
Patient Community –
A Test Bed For Privacy Threat Analysis

Immanuel Kunz, Angelika Schneider, Christian Banse, Konrad Weiss, Andreas Binder
Fraunhofer AISEC, Garching b. München, Germany

{firstname.lastname}@aisec.fraunhofer.de

Motivation

Research and development of privacy analysis tools cur-
rently suffers from a lack of test beds for evaluation and
comparison of such tools.
In the area of security, analysis tools and respective bench-
marks are well researched and maintained, while there is
little research into privacy-related tooling and benchmarks.
To the best of the authors’ knowledge, an application with
real deployment configurations as a privacy benchmark has
not been proposed before.

What is our goal? We aim to provide a test bed
that encourages researchers and practitioners to develop
and test privacy analysis tools, use it for educational pur-
poses, as well as a basis for discussion about the code-
and deployment-level analysis of privacy weaknesses.

What exists today? For security testing and learning,
there is the Damn Vulnerable Web Applications Directory
by OWASP [1]. Also, there are test suites for testing
analysis tools, like the Juliet test suite [2]. However, a
comparable approach for privacy is missing.

LINDDUN: LINDDUN is a privacy threat modeling
framework that uses the privacy threats Linkability, Iden-
tifiability, Non-repudiation, Detectability, Disclosure, Un-
awareness, and Policy non-compliance. In our test bed, we
aim at implementing as many types of LINDDUN threats
as possible. The most recent version is LINDDUN GO [4].

Architecture

The Patient Community Example (PCE) consists of multi-
ple microservices which are structured as shown in Figure
1, and further explained in Table 1. It was first described
in an example LINDDUN analysis by Wuyts [3].

Figure 1: The overall architecture of the PCE, including
the combined frontends (yellow), the backend microser-
vices (blue), and the databases (green). Connections to
the authentication service are made from most compo-
nents, but are left out for better readability.

We follow two general goals in our implementation: First,
we aim at covering as many types of privacy threats
as possible defined by LINDDUN GO and second, we
aim at including a diverse set of technologies, e.g.
different programming languages, to prevent bias on any
specific technology.

Table 1: An overview of the microservices in the applica-
tion with short descriptions and their languages.

Service Description Language
frontend The UI consisting of the three sub-

components patient-, researcher-,
and nurse-frontend.

TypeScript

auth Authentication backend which is-
sues authentication tokens for the
different roles (e.g. nurse, patient)

Go

disease
service

Can be queried with symptoms to
retrieve a list of possible diseases.

JavaScript

phr-
manager

Allows patients to upload their Pa-
tient Health Records (PHR) to
track their disease including medi-
cation and symptoms.

Python

group phr
controller

Allows patients to query PHR of
their group members to compare
their course of disease, as well as
medications and symptoms.

Python

nurse-api Allows the registration of new pa-
tients and their assignment to a
group by nurses.

Java

statistics Allows researchers to retrieve
statistics about PHR. It imple-
ments k-anonymity to protect pa-
tients’ privacy.

Python

User DB Holds patient names and the pa-
tients’ group assignments

PostgreSQL

PHR DB Holds Patient Health Records. MongoDB

=⇒ Patients’ medical data is at risk due to the service
provider as well as other patients

Implemented Weaknesses

To enable the detection of privacy threats in our test
bed, we implement privacy weaknesses in popular pro-
gramming languages (like Python, Java and Go), which
can be meaningfully represented in source code (e.g side-
channel threats cannot be directly reflected in code). In
total, 27 of 35 threats of the LINDDUN GO categoriza-
tion [4] are implemented and also named according to the
corresponding categories. In the following, three imple-
mented example weaknesses are explained in more detail.
The complete list can be found on the open-source project
site on GitHub [5].

Threat 1: Identifying credentials (ID1)
Patients are registered with identifiers (first name and
last name).

Entry Point
frontend/src/NewUser.tsx : The new user data (incl.
identifiers) are introduced by the nurse.
Exit Point
nurse-api/src/.../UserController.java: The user is cre-
ated by the patient manager service.

Threat 2: Linkability of retrieved data (L7)
Retrieved personal data are linkable.

Entry Point
frontend/src/GetGroupPhrForm.tsx : A user requests
PHR about fellow group members.
Exit Point
group-phr-controller/app.py : the group-phr-controller
accesses the User DB and the PHR DB and links the
pseudonymous PHR data to the users’ identifiers

Threat 3: Detectable at storage (D4)
An API allows the detection of entities stored in a DB.

Entry Point
frontend/src/PhrForm.tsx : The user submits PHR, and
can specify a custom user ID and group ID.
Exit Point
phr-manager/app.py : The PHR manager returns an er-
ror if the user is not member of the specified group,
leaking information about which user is (not) member
of a group.

Automatic analysis tools should be able to detect such
threats, for example detect HTTP API responses and the
protocols that are used to transmit data.

Conclusions

Summary: We provide a test bed as a standard for com-
parison of analysis tools, and a resource for data privacy
education. We also hope to start a discussion about the
possibility to detect privacy threats automatically, e.g. re-
garding code, policies, and side-channels.

Future Work: Implement further weaknesses, add syn-
thetic data generation to facilitate real-time testing, and
develop static application security testing tools.

Acknowledgement: This work was funded by the Eu-
ropean Union Horizon 2020 project MEDINA, Grant No.
952633.

References
[1] Open Web Application Security Project (OWASP). Damn

Vulnerable Web Applications directory. owasp.org/
www-project-vulnerable-web-applications-directory/

[2] Paul E Black and Paul E Black. 2018. Juliet 1.3 test suite:
Changes from 1.2. US Department of Commerce, National
Institute of Standards and Technology.

[3] Patient Community system - Example Privacy analysis. Kim
Wuyts. https://www.linddun.org/downloads, Patient
communities example.

[4] LINDDUN GO: A lightweight approach to privacy threat
modeling. Kim Wuyts, Dimitriy Van Landuyt, Laurens Sions,
Joosen Wouter. In 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW).

[5] Immanuel Kunz, Angelika Schneider, Christian Banse,
Konrad Weiss, Andreas Binder. Patient Community
Example implementation.
github.com/clouditor/patient-community-example

ACM CCS, 7 - 11 November 2022, Los Angeles, USA

owasp.org/www-project-vulnerable-web-applications-directory/
owasp.org/www-project-vulnerable-web-applications-directory/
https://www.linddun.org/downloads
github.com/clouditor/patient-community-example

