,
the certificate maintenance lifecy-
cle is triggered.

b. The status of the certificate can be
updated to any of New Certificate,
Renewal, Continuation, Update,
Withdraw, or Suspension.

MEDINA

The core EUCS document defines the
basis for MEDINA to implement the
automation of the certificate lifecycle
management.

5 Automated Certificate Lifecycle
Manager:
a. Certificate status is published/up-

dated on the MEDINA’s Public Reg-
istry

MEDINA This is a required step in EUCS to provide
transparency to the certification
process.

6 Automated Certificate Lifecycle
Manager:
a. Certificate status is notified to the

CAB (emulated by an SSI-based is-
suer component).

MEDINA The CAB leverages SSI techniques for
issuing/updating the certificate.

7 SSI-based issuer: CAB The CAB leverages SSI techniques for
issuing/updating the certificate.

37 Compliances are not reported to the Risk Assessment and Optimization Framework

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 92 of 104

www.medina-project.eu

a. A credential is issued to the CSP
(i.e., SSI based holder) with the
new certificate state.

b. Previously issued credentials with
different certificate status are re-
voked.

c. Certificate status is optionally re-
published on the MEDINA Public
Registry.

8 SSI-based holder:
a. The credential with the updated

certificate status is received and
locally stored.

MEDINA The CSP staff can check the historical
certificates status.

11.7 WF7 - EUCS –Report on ToC Certificate

The goal of this WF7 is to report about the status of an EUCS certificate corresponding to the
ToC and at different levels of detail, depending on the targeted audience (CAB, CSP, etc.). This
WF7 consider for example, the case where a CAB needs to verify the technical/organizational
evidence which resulted on the suspension of a certificate.

11.7.1 Related Architectural Components

This workflow involves the components shown in building block 4 from Figure 15, namely:

• Automated Certificate Lifecycle Management

• Evidence trustworthiness management (DLT)

• Continuous Certification Evaluation

• SSI Framework

11.7.2 Workflow

The different interactions corresponding to this WF7 are shown in Table 26.

Table 26. WF7 description

Step Description Role Comments

1 Automated Certificate Lifecycle Management:
a. A lookup on the Public Registry(-ies) is

performed to search for a specific crite-
rion (e.g., Certificate_ID, ToC, CSP, period
of time, etc.).

b. If found on the Public Registry, the corre-
sponding certificate is shown.

CAB
CSP

NCCA

Details to display include
certificate’s history, ToC, degree of
non-compliance, etc.

2 Continuous Certification Evaluation:
a. For the selected certificate (see step 1

above), the details related to (non-) com-
pliant controls/requirements/metrics/re-
sources are displayed.

b. The associated reference implementation
TOM is retrieved from the Catalogue of
Controls and Security Schemes and re-
ported to the CSP.

c. The associated degree of non compliance
is retrieved from the Risk Assessment and
Optimization Framework and reported to
the CSP.

CSP The CSP is provided with the
details related to the selected
certificate, in particular
corresponding to the assessed
controls/requirements/metrics/re
sources.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 93 of 104

www.medina-project.eu

3 (Optional) Evidence trustworthiness
management (DLT):
a. For a selected EUCS certificate, the gath-

ered evidence is validated and the status
is then reported.

CAB
CSP

NCCA

A role like the CAB will have the
option to check if the gathered
evidence (used in the certificate’s
life cycle management) have not
been tampered with. For this
purpose, the DLT component is
invoked.

4 (Optional) SSI based holder:
a. The current (and previous) certificate sta-

tus can be verified according to the cre-
dentials issued by the CAB.

CSP By leveraging SSI-based
techniques, the CSP verifies the
historically issued certificates.

5 (Optional) SSI-based verifier:
a. A potential CSP customer (or external au-

ditor) can ask for secure proofs about the
CSP certificates status.

CSP
custom

er

The credential
validity/trustworthiness can be
verified.

6 (Optional) SSI based holder:
a. Proofs of the current certificate status

can be sent to the CSP’s customer.

CSP If requested, the CSP can send to
its customers the information
required to verify the certificate.

7 (Optional) SSI-based verifier:
a. A potential CSP customer (or external au-

ditor) receives the certificate status and
can verify its validity/trustworthiness.

CSP
custom

er

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 94 of 104

www.medina-project.eu

12 APPENDIX E: Published APIs

Component: Catalogue of Controls and Metrics

The following screenshot series show the list of available APIs that can be used by the
components interacting with the Catalogue of Controls and Metrics.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 95 of 104

www.medina-project.eu

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 96 of 104

www.medina-project.eu

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 97 of 104

www.medina-project.eu

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 98 of 104

www.medina-project.eu

Component: NL2CNL Translator and DSL Mapper

The following screenshots show available APIs that can be used by the other components to
interact with the NL2CNL Translator and the DSL Mapper, respectively.

Component: CNL Editor

The following screenshot shows the list of available APIs that can be used by the components
interacting with the CNL Editor.

Component: Risk Assessment and Optimisation Framework

The following screenshots show the list of available APIs that can be used by the components
interacting with RAOF.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 99 of 104

www.medina-project.eu

Component: Continuous Certification Evaluation

The following screenshots shows the list of available APIs that can be used by the components
interacting with CCE.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 100 of 104

www.medina-project.eu

The complete technical specification (request and response parameters and types) of the gRPC
API is available in the CCE repository: https://git.code.tecnalia.com/medina/public/continuous-
certification-evaluation/-/tree/main/src/main/proto

Component: Life Cycle Manager

The following screenshot shows the list of available APIs that can be used by the components
interacting with LCM.

Component: Automated Self-Sovereign Identity-based certificates
management (SSI)

The following screenshot shows the list of available APIs that can be used by the components
interacting with SSI.

http://www.medina-project.eu/
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation/-/tree/main/src/main/proto
https://git.code.tecnalia.com/medina/public/continuous-certification-evaluation/-/tree/main/src/main/proto

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 101 of 104

www.medina-project.eu

Component: Assessment and Management of Organizational Evidence –
AMOE

The following screenshot shows the list of available APIs that can be used by the components
interacting with AMOE.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 102 of 104

www.medina-project.eu

Component: Orchestrator

The following screenshots show the list of available APIs that can be used by the components
interacting with the Orchestrator.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 103 of 104

www.medina-project.eu

Component: Trustworthiness System

The following screenshots show the list of available APIs that can be used by the components
interacting with the Trustworthiness System.

http://www.medina-project.eu/

D5.4 – MEDINA integrated solution-v2 Version 1.0 – Final. Date: 31.01.2023

© MEDINA Consortium Contract No. GA 952633 Page 104 of 104

www.medina-project.eu

Component: Evidence Collection (Cloud Discovery)

The following screenshot shows the list of available APIs that can be used by the components
interacting with Evidence Collection.

Component: Security Assessment (Clouditor)

The following screenshot shows the list of available APIs that can be used by the components
interacting with Security Assessment.

http://www.medina-project.eu/

	Terms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure
	1.3 Updates from D5.3

	2 MEDINA Test Bed and Secure DevOps infrastructure
	2.1 Test Bed environment
	2.1.1 Hardware Infrastructure
	2.1.2 Components Integration Methodology
	2.1.2.1 Keycloak Webinar
	2.1.2.1 Authorization and Filtering Webinar
	2.1.2.2 CI/CD Webinar
	2.1.2.3 Second Round - Continuous integration

	2.2 Implementation of the CI/CD solution
	2.2.1 Operating Environment
	2.2.2 Pipelines

	3 Generic Architectural Workflows
	3.1 Generic MEDINA Workflows
	3.2 Roles and Levels of Visibility
	3.3 Authorization Model for MEDINA Workflows
	3.3.1 WF1 - Preparation of Target of Certification (ToC)
	3.3.2 WF2 - Preparation of MEDINA Components
	3.3.3 WF3 - EUCS deployment on ToC
	3.3.4 WF4 - EUCS Preparedness – ToC Self-Assessment
	3.3.5 WF5 - EUCS Compliance Assessment
	3.3.6 WF6 - EUCS – Maintenance of ToC certificate
	3.3.7 WF7 - EUCS –Report on ToC Certificate

	4 MEDINA Framework components and integration
	4.1 Catalogue (block #1)
	4.1.1 Catalogue of Controls and Metrics
	4.1.1.1 Implementation and Integration Status
	4.1.1.2 Published APIs
	4.1.1.3 Graphical Interface

	4.2 Certification Metrics and Language (block #2)
	4.2.1 NL2CNL Translator
	4.2.1.1 Implementation and Integration Status
	4.2.1.1 Published APIs

	4.2.2 CNL Editor
	4.2.2.1 Implementation and Integration Status
	4.2.2.2 Published APIs
	4.2.2.3 Graphical interface

	4.2.3 DSL Mapper
	4.2.3.1 Implementation and Integration Status
	4.2.3.1 Published APIs

	4.3 Risk Assessment and Optimisation Framework (block #3)
	4.3.1 Risk Assessment and Optimisation Framework (RAOF)
	4.3.1.1 Implementation and Integration Status
	4.3.1.2 Published APIs
	4.3.1.3 Graphical interface

	4.4 Continuous Evaluation and Certification Life-Cycle (block #4)
	4.4.1 Continuous Certification Evaluation
	4.4.1.1 Implementation and Integration Status
	4.4.1.2 Published APIs
	4.4.1.3 Graphical interface

	4.4.2 Automated Certificate Life Cycle Manager
	4.4.2.1 Implementation and Integration Status
	4.4.2.2 Published APIs
	4.4.2.3 Graphical interface

	4.4.3 Automated Self-Sovereign Identity-based certificates management (SSI)
	4.4.3.1 Implementation and Integration Status
	4.4.3.2 Published APIs
	4.4.3.3 Graphical interface

	4.5 Organizational Evidence Gathering and Processing (block #5)
	4.5.1 Organizational Evidence Gathering and Processing
	4.5.1.1 Implementation and Integration Status
	4.5.1.2 Published APIs
	4.5.1.3 Graphical interface

	4.6 Orchestrator and Databases (block #6)
	4.6.1 Orchestrator and Databases
	4.6.1.1 Implementation and Integration Status
	4.6.1.2 Published APIs

	4.6.2 Trustworthiness System
	4.6.2.1 Implementation and Integration Status
	4.6.2.2 Published APIs
	4.6.2.3 Graphical interface

	4.7 Evidence Collection and Security Assessment (block #7)
	4.7.1 Evidence Collection
	4.7.1.1 Evidence Collection (Clouditor Discovery)
	4.7.1.1.1 Implementation and Integration Status
	4.7.1.1.2 Published APIs

	4.7.1.2 Evidence Collection (Wazuh)
	4.7.1.2.1 Implementation and Integration Status
	4.7.1.2.2 Published APIs

	4.7.1.3 Evidence Collection (Vulnerability Assessment Tools)
	4.7.1.3.1 Implementation and Integration Status
	4.7.1.3.2 Published APIs

	4.7.1.4 Security Assessment (Clouditor)
	4.7.1.5 Implementation and Integration Status
	4.7.1.6 Published APIs

	5 MEDINA Integrated User Interface (block #8)
	5.1 Implementation
	5.1.1 Functional description
	5.1.1.1 Fitting into overall MEDINA Architecture

	5.1.2 Technical description
	5.1.2.1 Prototype architecture
	5.1.2.2 Description of components
	5.1.2.2.1 Authentication and authorization
	5.1.2.2.2 Integration of components

	5.1.2.3 Technical specifications
	5.1.2.4 User Interface structure
	5.1.2.4.1 Login, authentication and Iframe embedding

	5.1.3 Delivery and usage
	5.1.3.1 Package information
	5.1.3.2 Download

	6 Conclusions
	7 References
	8 APPENDIX A: Operating Environment
	8.1 Kubernetes Installation and Configuration
	8.2 Kubernetes Dashboard

	9 APPENDIX B: Docker and Kubernetes Webinar with Sample Component Integration example
	10 APPENDIX C: First integration workshop
	11 APPENDIX D: Generic Architectural Workflows
	11.1 WF1 - Preparation of Target of Certification (ToC)
	11.1.1 Related Architectural Components
	11.1.2 Workflow

	11.2 WF2 - Preparation of MEDINA Components
	11.2.1 Related Architectural Components
	11.2.2 Workflow

	11.3 WF3 - EUCS deployment on ToC
	11.3.1 Related Architectural Components
	11.3.2 Workflow

	11.4 WF4 - EUCS Preparedness – ToC Self-Assessment
	11.4.1 Related Architectural Components
	11.4.2 Workflow

	11.5 WF5 - EUCS Compliance Assessment
	11.5.1 Related Architectural Components
	11.5.2 Workflow

	11.6 WF6 - EUCS – Maintenance of ToC certificate
	11.6.1 Related Architectural Components
	11.6.2 Workflow

	11.7 WF7 - EUCS –Report on ToC Certificate
	11.7.1 Related Architectural Components
	11.7.2 Workflow

	12 APPENDIX E: Published APIs
	Component: Catalogue of Controls and Metrics
	Component: NL2CNL Translator and DSL Mapper
	Component: CNL Editor
	Component: Risk Assessment and Optimisation Framework
	Component: Continuous Certification Evaluation
	Component: Life Cycle Manager
	Component: Automated Self-Sovereign Identity-based certificates management (SSI)
	Component: Assessment and Management of Organizational Evidence – AMOE
	Component: Orchestrator
	Component: Trustworthiness System
	Component: Evidence Collection (Cloud Discovery)
	Component: Security Assessment (Clouditor)

