
TowardsGeneralizedSecurity&Compliance
AssessmentofPrograms

Alexander Küchler, Konrad Weiss, Florian Wendland, Maximilian Kaul, and Christian Banse

Motivation
■ Automated analyses are hard to get right and writing them is cumbersome

■ Typically, analyses are adapted to different programming languages

■ Each programming language has different types, programming paradigms, operations, syntax, be-
havior of similar concepts, evaluation order, ...

⇒⇒ Abstract from the programming language with minimal information loss

■ Standards and regulations have to be met by the developers

■ Challenges of automated compliance analysis:

– Interpreting the high-level text in standard requires expert knowledge
– Text cannot be interpreted ⇒ Translate to formalized rules
– Changes in requirements ⇒ Rewrite all rules?

Research-Landscape at Fraunhofer AISEC
Unified Code Representation

Code Property Graph (CPG)

Generalized representation of code
combining

■ Abstract Syntax Tree (AST)

■ Evaluation Order Graph (EOG)

■ Data-Flow Graph (DFG)

■ Control & Program Dependence
Graph (CDG, PDG)

This is enough information to
conduct almost every analysis

B
O
D
Y

A
S
T

E
O
GDF

G

DFG
AST

PARAMETERS

RE
FE
RS
_T
O

US
AG

E

DF
G

AS
T

ST
AT
EM

EN
TS

AST

THEN_STATEMENT ELSE_STATEMENT

AST

EO
G

EOG

A
S
TE

O
G

C
O
N
D
IT
IO
N

D
FG

DF
G

ASTRETURN_VALUES

U
S
A
G
E

AS
T

ST
AT
EM

EN
TS

R
E
TU

R
N
_VA

LU
E
S

A
S
TE
O
G

D
FG

CALLEE

AST

EOG

D
FG

B
A
S
E

A
S
T

DFG
EO

G

D
FG

U
SAG

E

DFG

EOG
AST

STATEMENTS

LH
S

AST

A
S
T E
O
G

R
H
S

DFG

S
TA

TE
M
E
N
TS

A
S
T

EOG

DFG

D
FG

EO
G

U
S
A
G
E

D
FG

ARGUMENTS

AST

EOG

DFG

EOG
EOG

DFG

C
A
LLE

E

A
S
T

AS
TCA

LL
EE

EO
G

EOG

DFG

arg.trim()

length

equals

trim

=

arg

arg

arg

arg

Impleme…

Test

1

arg.equa…

arg.lengt…

if(arg.eq…

arg

Language-Agnostic Representation

■ The graph serves as a way to represent and traverse the code

■ But how to include the subtle differences between languages?

⇒⇒ Language traits: Frequently occurring concepts of programming languages
⇒⇒ Customizable passes: deviate from “default” behavior depending on the language

■ Extensibility is achieved through a plug-in-like system

Supported Languages

Java, C/C++, Go, Python, TypeScript, LLVM-IR

Built-In Analyses

Dataflow Analysis, Reachability Analysis, Constant Propagation, Intraprocedural Order
Evaluation of Statements

Accessing the graph

■ Graph DB neo4j: Cypher queries and visualization

■ Library: Integration in other projects

■ Interactive CLI: Manual exploration

■ Query API: Built-in analyses and custom queries

Handling incomplete code

Fuzzy parsers: Analyze code with missing dependencies or code fragments

Extensions

■ Analysis of cloud applications

■ Privacy assessment

■ Holistic analysis of quantum programs

■ Analysis of Ethereum smart contracts

Abstract Hierarchical Requirements Definition
Codyze

■ Defines a set of rules

■ Abstracts from concrete implementations

■ Parametrizes and runs analyses in the CPG

Correct API Rule Usage

Source of mistakes: Violating conditions when interacting with libraries or APIs, e.g.,

■ Input validation

■ Typestate: Correct order of operations to bring objects in a specific state

■ The choice of arguments might change the security properties

This is specific to a concrete library ⇒ Define library-specific rules.

Use-Case-Specific Standards & Recommendations

■ Define what is considered secure today in one area (e.g. cryptography)

⇒⇒ Parametrization of specific API rules (e.g. cipher, mode, keylength, ...)

⇒⇒ Further pre-conditions of parameters (e.g. “key must come from a good RNG”)

MARK/CoKo: Language to model such requirements

From Specific Libraries to Abstract Concepts

■ Other high-level standards use abstract concepts to define scenarios (e.g. “network traffic must
be encrypted”)

■ Can require multiple use-cases or libraries

Conceptualized Analysis of Compliance to Regulations

Goal: Construct a hierarchy of requirements with placeholders:

generic scenarios 1 — concepts & requirements 2 — implementation 3

■ The depth of the hierarchy/tree depends on the use-case to allow maximal flexibility.

■ Layer 3 is chosen automatically depending on the code under analysis.

■ Layer 2 should be customizable e.g. in case of different national standards.

Concept Extraction

Model Extraction

libcurl

Provides model

OpenSSL - Library Model

How to set algorithm?

How to set keylength?

How to encrypt data?

libcurl - Library Model

How to set network input?

How to send data?

...

Secure Crypto
Standard

High-level
requirements

Provides concept "encryption"

Generic Crypto - Concept Model

Secure algorithms

Secure keylength per algorithm

Concept: "encrypt data"

Defines a scenario's rule(s)

Scenario-Driven Requirements

$(USER) writes $(DATA) to DB → Log $(USER)

Sending $(DATA) to network → $(DATA) must have
been encrypted

...

Provides concept "sending to network"

Generic Networking - Concept Model

Concept: "Set network input"

Concept "Send"

...

Usage of Secure
Crypto?

Network →
Encryption

1

2

3

Parametrize model

BouncyCastle

OpenSSL

Correct API Usage?

Publications
[1] Christian Banse, Immanuel Kunz, Angelika Schneider, and Konrad Weiss. Cloud Property

Graph: Connecting Cloud Security Assessments with Static Code Analysis. In 2021 IEEE 14th
International Conference on Cloud Computing, Chicago, IL, USA, 2021. IEEE.

[2] Maximilian Kaul, Alexander Küchler, and Christian Banse. A Uniform Representation of Classi-
cal and Quantum Source Code for Static Code Analysis. In 2023 IEEE International Conference
on Quantum Computing and Engineering, QCE, Bellevue, WA, USA, 2023. IEEE.

[3] Alexander Küchler and Christian Banse. Representing LLVM-IR in a Code Property Graph. In
25th Information Security Conference, ISC, Bali, Indonesia, 2022. Springer.

[4] Alexander Küchler, Leon Wenning, and Florian Wendland. AbsIntIO: Towards Showing the
Absence of Integer Overflows in Binaries using Abstract Interpretation. In ACM ASIA Con-
ference on Computer and Communications Security, Asia CCS, Melbourne, VIC, Australia,
2023. ACM.

[5] Konrad Weiss and Christian Banse. A Language-Independent Analysis Platform for Source
Code, 2022.

Research Interests & Opportunities

■ Enhance analysis capabilities

■ Improve/Show the correctness of the representation

■ Explore novel use-cases

■ Analysis across applications/components

■ Modeling standards and libraries

■ Identifing concepts and generalizations

More Info

■ CPG: https://github.com/Fraunhofer-AISEC/cpg

■ Codyze: https://codyze.io

■ Fraunhofer AISEC: https://www.aisec.fraunhofer.de

Acknowledgments

This work was partially funded by the EU Horizon 2020 project MEDINA (grant 952633), Bavar-

ian Ministry of Economic Affairs (StMWi), German Federal Ministry of Education and Research

(BMBF) project 6G-ANNA (grant 16KISK087), Bundesamt für Sicherheit in der Informationstech-

nik (BSI).


